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1 Algorithm
The pseudocode of the MGM algorithm is shown below (Algorithm 1).

Algorithm 1: MGM
input : pixel-wise cost volume C, search space D = {dmin,dmax}
output : aggregated and over-counting corrected cost volume Soc
(Li)i=0...7←− 0 //initialize Li, each one is the size of the image ×|D|
// For each passage
foreach i ∈ [0...7] do

// traversals as in figure 1
(r,r⊥)←− Compute_previous_and_above_directions_for_traversal(i)
(xn)n=0...N−1←− Compute_adequate_pixel_ordering_for_traversal(i)
//for all the N pixels of the image
foreach n ∈ [0...N−1] do

p←− xn
mr←−mind′(Li(p− r,d′)) //precompute the minLr
mr⊥ ←−mind′(Li(p− r⊥,d′)) //precompute the minLr⊥
foreach d ∈D do

//this implements equation 9 in the main paper
Li(p,d)←Cp(d)+ 1

2 min(Li(p− r,d),
Li(p− r,d±1)+P1,

mr +P2)

+ 1
2 min(Li(p− r⊥,d),

Li(p− r⊥,d±1)+P1,

mr⊥ +P2)

Soc←− ∑i∈[0...7] Li− 7C
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Figure 1: Depiction of the 8 image traversals and the corresponding recursion directions r
and r⊥ in MGM.
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Figure 2: Speedup of MGM applying different parallelization strategies. The naïve strategy
consists in computing the 8 image traversals in parallel. This doesn’t scale beyond 8 cores.
The diagonal parallelization (illustrated on the left for the raster ordered image traversal)
scales better with the number of cores.

1.1 Parallelization considerations

Since MGM introduces dependency among the scan lines, these cannot be processed in par-
allel as it is usually done with SGM. A naïve parallelization of MGM consists in performing
the 4 or 8 image traversals in parallel. However, the performance improvement with this
approach is limited to the number of traversals.

Instead, parallelization in MGM is achieved diagonal-by-diagonal. That is, during the
image traversal in raster order (first diagram of figure 1) the pixels of a diagonal going from
top-right to bottom-left can be processed in parallel, because they only depend on their top
and left neighbors (which are computed by the previous diagonal). This strategy is illustrated
in figure 2. A nearly linear speed-up is observed (figure 2) when applying this strategy on a
16-core test machine (Xeon@2.60GHz).
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Tsukuba(16 labels) Teddy(60 labels) Venus(20 labels) Fountain(143 labels)
Method Egap C V C/V Egap C V C/V Egap C V C/V Egap C V C/V

BP-S 1.78 939 206 4.5 0.68 3295 456 7.2 0.68 2163 223 9.7 1.32 2932 717 4.1
Expansion 0.09 928 199 4.7 0.13 3305 425 7.8 0.07 2171 200 10.8 -0.05 2911 688 4.2
TRW-S 0.00 933 192 4.8 0.00 3293 432 7.6 0.00 2164 205 10.5 0.00 2899 703 4.1
SGM4 48.3 844 826 1.0 21.7 2968 1565 1.9 31.4 2003 1110 1.8 29.0 2611 2036 1.3
ocSGM4 41.9 904 693 1.3 18.2 3225 1179 2.7 25.6 2130 846 2.5 26.5 2794 1763 1.6
MGM4 7.51 918 292 3.1 5.53 3229 703 4.6 4.19 2144 325 6.6 10.7 2779 1207 2.3

Table 1: Energy ratios. E is the energy gap ( Ere f−E
Ere f

×100) of the solution with respect to the
reference solution of TRW-S (Tree-Reweighted Message Passing [9]), C/V is the ratio in the
final energy between the data term (C) and the regularity term (V). All the reported energies
are measured in thousands. Two other reference methods are also included: Expansion-move
algorithm [2], and BP-S a sequential Belief-Propagation algorithm from [12]. The energy
ratios C/V, indicate the current balance of the data and regularity term in the solution. In
both SGM4 and ocSGM4, the regularity term (V) is always much larger than in the solutions
of the other methods. This means that the regularity term is weakly enforced by SGM4 and
ocSGM4. The solutions of MGM4 on the other hand are much higher and closer to the
reference optimization algorithms.

