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To achieve higher resolutions, current earth observation satellites use larger, lightweight primary mirrors that
can deform over time, affecting the image quality. To overcome this problem, we evaluated the possibility of
combining a deformable mirror with a Shack–Hartman wavefront sensor (SHWFS) directly in the satellite.
The SHWFS’s performance depends entirely on the accuracy of the shift estimation algorithm employed, which
should be computationally cheap to execute onboard. We analyzed the problem of fast, accurate shift estimation
in this context and have proposed a new algorithm, based on a global optical flow method that estimates the shifts
in linear time. Based on our experiments, we believe our method has proven to be more accurate and stable, as well
as less sensitive to noise, than all current state-of-the-art methods, permitting a more precise onboard wavefront
estimation. © 2016 Optical Society of America
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processing; (110.4280) Noise in imaging systems.

http://dx.doi.org/10.1364/AO.55.007836

1. INTRODUCTION

Adaptive optics (AO) is a well-known technology to sense and
correct wavefront distortions. This technology is used in
astronomy to produce sharper images from heavily aberrated
wavefronts caused by atmospheric turbulence. This correction
is usually performed through a deformable mirror that adapts to
the measured wavefront and corrects the distortion [1]. Since
AO also helps to improve the performance of aberrated optical
systems, it is widely used in several other contexts, including
ophthalmology [2], microscopy [3], and free-space laser com-
munication systems [4], among others [5].

A key component of an AO system is its wavefront sensing
mechanism (i.e., the device used to precisely measure distor-
tion). A Shack–Hartmann wavefront sensor (SHWFS) is one
such device. It uses an array of lenslets to measure the defor-
mation of an incoming wavefront. The shift of each lenslet focal
plane image is proportional to the mean slope of the wavefront
in the subaperture onto this lenslet. It yields a discrete local
approximation of the wavefront’s slope (Fig. 1). This deforma-
tion is usually measured by imaging a point source such as a
star, and measuring the relative displacement between a refer-
ence image and all other subimages to compute the wavefront’s
local gradient.

Recently, the community evaluated correcting wavefront
deformations on earth observation satellites [6–8] caused by
the deformation of the primary mirror. In this setting, the
problem of atmospheric turbulence is negligible. Indeed, in
astronomical observations from the earth, the angle of view is
extremely narrow. As a result, the light wavefront crosses a
narrow solid angle of atmosphere and its perturbations due to
turbulence have a great affect on image quality. In earth obser-
vation from a satellite, however, the viewing angle is much
larger, so perturbations due to turbulence are relatively much
smaller.

The correction of optical aberration, however, is becoming
more and more important for high-resolution earth observation
satellites. To increase the spatial resolution of satellite images
(i.e., the ground sample distance), a larger primary mirror is
required to gain a higher angular resolution. Large mirrors must
be thicker to avoid deformations, which dramatically increases
their weight and makes launching costs prohibitive. For this
reason, large, but lighter, mirrors must be considered. One
drawback of lighter mirrors, though, is that time-varying defor-
mations due to thermal effects and vibration severely deterio-
rate the image quality [9]. To correct these deformations, a
SHWFS device could be used to measure them by observing
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the earth together with a deformable mirror to compensate for
these deformations. As opposed to AO, where the distortion
must be compensated in real-time due to the fast changes in
the atmosphere, the compensation needed for the mirror defor-
mation is less frequent, roughly just seconds.

Coming from the control theory, two schemes exist to
perform wavefront correction. In an open loop system, the wave-
front error is measured before the wavefront corrector corrects
it. In a closed loop system, however, the measured wavefront
deformation is the residual error after the correction of
the previous estimation. The difference between both opera-
tional modes is important because in a closed loop system,
the wavefront aberrations measured will be small, which allows
to assume a maximum shift between images of up to a few
pixels. In this paper we assumed a closed loop system.

Another important factor that affects the accuracy of wave-
front sensing is the phenomenon of scintillation and phase
anisoplanatism, which results in more complex patterns than
simple global shifts between subapertures. The influence of this
phenomenon was widely studied in the context of AO [10–12].
However, in remote sensing, because the phase aberration is
produced at the telescope pupil, all parts of the image are
affected by it in the same way, neglecting its incidence [10].

Finally, once the shift estimation is performed, several
methods can be used to reconstruct the wavefront from its local
gradient estimations, namely the iterative zonal method [13],
the vector-matrix-multiply (VMM) method [14], and the
Fourier transform reconstruction (FTR) method [15]. The
latter is recommended when the number of actuators is
high. The VMM method, however, obtains more accurate re-
sults under a SHWFS configuration using less than 12 × 12
subapertures [16].

As mentioned before, wavefront sensing in astronomy is
usually performed using the stars. When observing the earth
from space this task becomes more challenging.

Extended scene versus point source observation. For an
earth observation satellite, the SHWFS is used on extended
scenes instead of point sources such as stars. This setup is called
scene-based wavefront sensing (SBWFS), or extended-scene
wavefront sensing (ESWFS). Because the scene is extended,
a field stop must be installed in front of the SHWFS, as seen
in Fig. 1, so the images given by the lenslet array do not overlap
in the lenslet focal plane [17]. This yields a grid of images, each

one corresponding to one subaperture, which are shifted ver-
sions of the same scene. By accurately measuring these shifts,
we can estimate the wavefront’s gradient. Since we are dealing
with landscapes larger than the captured image, however, it be-
comes challenging to accurately perform the shift estimation.
Even worse, in most wavefront sensors, the extent of the source
object normally reduces the contrast of the signal, further
thwarting accurate shift measurements [18].

Difference in subimage SNRs due to pupil occlusions.
For long focal length telescopes commonly used on earth ob-
servation satellites, the Korsch concept is the most common.
The pupil of a Korsch telescope is generally occluded in the
center by a secondary mirror. The arms used to hold this mirror
also occlude the pupil. In these regions, the lenslets suffer a loss
in the incoming signal, proportional to the percentage of oc-
clusion. Figure 2(a) depicts this configuration. Figure 2(b)
shows an example of a SHWFS output in the CRT sensor,
which shows how the signal-to-noise ration (SNR) on the par-
tially occluded lenslets is significantly lower.

Limited onboard computational capacity. An important
distinction when performing wavefront sensing from earth ob-
servation satellites is its limited computational capacity. Because
of this constraint, several shift estimation methods proposed for
SHWFS are not suitable onboard due to their high complexity.

Unusable observations. Another difference when observ-
ing extended scenes, as opposed to the use of SHWFS with
point sources, is the need to predict if the current scene allows
to accurately estimate the wavefront aberration. Scenes such as
clouds, the sea, or any textureless landscape can thwart all shift
measurement methods, leading to poor wavefront estimation.

Contributions. Based on these differences, here we have
presented a new shift estimation method in the context of
SHWFS used on extended scenes. Our contribution is three-
fold. First, we reviewed state-of-the-art on wavefront correction
using SHWFS on extended scenes. Second, we have proposed
the use of an iterative global optical flow method for shift es-
timation that presents several advantages over conventional cor-
relation methods. Third, we have proposed a fast and effective
method for scene pre-selection that adds almost no further
computational cost to the overall estimation using the proposed
algorithm.

Fig. 1. Shack–Hartmann wave-front sensor measures the wave-
front by computing the local shifts between the detected spots (in
green) and the reference crosses (in black), which would occur if
no deformation were present.

Fig. 2. Example of a SHWFS occlusion scheme under a Korsch tele-
scope. Both the secondary mirror and the arms used to hold it are
clearly visible. For each lenslet, the decrease of the incoming signal
is proportional to its occlusion.
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Section 2 reviews the state-of-the-art on shift estimation ap-
plied for SHWFS on extended scenes. Section 3 presents our
optical flow method and its usage for wavefront correction from
earth observation satellites. Section 4 focuses on scene pre-
selection methods. Section 5 examines the influence of the
parameters on the proposed method, and thoroughly compares
its performance with state-of-the-art options. Here, we used
ground truth simulations provided by CNES and our own sim-
ulator. Finally, Section 6 offers our conclusions.

2. STATE-OF-THE-ART REVIEW

Since the Shack–Hartmann wavefront sensor was introduced in
the late 1960s [19], several algorithms have been proposed to
estimate the shifts using point sources such as stars. However,
only few authors have studied the problem when the source is
extended, as when observing the earth from space. Broadly,
they can be categorized in correlation methods working in
the spatial [17,20,21] or in the frequency domain [6,21–24];
phase correlation methods that estimate the shift directly in
the frequency domain [24,25]; iterative methods [22,23] that
improve on previous approaches by progressively estimating the
shift; and maximum likelihood (ML) approaches [26] that in-
corporate a specific noise model and compute the ML estimate
as the solution to an optimization problem.

A. Correlation-based Methods
These methods compute a correlation score on a grid C�i; j�
and interpolate it to determine the subpixel location of the
peak. The methods mainly differ in the choices of correlation
score and interpolation strategy.

Spatial domain correlation-based methods. Michau et al.
[20] were among the first to propose an experimental imple-
mentation that used a SHWFS on extended sources larger than
the wavefront sensor field of view. Their method computes the
discrete cross-correlation between the images and a reference
subimage chosen from the central region of the wavefront
sensor image pattern. To estimate the subpixel shifts, the
correlation peak location is computed as the centroid of the
pixels with a correlation higher than half the maximal observed
correlation.

Löfdahl [21] tested several shift estimation algorithms for
Shack–Hartmann wavefront sensors observing the sun. By test-
ing using several possible sources of errors such as noise, blur,
and bias mismatch, he evaluated five different correlation-based
methods to obtain the correlation score C�i; j�. Among the
evaluated correlation algorithms, the best all-around performer
proved to be the classical least squares approach or squared
difference function (SDF). Another proposed correlation score
is the covariance function in the image domain (CFI) using
trend-corrected versions of both images. Indeed, Smithson
and Tarbell [27] showed that a linear trend in intensity shifts
the covariance peak from the correct position, so a fitted plane
must be subtracted from both images beforehand. For the
SHWFS case, this task amounts to simply subtracting the
mean value for each image. They also tested other two methods
based on the absolute difference between both images (ADF),
and its square (ADF2) to better locate the minimum at the
subpixel level.

To achieve subpixel precision, they evaluated four interpo-
lation strategies to look for the minimum value on the corre-
lation grid C�imin; jmin�. The four algorithms they evaluated
can be described as fitting a conic section to the 3 × 3-element
submatrix s centered in the sample minimum C�imin; jmin�.
The evaluated algorithms differ on the number of pixels used
and on whether the fitting is done in a two-dimensional (2D)
environment or in each dimension separately. The 1D quad-
ratic interpolation (1QI) fits a parabola in each dimension inde-
pendently, while the 2D quadratic interpolation (2QI) fits the
conic to the 3 × 3 neighborhood. They also evaluated a 1D least
square (1LS) method on both dimensions, which averages the
three values on one dimension and then applies least squares on
the other, and a 2D least square (2LS) variant, which includes
the corner values in the procedure.