2 Experiments

2.1 In SGM the regularity term is only weakly enforced
As mentioned in the main paper, we observe that in the SGM algorithm the regularity defined
in the energy

E(D) = ∑
p∈I

Cp(Dp)︸ ︷︷ ︸
C

+λ ∑
(p,q)∈E

V (Dp,Dq)︸ ︷︷ ︸
V

(1)

is only weakly enforced. Whereas for MGM yields a result closer to the reference opti-
mization techniques. To corroborate this, we evaluated the energy of the solutions reported
in section 4.1 (table 1) of the main paper. In table 1 we distinguishing the contributions
of the data term (C) and the regularity term (V) for each solution, and compare the ratios
C/V. First, we note that for all the methods the data term C have approximately the same
energy. However the regularity terms for the results of SGM4 and ocSGM4 are abnormally
high, which means that the regularity term is not satisfied by the solution. MGM4, on the
other hand, yields much lower values for the regularity term which means that the obtained
solutions are more regular.

2.2 MGM systematically improves the energy minima with respect to
the baseline SGM

To complement the experiment of section 4.1 we propose evaluate the energy gap for the
stereo correspondence problem between the solutions obtained with MGM the baseline SGM
with 8 directions (the larger the gap the better). We use for this experiment full resolution
stereo-paris from the datasets [8, 10]. The energy is measured on the 8-connected graph, and
the smoothness term is

V (d,d′) =

 0 if d = d′

P1 if |d−d′|= 1
P2 otherwise

, (2)
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Image 1−
(

EocSGM
ESGM

)
1−
(

EMGM
ESGM

)

G
T

M
id

20
14

Motorcycle 0.090 0.419
Jadeplant 0.059 0.401

Adirondack 0.050 0.358
Playtable 0.093 0.482
Playroom 0.057 0.289

Teddy 0.142 0.461
Vintage 0.075 0.523
Pipes 0.096 0.381

Shelves 0.058 0.549
Recycle 0.060 0.515
Piano 0.092 0.504

G
T

M
id

20
06

Baby1 0.126 0.446
Baby3 0.131 0.449
Baby2 0.115 0.451
Plastic 0.046 0.482
Aloe 0.153 0.311

Cloth2 0.124 0.298
Cloth3 0.174 0.271
Cloth1 0.175 0.269
Cloth4 0.154 0.311

Lampshade1 0.084 0.514
Wood1 0.133 0.511
Wood2 0.076 0.541

Lampshade2 0.062 0.520
Flowerpots 0.071 0.423
Monopoly 0.091 0.312
Bowling1 0.073 0.501
Bowling2 0.090 0.475

Midd2 0.078 0.518
Midd1 0.099 0.502
Rocks1 0.178 0.376
Rocks2 0.185 0.369
Books 0.133 0.382

G
T

M
id

20
05 Moebius 0.150 0.378

Reindeer 0.142 0.410
Dolls 0.124 0.322

Laundry 0.129 0.371
Art 0.115 0.374

AVERAGE 0.107 0.420

Table 2: Energy gap (the larger the better) between the solutions obtained with the pro-
posed method and the baseline SGM with 8 directions. The images are from the stereo
datasets [8, 10]. The energy is measured on the 8-connected graph, in all the test we use
P1 = 8 and P2 = 32 for the smoothness term (2). The energy obtained with MGM is on
average 40% lower than SGM. While ocSGM is only 10% lower than SGM on average.

with P1 = 8 and P2 = 32 for all the experiments.
In table 2 we see that the energy of the solutions obtained with MGM are on average

40% lower than SGM. While ocSGM is only 10% lower than SGM on average.