Frequency domain correlation-based methods. Poyneer
[6] studied the wavefront estimation problem using a
SHWFS by observing earth from space using lightweight op-
tics. By assuming periodicity on the input images, the author
has pointed out that minimizing the mean squared error (MSE)
between both images becomes equivalent to maximizing their
periodic convolution, which is efficiently computed in the fre-
quency domain using the cross-correlation theorem. To get
subpixel precision the maximum at integer coordinates was re-
fined by independently fitting a parabola on each dimension.

Löfdahl also evaluated a frequency-domain method [21]
which, similar to [6], computes the covariance in the
Fourier domain (CFF). However, both images were previously
normalized to zero mean and windowed with a 2D Hamming
window or a flat-top window to avoid ringing caused by the
periodization. Again, the subpixel maximum was obtained
by fitting a parabola to the grid.

B. Phase Correlation
The phase-correlation method was widely studied in the image-
processing domain [25,28]. If we let I�i; j� be anM × N image,
due to the Fourier shift theorem we know that

F fI�i − Δx ; j − Δy�g � Î�u; v� exp
�
−j2π

�
uΔx

M
� vΔy

N

��
:

(1)

Then by computing the cross-power spectrum between both
images and extracting the phase for each frequency, the matrix
ϕ, called the phase correlation matrix, is given by

arg�Ĉ��u; v� � ϕ�u; v� � 2π

�
uΔx

M
� vΔy

N

�
: (2)

The shifts can therefore be computed directly in the frequency
domain by fitting a plane passing through the origin of ϕ�u; v�.
Due to aliasing, some of these frequencies may be corrupted
and distort the shift estimation. To avoid this problem
Knutsson et al. [24] discarded most of the corrupted frequen-
cies from ϕ, retaining only two or four of the lowest frequen-
cies. This estimate has the advantage of being the least sensitive
to aliasing [25] and hence the most reliable. Moreover, assum-
ing small shifts (smaller than half pixel), no phase unwrapping
is required [29]. The accuracy of these methods, however,
suffers considerably in low SNR situations [6].
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C. Iterated Estimation
Since correlation-based shift estimation has a bias proportional
to the shift magnitude [30], then compensating the shift by
resampling one of the images and iterating should progressively
reduce this bias (see Section 3).

Sidick et al. [22] proposed adaptive cross-correlation (ACC)
that estimates the shift using an approach similar to Knutsson
[24] and used this estimation to resample the second image in
the frequency domain to iterate the procedure. Due to potential
ringing artifacts on the image boundaries after the resampling
procedure, the shift was estimated using the central part of both
images with size N∕2, involving 25% of the image pixels in the
computation. To make the shift estimation more accurate, it
uses eight frequency components ϕ�n; m� with 0 ≤ m, n ≤ 2
to perform the least-squares fitting, excluding the center. This
procedure is made iterative by accumulating both u and v shift
estimates, until a predefined amount of iterations is reached or
until Δs � �Δ2

x � Δ2
y �1∕2, the increase of both shift estimates, is

lower than a predefined tolerance value. This technique is then
applied for every subaperture Ik�i; j�.

This algorithm was evaluated on simulated scenes by vary-
ing the shift between them [22] and by using a real SHWFS
configuration testbed [31] produced in NASA’s Jet Propulsion
Laboratory [32]. By relaxing the tolerance parameter of their
iterative scheme, it achieves errors of the order of 0.05 pixels
by using between three and six iterations.

This method presents two problems. Since it discards half of
each image to perform the shift estimation, it usually fails when
the image contents appear away from the center. Also, as in [24],
the shift estimation step of the method suffers severely in low
SNR scenarios. Because of this issue, the authors updated the
method in [23] by replacing this step with Poyneer’s periodic-
correlation technique [6]. This method, named adaptive
periodic correlation (APC), is more tolerant to noise than ACC.

D. Maximum Likelihood Estimator
Gratadour et al. [26] studied the performance of the maximum
likelihood estimator (MLE) within an AO context. Assuming
that the two images I 0 and I 1 are unknown and contaminated
with Gaussian noise their method reduces to minimizingX

k

�4σ2�k��−1jI 1�k� − �I 0�x − x1��III�k�j2; (3)

with respect to the shift x1, where σ2�k� is the noise variance
at pixel k and ��III a sampling operator that performs Fourier
resampling, which is done by computing the inverse FFT of
Eq. (1). To guarantee that the images can be resampled in the
Fourier domain they were pre-filtered using a low-pass filter.
This minimization was performed using a conjugate gradient
method. Although it is an improvement over the typical
cross-correlation, it has a high computational cost, which pro-
hibits its implementation on satellites [6,17].

3. ACCURATE SHIFT ESTIMATION USING
OPTICAL FLOW IN THE CONTEXT OF A SHWFS

To estimate the shift between two subapertures, we propose the
use of a gradient-based shift estimator (GBSE) based on the
optical flow equation. The idea behind this methodology, as
proposed originally by Lucas and Kanade [33], is to relate

the difference between two successive frames to the spatial
intensity gradient of the first image. Given the two images
I 2�x; y� � I 1�x − vx; y − vy� where vx and vy are the unknown
shift coefficients, the first order Taylor approximation yields

I 1�x; y� − I 2�x; y�≂ vx
∂I1�x; y�

∂x
� vy

∂I1�x; y�
∂y

: (4)

To estimate the global optical flow between I 1 and I2, the
Lucas–Kanade algorithm assumes a constant flow for every pixel,
which allows the construction of an over-determined system
of constraint equations Av � b, where A is composed of
spatial intensity derivatives and b has temporal derivatives.
Emulating Simoncelli [34], to increase the accuracy of the
method by minimizing noise or aliasing influence, we looked
for two kernel functions: an anti-symmetric kernel d to estimate
the image gradients and a symmetric kernel k to pre-filter the
images. Using both kernels, matrix A and vector b become

A �

0
BBB@

�dx � I1��p1� �dy � I 1��p1�
..
. ..

.

�dx � I1��pn� �dy � I 1��pn�

1
CCCA;

b �

0
BBB@

�k � �I 1 − I 2���p1�
..
.

�k � �I 1 − I 2���pn�

1
CCCA; (5)

where pi with i � 1…n represents the ith pixel and n the
image size. The shift is obtained by Moore–Penrose pseudo-
inversion�

vx
vy

�
�

� P
I 2x

P
I xI yP

I xI y
P

I2y

�
−1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ATA

�P
I t I xP
I t I y

�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

ATb

; (6)

where I x , I y stands for dx � I1 and dy � I1, respectively, and
I t � k � �I1 − I2� is the derivative over time.

It is no coincidence that the results of the method depend on
the inversion of this second moment matrix. As we will show
later, the determinant of this matrix is crucial to determine the
limits on the estimation performance. This matrix will be used
to discard ill-posed cases before actually performing the shift
estimation. The classic rejection case is when the gradient is
mostly oriented in a single direction. This unsolvable situation
is known as the aperture problem. Section 4 details its detection
using the Cramer–Rao lower bounds.

Centering the Taylor development at zero and taking up
to the first order term, the method gets systematically biased
and becomes less precise as the shift gets larger (i.e., estimated
shifts larger than one pixel would not be correctly estimated).
Furthermore, the noise in the input images is completely
ignored by the algorithm, which also affects its performance.
Both these bias sources have been studied in detail in
[30,35] and will be addressed next.

A. Iterative Gradient-based Shift Estimator
Instead of dealing with the bias explicitly, Pham et al. [30] have
shown that both bias sources depend linearly on the shift
magnitude, which justifies the use of an iterative method.
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The iterative method is able to significantly reduce the bias,
provided an appropriate resampling method is used.
Algorithm 1 performs k iterations, computing the shift v�i�
by solving Eq. (6) (findshift), and iterates by reinterpolating
the original image I 2 (Resample) using the total accumulated
shift w. It is a variant of the Lucas–Kanade algorithm [33]
known as the inverse compositional algorithm [36], in which
the gradients of the reference image are static throughout the
iterations, so �ATA�−1 is only computed once.

Algorithm 1: Iterative GBSE Method

1: procedure ILK �I 1; I2� ▹Receives a pair of images
2: i ← 0; I2�0� ← I 2; w ← 0;
3: while i ≤ k do
4: v�i� ← f ind shif t�I 1; I2�i�� ▹Eq. (6)
5: w ← w� v�i� ▹Accumulate total shift
6: I 2�i � 1� ← Resample�I 2; −w� ▹Use the original I 2
7: i ← i � 1
8: return w ▹Return accumulated shift

In the next sections we show that the gradient discretization
used by findshift and the choice of interpolation method for
image resampling are crucial to ensure the precision of the
GBSE method.

B. Gradient Computation and Image Prefiltering
Gradient computation for optical flow methods has been thor-
oughly studied [34,37,38]. Since our shift estimation is focused
on accuracy and the image size on SHWFS is typically small
(usually smaller than 50 × 50 pixels), using a large kernel for
computing image derivatives implies losing valuable boundary
values. This constrains the kernel to be compact yet precise and
robust to noise. In fact, the impact on the accuracy and the
robustness to noise of the gradient computation is a key factor
for the final performance of the GBSE method.

Because the method should be computationally fast, only
simple schemes could be used. A straightforward candidate
is the centered differences kernel �1; 0; −1�; however, since the
central pixel is ignored in the computation, its precision could
be improved by taking contiguous pixels. For this reason, a
backward difference kernel �1; −1� would seem more appropri-
ate. However, the corresponding center of this derivative differs
for each component, as seen in the middle image of Fig. 3.

A more precise gradient estimation method, illustrated in
the right of Fig. 3, computes the derivatives by performing con-
volution with dx and dy given by

dx �
�
1∕2 −1∕2
1∕2 −1∕2

�
dy �

�
1∕2 1∕2
−1∕2 −1∕2

�
; (7)

and computes the vector b in Eq. (5) by prefiltering both I1
and I 2 using the half pixel bilinear shift kernel

k �
�
1∕4 1∕4
1∕4 1∕4

�
: (8)

This gradient estimation procedure is called hypomode [39],
which, despite being simplistic, usually improves the accuracy
obtained by GBSE methods using finite difference gradient
estimation. This is because it slightly blurs the input images,
which alleviates both aliasing and noise.

We also considered the normalized 2D Gaussian smoothing
kernel k � g�x; y; σg� with standard deviation σg , and its
derivatives dx � − x

σ2g
g�x; y; σg� and dy � − y

σ2g
g�x; y; σg�. The

parameter σg controls the amount of blur, thus using a small
value would be less tolerant to noise, while a high value could
remove textures useful for the shift estimation. In our experi-
ments, we evaluated using σg � f0.3; 0.6; 1g with supports of
3, 5 and 7 pixels, respectively.

As seen from both Figs. 4(a) and 4(b), the fastest, most
accurate gradient estimator for small shifts (≈0.1) is the
hypomode. Therefore it should be considered when the under-
lying deformations are small enough, which could happen on a
closed loop system with frequent mirror corrections. However,
if the maximum shift caused by the wavefront aberration is
larger than half a pixel, computing the Gaussian derivatives
with σg � 0.6 offers the best balance between accuracy and
tolerance against noise, as seen from Figs. 4(c)–4(f ). In fact,
using σ � 0.6 gives better results than using σ � 0.3 because
a higher σ removes more noise from the derivatives, and
blurring the images affects the accuracy less than neglecting

Fig. 3. Used pixels (gray background) for fast gradient estimation
methods and their exact localization (red dots). Left: Centered
differences. Center: 1D backward difference for both ∂x and ∂y.
Right: 2D backward difference.