2.3 Post-processing with median filter
As the evaluation presented in the main paper focuses on energy minimization, no post-
processing of the outputs is considered. However, a key component of the SGM algorithm [7]
is the 3× 3 median filtering of the disparity maps to fill-in small holes. Here we compare
the impact of this post-process (denoted +med) on the baseline SGM and MGM. Figure 3
show that the results of SGM improve substantially after median filtering, while the results
of MGM do not change much. Nevertheless, even after filtering the results of SGM present
more errors than MGM specially in poorly textured areas (as shown in figure 4).
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Figure 3: Bad pixel ratios (% of pixels with error > 1) on the Middlebury 2014 and the
Middlebury 2005&2006 datasets. The statistics corresponds to results of the baseline SMG
and MGM, with and without the post-processing using the 3×3 median filter (+med).

base-SGM base-SGM+med

MGM MGM+med
Figure 4: One result for comparing the impact of the median filter (+med) post-process when
applied to the baseline SGM and MGM.
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3 More results

3.1 Middlebury 2014 dataset [10]
Figures 6 and 7 show more results of our method. We compare the results of our baseline
implementation of SGM, our method (MGM), and the publicly available ELAS [4]. The
two figures show the sparse and dense results of each method. SGM and MGM use the
same settings for all the images: 8 propagation directions and the Hamming distance of
census transform [13, 14] on a 5×5 neighborhood (normalized by the number of channels as
matching cost Cp. The parameters P1 and P2 were set for all images to P1 = 8 and P2 = 32.
No intensity cues (adaptation of P2) were used but they could easily be incorporated [1, 7]
in both SGM and MGM. To prevent influence of the post-processing steps on the evaluation,
the results shown for base-SGM and MGM in figure 6 correspond to the unaltered outputs
of the winner-take-all stage. The bad pixel ratios for the dense results are compared in table
5. The sparse results (figure 7) are obtained applying the left-to-right consistency check [3]
with threshold set to 1.

3.2 KITTI dataset [5]
Results on the KITTI training dataset, are shown in table 3. We didn’t optimize the pa-
rameters, instead we used the ones proposed in [11]: P1 = 7, P2 = 100. We used the census
distance (5×5 windows) as cost, refined the disparities with V-fit sub-pixel interpolation [6],
then filtered with a 3 median filter and with the left-to-right consistency check. The running
time for computing each frame on a 16-core computer is about 6 seconds for MGM, and
5.3 seconds for base-SGM. The results shown in figure 8 confirm that MGM yields slightly
denser results than base-SGM. Evaluating the MGM algorithm on the test database yields
table 4.
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Figure 5: Bad pixel ratios (% of pixels with error > 1) on the Middlebury 2014 test images.
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Image GT base-SGM MGM ELAS
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Figure 6: Dense results on stereo pairs with ground truth from the 2014 Middlebury dataset.
We compare the results of our baseline implementation of SGM, MGM, and ELAS [4].
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Image GT base-SGM MGM ELAS
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Figure 7: Sparse results on stereo pairs with ground truth from the 2014 Middlebury dataset.
We compare the results of our baseline implementation of SGM, MGM, and ELAS [4].
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method Out-Noc (all px) Out-Noc (estimated px) Density
base-SGM 7.30 % 3.94 % 88.78 %

MGM 6.33 % 4.09 % 92.18%

Table 3: Average results of the MGM and base-SGM algorithms on the KITTI training
dataset. Out-Noc is the fractionof erroneous pixels (computed using the threshold at 3 pixels)
in non-occluded areas, evaluated on all the pixels (interpolated), or restricted to the estimated
ones. The average densities of the disparity maps are shown in the last column.

base-SGM MGM
Figure 8: Results of base-SGM and MGM for two stereo pairs from training dataset of
the KITTI challenge.

Error Out-Noc Out-All Avg-Noc Avg-All
2 pixels 8.51 % 9.95 % 1.2 px 1.4 px
3 pixels 5.70 % 6.89 % 1.2 px 1.4 px
4 pixels 4.31 % 5.30 % 1.2 px 1.4 px
5 pixels 3.45 % 4.28 % 1.2 px 1.4 px

Table 4: Results of the MGM algorithm on the KITTI testing dataset. We used the census
distance (5×5 windows), with parameters P1 = 7, P2 = 100 (as in [11]) the disparities are
refined with V-fit sub-pixel interpolation [6], then filtered with a 3 median filter, and with
the left-to-right consistency check. The running time for each image is about 6 seconds on a
16-core computer.
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