Fig. 4. Gradient estimation methods comparison for three different
maximum shifts (0.1, 0.5, and 2 pixels). Left: Highly contrasted image
(simple case). Right: Gradients mainly distributed on a single direction
(challenging case). Noise standard deviation according to 12-bit images.
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the noise. Finally, it should be noted that although taking
σ � 1 usually offers poor accuracy with small image sizes,
its tolerance to noise becomes a decisive factor as the noise in-
creases, as seen in Figs. 4(e) and 4(f ).

C. Interpolation Methods for Image Resampling
To iterate the method, the second image must be shifted, as
indicated in step 6 of Algorithm 1. To this end, we evaluated
five different interpolation methods : bilinear, bicubic [40], and
cubic spline [41], together with resampling using the Fourier
shift theorem [42], which we evaluated with and without image
periodization. Image periodization prevents the generation of
ringing artifacts due to the discontinuities at the image boun-
daries. It amounts to using a discrete Fourier transform (DFT)
to resample a mirrored version of the image that has no discon-
tinuities when periodization is assumed (Fig. 5).

The overall accuracy of the method depends on the choice of
interpolation method. However, precision comes at a higher
processing cost. We evaluated the different interpolations by
simulating a landscape with noise of σn � 80, displacements
between subapertures of up to 2 pixels, and computing gra-
dients by using Gaussian derivatives with σg � 0.6. For each
method, we computed the average error and standard deviation
over 200 independent random realizations, using the GBSE
method with two and three iterations. Figure 6 shows a
non-negligible performance difference between the methods.
In terms of average error, both DFT-based methods achieve
the best results; however, we obtained no significant improve-
ment by performing periodization, although we observed a
minimal reduction in the standard deviation. Although the
splines interpolation yields slightly less accurate results, it
should be considered if fast DFT hardware cannot be installed.
Finally, both bicubic and bilinear interpolation perform signifi-
cantly worse than the rest, although bicubic interpolation re-
sults had less variability with respect to other approaches.
Finally, using three iterations does not improve the results con-
siderably compared to using two, so there is no justification for
an increase in the computational cost. However, although we
have not shown this outcome in this experiment, this difference
gets higher as the noise increases, which would justify its use.

D. Image Intensities Equalization
One requirement of the GBSE algorithm is to work on images
with similar intensities. Since occluded subapertures receive less
light, their intensities differ from the reference image. To this
end, we equalized all subimages by normalizing their mean
with the highest mean among all subapertures. When the

point-spread function (PSF) of each subaperture is known,
another equalization strategy before shift estimation between
a subaperture and the reference is to convolve both images with
the PSF of the other one [8]. Because our focus was on the shift
estimation method, we chose to perform the equalization by
the simple procedure explained earlier. It is computationally
cheaper, yet offers excellent results.

E. Multiscale Implementation
The GBSE algorithm can be easily adapted to work in an open
loop environment where aberrations are potentially larger, lead-
ing to larger shifts between subapertures. As mentioned before,
if the shift is larger than one pixel, the GBSE method fails.
However, by building a pyramid representation of the input
images, Eq. (6) can be applied on each scale to estimate the
shift between images, and this estimated shift can then be
used to resample the second image on the following level of the
pyramid. If more accuracy is desired, Algorithm 1 can be used
to better estimate the shift at each scale. We computed the
pyramid using an approximate dyadic Gaussian pyramid [43].
Starting from the coarse image at scale n > 1, Algorithm 2
summarizes this method.

Algorithm 2: Multiscale GBSE Method

1: procedure MSSE �I1; I 2� ▹Receives a pair of images
2: I 1…n

1 ← BuildPyramid�I 1; n� ▹Burt and Adelson’s Gaussian
Pyramid [43]

3: I 1…n
2 ← BuildPyramid�I 2; n� ▹i.e., impyramid function from

Matlab
4: i ← n; w ← 0 ▹n: number of scales, w: accumulated shift
5: while i > 1 do
6: v�i� ← ILK �I i1; I i2� or f ind shif t �I i1; I i2� ▹Alg. 1 or Eq. (6)
7: w ← 2w� 2v�i�
8: I i−12 ← Resampl e�I i−12 ; −w�
9: i ← i − 1
10: v�1� � f ind shif t�I11; I 12�
11: return w� v�1� ▹Return accumulated shift

4. SCENE PRESELECTION AND ROBUSTNESS
ESTIMATION

Before evaluating the deformation of the incoming wavefront,
it is crucial to determine if the current landscape (i.e., what the
satellite is observing at that moment), is suitable to perform
wavefront sensing. Sidick et al. [31] and Poyneer [6] studied

Fig. 5. Example of FFT resampling with and without image
symmetrization. Resampling with DFT produces ringing due to the
discontinuities at the periodized boundaries. We observed no visible
ringing after resampling with symmetrization.

Interpolation methods evaluation. 2(top) and 3(bottom) iterations.
DFT w/sym
DFT
splines
bicubic
bilinear

0 0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175 0.02 0.0225 0.025 0.0275 0.03 0.0325 0.035

Avg. error in pixels

Fig. 6. Comparison of evaluated interpolation methods using two
and three iterations and Gaussian derivatives with σg � 0.6. We fixed
image noise at σn � 80 and set the maximum displacement to 2 pixels.
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this problem and proposed several fail-safe criteria to determine
if the current landscape is acceptable.

In this context, we performed two distinct validations to ensure
an accurate wavefront correction. While the first one was based
on calculating the lowest theoretical achievable error through the
Cramer–Rao lower bound (CRLB) given by the noise and the
image contents, the second validation, called the eigenratio test,
measured the gradient distribution along the image through the
ratio of the eigenvalues of the structure tensor. Both validations are
complementary and should be verified together.

CRLB test. The Cramer–Rao lower bound allows to predict
the best achievable accuracy, given the current landscape and
the underlying noise. In the last decade, three main works have
addressed the calculation of the error on the estimated shift
caused by noise. Robinson and Milanfar [35] used the Cramer–
Rao lower bound to derive a performance limit for image
registration. The CRLB imposes a lower limit on the MSE for
any estimate of a deterministic parameter. Pham et al. [30] con-
tinued on the same idea to derive a theoretical limit for image
registration, followed by a study of the bias for the gradient-
based 2D shift estimation. Recently, Aguerrebere et al. [44] per-
formed an in-depth study of performance limits within a multi-
image alignment context and derived several Cramer–Rao lower
bounds, depending on the conditioning of the problem.

By assuming that the noise is independent, homoscedastic,
Gaussian, and with the same variance σ2n on both images, and
denoting by S the set of all pixels in the image, the Cramer–Rao
bound for any unbiased 2D shift estimator is

var�vx� ≥
σ2n
P

SI2y
Det

var�vy� ≥
σ2n
P

SI
2
x

Det
; (9)

where Det � P
SI

2
x
P

SI
2
y − �

P
SI xI y�2. We can therefore de-

fine a parameter ΔCRLB, the maximum allowed error in pixels,
that determines whether the current landscape is acceptable to
perform wavefront estimation, by verifying

�var�vx� � var�vy��1∕2 ≤ ΔCRLB: (10)

Yet, I x ; I y represent the gradient obtained from the un-
known noiseless image I . Thus, this bound is only useful
for a theoretical study. In practice, however, the required values
can be approximated using the method in [45], where Pham
and Duggan estimated the second moment matrix of image I 1
from noisy versions Ĩ 1 and Ĩ 2. Another possibility would be to
approximate these sums by computing the expected value using
the derivative definition and a noise variance estimation. For
example, set I x�i; j� � I�i � 1; j� − I�i; j� and let Ĩ � I � n
be the observed noisy image where n has distribution
N �0; σ2n�. Since all n�i; j� are independent, by the law of large
numbers we haveX

S

Ĩ 2x �
X
S

�I x � nx�2

�
X
S

I2x �
X
S

I xnx �
X
S

n2x ≃
X
S

I2x � 2jSjσ2n:

It follows that we can estimate
P

SI
2
x from the noisy image Ĩ byX

S

I 2x ≃
X
S

Ĩ 2x − 2jSjσ2n: (11)

The other terms can be computed using similar calculations.

The CRLB defined in Eq. (9) expresses a direct relationship
between the accuracy of the estimation and the SNR ratio, mea-
sured as a ratio of the noise to the square of the gradient.
Furthermore, it follows from the form of the denominator of
these expressions that if there is a strong correlation between
I x and I y, the vertical and horizontal partial derivatives, then
Det will be zero or very close to zero. The formulas show that
this entails a high variance for the estimation of the translation.
This is the so-called aperture problem [46]. In that case the true
motion is irrecoverable.

It must be noted that the Cramer–Rao bounds were derived
for an unbiased 2D shift estimation. For the case of biased
estimators, the bound is even higher. Also, the hypothesis made
about the noise being white Gaussian and homoscedastic does
not hold in a SHWFS context used from earth observation
satellites. However, the sensor’s noise model is usually known
beforehand, which allows its variance to be stabilized by apply-
ing a variance stabilization transform (VST) such as the well-
known Anscombe transform [47].

Finally, for SHWFS, since shifts between images are inde-
pendent, we can impose the limit on the registration accuracy
by estimating the shift between two frames.

Eigenratio test. As noted by [44], the CRLB is less precise
where it is most needed, namely when the signal is dominated
by noise. Indeed, in that case the numerator and denominator
of Eq. (9) cannot be estimated reliably, being both the differ-
ence of equivalent terms. Therefore, we must use more robust
safety computations.

We have proposed to rapidly discard a landscape for a shift
estimation by involving the eigenratio score of the second
moment matrix τ � ATA of Eq. (6). The matrix τ is also
the structure tensor with unit weights associated to the image
I 1. The eigenvalues λ1, λ2 of τ and their corresponding eigen-
vectors e1, e2 summarize the distribution of the image gradient
∇I � �I x; I y�. Namely, if λ1 > λ2, then e1 (or −e1) is the
direction that is maximally aligned with the gradient within
the image. More generally, the value of λk, for k ∈ f1; 2g, is
the average of the square of the directional derivative of I along
ek. The relative discrepancy between the two eigenvalues is an
indicator of the degree of anisotropy of the gradient in the
image, measuring how strongly it is biased toward a particular
direction (and its opposite). Then by calculating the ratio
λ2∕λ1, we obtain a number between 0 and 1, characterizing
the dominance of a particular direction for the gradients of
the image. We empirically verified that a ratio λ2∕λ1 < 0.2
effectively degrades the shift estimation task, and this metric
could be used to discard badly conditioned situations.

To compute this ratio, since τ � ATA is positive definite
and symmetric, then both of its eigenvalues λ1 and λ2 are real
and non-negative and its computation is straightforward.

5. RESULTS

A. Scene Pre-selection Evaluation
Figures 7(a) and 7(b) display two examples of SH landscapes
that do not validate the eigenratio test. In these images, there is
a strong dominant gradient direction that complicates the shift
estimation. The aperture problem is visually obvious in both
cases. Figures 7(c) and 7(d) present a high CRLB. The first
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one corresponds to a project where the images are composed
only by noise. The second example has a higher SNR, but
the noise is still considerable. Figures 7(e) and 7(f ) show
two examples of valid landscapes that were validated by both
proposed tests.

B. Comparison with State-of-the-art Methods
1. CNES Simulated Database
CNES, the French space agency, provided realistic simulations
of several SHWFS landscapes obtained from earth-observing
satellites with their corresponding ground truth. The provided
images were 37 × 37 pixels from a 12 × 12 grid following the
occlusion schema of Fig. 2(a). The simulated wavefront aber-
rations translated into displacements no larger than half a pixel.
For each provided landscape, three different SNR settings were
simulated. Figure 8 displays some example landscapes.

We tested every described state-of-the-art algorithm and our
proposed method using different interpolation/gradient estima-
tion approaches against the whole dataset. Table 1 displays the
errors in pixels for the best performing methods. These are the
method from Michau et al. [20], the SDF method performing
2D quadratic interpolation (SDF-2QI) from Lofdahl [21], the
periodic convolution approach from Poyneer [6], and the iter-
ative APC method from Sidick et al. [23]. For the proposed
GBSE approach, we considered three variants, with increasing
computational cost. We also included a fourth variant using the
Gaussian derivative estimation method for comparison.

The errors obtained for Figs. 8(a) and 8(b) are close to the
theoretical limits predicted by their CRLB. On the other side,
the error obtained with Fig. 8(c) and its CRLB implies that
a strong improvement is possible. Line 4, corresponding to
Fig. 8(d), is an example where every method fails to achieve
accurate results, possibly due to the noise and the lack of
texture, which is revealed by a lower bound considerably higher
than for most other cases. Figure 8(e) shows an example of a
landscape where the Poyneer method [6] as well as PCC [23]
are clearly improved by the proposed approach. Figure 8(f )
proves that the aperture problem hinders most shift estimation
methods, as evidenced by their resulting errors. The PCC

algorithm particularly failed under the landscape present in
Fig. 8(g), although the reason is not evident. Finally, line 9
[Fig. 8(i)] shows a case where the SDF-2QI method was out-
performed by all variants of the proposed approach.

2. Simulated Experiments
Experimental setup. We used a simulator to evaluate the
performance of the proposed method. Given a 12-bit input
image, we generated a set of images matching a SHWFS con-
figuration provided by CNES. We assumed a 12 × 12 lenslet
grid, occluded as shown in Fig. 2(a). For each lenslet we ran-
domly generated a ground truth shift. Since we were simulating
in a closed loop environment, we kept the maximum displace-
ment to half a pixel. We then obtained each subaperture image
by DFT resampling the input image, extracting a 37 × 37 pixels
subimage, multiplying by the occlusion factor, and finally
adding noise.

We computed the error for each method as the mean
error for all valid subapertures. A subaperture was considered
invalid and therefore discarded if it was occluded on more
than 60% of its surface. The error for each subaperture was
the Euclidean distance between the measured and the ground
truth shift. To evaluate the robustness to image content, we
used three subimages: a highly contrasted one that should
not present any difficulty for shift estimation, a slightly more
challenging one with its gradient mainly distributed on a
single direction, and one from the sea with almost no signal
(there are just a few pixels of land on the bottom). Different
amounts of additive white Gaussian noise were simulated
(with standard deviation σn ∈ �1;…; 150�), and we evaluated
all methods on 100 noise realizations. Figure 9 shows the
subimages affected by three noise levels. We handled signal de-
pendent noise by applying a variance stabilization transform.
Finally, we measured the processing time of each method using
a non-optimized Matlab implementation on an Intel Xeon
E5-2650 CPU.

We tested several variants of the proposed GBSE method.
Each one was composed by an interpolation method for resam-
pling selected among the five methods proposed (Section 3.C),
a gradient estimation method chosen between the hypomode or
one of the three Gaussian derivatives with σg � f0.3; 0.6; 1g
(Section 3.B), and using up to three iterations per shift estima-
tion. Also, we evaluated different variants using the multiscale
approach (Section 3.E) up to three scales, where for each scale,
we used an iterative GBSE algorithm with up to three itera-
tions. From these methods we retained the best performing
non-iterative method (k � 1 and no resampling), which uses
σg � 0.6 for the gradient computation, and the best one with
three iterations, which uses DFT resampling with image peri-
odization and σg � 0.3. We compared them with all state-of-
the-art algorithms presented in Section 2. For practical reasons,
we have only displayed the best performing ones, namely, the
ACC [22] and the APC [23] methods from Sidick presented in
Section 3.C, and the Poyneer [6] and Löfdahl SDF-2QI algo-
rithm [21] presented in Section 3.A. The SDF-2QI algorithm
computes the squared sum difference function and searches
its maximum by using 2D quadratic interpolation. We also
evaluated all other presented methods, but we discarded them
due to lower accuracies.

Fig. 7. CRLB and eigenratios, respectively, for six examples of land-
scapes. Green represents valid and red implies failure.

Fig. 8. Examples of landscapes from the CNES database.
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Results in a closed loop system. We compared iterative
and non-iterative algorithms separately. The average errors
and the standard deviations for non-iterating methods on
the first image type are shown in Fig. 10 (top left), together
with the processing time. The non-iterative GBSE version us-
ing Gaussian derivatives with σ � 0.6 outperforms both
Poyneer and SDF-2QI (which perform similarly in this image).
GBSE is also more stable (less variability) and faster. Figure 10

(top right) compares both iterative methods ACC and APC
with GBSE using three iterations, DFT resampling, and the
hypomode derivative. Again, the proposed method proved to
be the most accurate and more stable. Even more, this method
is the best compared to non-iterated methods as well. Notice
the high impact of noise on the ACC method. It is more precise
than both non-iterating methods for low noise (σ ≤ 20).
Nevertheless, it diverges for stronger noise. This problem is
a well-known issue for phase-correlation methods [6].

The results for the second image type (bottom of Fig. 10)
are similar to the first one, although the average errors are
higher. While the SDF-2QI performs slightly worse, the
Poyneer method is considerably worse because of discrepancies
at the image boundaries resulting from the periodicity
assumption of the periodic convolution used by Poyneer.
This result also explains why both ACC and PCC methods
behave so poorly on this image. It also implies that computing
the shift in the spatial domain is usually more stable than
doing so in the frequency domain, unless some windowing
is performed, which is prohibitive on such small images where
the objects are sometimes close to the image boundaries. Yet
again, the proposed methods are more precise and stable, with
less variability than the state-of-the-art options. The third
image type did not pass the verification step and all the meth-
ods failed, so its results have been omitted.

Results under larger displacements. We performed the
same experiment by simulating wavefront aberrations with
displacements of up to four pixels to evaluate robustness against
high frequency aberrations. Figure 11 shows the average error
together with the standard deviations for the most representa-
tive methods. Due to the larger underlying displacements,
multiscale approaches achieve better results as the noise in-
creases, reproducing the results of [48]. In fact, a multiscale
approach becomes mandatory if fewer than two iterations
are performed, and the best performing method used three
scales (where a single iteration was used in the coarsest scale,
two iterations with FFTP interpolation in the second scale
and three iterations with FFTP interpolation in the final finer

Table 1. CRLB, Eigenratio (ER) and Errors (in Pixels) for Selected Sample Landscapes from the CNES Databasea

CRLB ER [21] [20] [6] [23] 1it 2it L 3it S 1it σ � 0.6

(1) 0.014 0.66 0.019 0.121 0.026 0.054 0.030 0.017 0.016 0.022
(2) 0.006 0.44 0.029 0.106 0.038 0.158 0.014 0.008 0.008 0.013
(3) 0.006 0.19 0.048 0.096 0.105 0.092 0.035 0.036 0.036 0.040
(4) 0.041 0.59 0.127 0.113 0.090 0.794 0.070 0.064 0.069 0.078
(5) 0.011 0.77 0.039 0.113 0.069 0.070 0.026 0.016 0.016 0.022
(6) 0.030 0.01 0.081 0.099 0.083 0.081 0.053 0.043 0.040 0.042
(7) 0.019 0.69 0.023 0.111 0.048 0.134 0.034 0.021 0.021 0.025
(8) 0.026 0.63 0.045 0.114 0.039 0.083 0.048 0.032 0.031 0.037
(9) 0.010 0.34 0.043 0.113 0.029 0.042 0.028 0.015 0.014 0.021
(10) 0.027 0.61 0.065 0.112 0.051 0.645 0.046 0.037 0.043 0.047
Avg. 0.029 132 0.146 0.111 0.491 0.478 0.047 0.039 0.039 0.043
Valid 0.011 64 0.024 0.110 0.048 0.057 0.027 0.018 0.017 0.022
Time 0.296 0.025 0.084 0.221 0.034 0.165 0.311 0.052

aRows in bold represent landscapes considered valid (CRLB < 0.02 and ER > 0.2), while invalid landscapes are shown in italic. Underline indicates lowest error.
Averages correspond to the whole dataset, and its ER column displays the amount of landscapes processed. The Valid row represents the averages over all valid
landscapes. The first column links each row with the landscapes shown in Fig. 8. Columns [21,20,6] and [23] refer to SDF-2QI, Michau et al., Poyneer and
APC methods, respectively. The variants of our approach 1it, 2it L, 3it S represent Algorithm 1 using the hypomode derivative with one, two (bilinear
interpolation), and three (spline interpolation) iterations, respectively. The last column stands for one iteration and Gaussian derivative with σ � 0.6.

Fig. 9. Top: Input image used for the simulations. Bottom: For
each level of noise σn � f1; 100; 200g (vertically separated), two
different subapertures are shown: no occlusion and 57% occluded
(horizontally separated). The dynamic ranges were stretched for
viewing purposes.
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scale). Although this method was the most accurate in our
tests, it also required more computational resources as evi-
denced by its running time. However, using the iterative non-
multiscale approach with three iterations and FFT interpola-
tion showed comparable results but required less processing
time. Nevertheless, the method proposed by Poyneer should
be considered when lower processing times are required. As
expected, non-iterated versions of the GBSE algorithm failed
when estimating the shift with large underlying displacements.
Let us add a caveat that when measuring the aberration using
the second, slightly challenging, landscape (green rectangle in
Fig. 9), the Poyneer method obtained inaccurate results even
under high SNR conditions.

6. CONCLUSION

We have proposed a new method to accurately estimate sub-
pixel shift, based on an iterative global optical flow method,
in the context of a SHWFS on extended scenes for onboard
aberration correction on earth observation satellites. Using a
telescope simulator developed by CNES, we have shown that
the proposed algorithm is more accurate, stable, robust to
noise, and has lower variability than the current state-of-
the-art, permitting a more precise wavefront estimation. By
performing onboard, real-time mirror correction, this research

opens the door to cheaper, high- resolution earth observation
satellites.

Although this method was conceived for onboard earth
observation satellites, it could also be used in a ground-based
wavefront-sensing context. Indeed, for ground-based applica-
tions, the processing time requirements existing in satellites
are considerably lower. Due to the availability of more com-
putational resources, the proposed method could still be
applicable using more iterations and/or scales. Therefore, we
have envisaged testing the proposed algorithm to correct the
undesired effects of atmospheric turbulence on extended
sources.
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de la Recherche (ANR) (ANR-12-ASTR-0035).
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