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Abstract. Fast global shift estimation is a critical preprocessing step on
many high level tasks such as remote sensing or medical imaging. In this
work we deal with a simple question: should we use an iterative technique
to perform shift estimation or should we use a multiscale approach. Based
on the obtained results, both methodologies proved to lose accuracy as
the noise increases, however this accuracy loss increases with the shift
magnitude. The conclusion is that a multiscale strategy should be used
when the shift magnitude is higher than approximately a fifth of a pixel.
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1 Introduction

Given two images shifted by some unknown displacement v, the problem of shift
estimation is to compute this displacement. Problems such as low SNR condi-
tions, lack of image structure and quantization errors make this task non trivial.
Several issues appear as well when seeking for accurate subpixel shifts. Neverthe-
less, precise and real-time shift estimation methods are required in many fields,
such as remote sensing [11, 4, 15] or medical imaging [16, 6].

As mentioned in [17], there are mainly four types of shift estimation methods
that achieve subpixel accuracy: correlation interpolation, intensity interpolation,
differential methods and phase correlation.

Correlation interpolation methods achieve subpixel accuracy by fitting an
interpolation surface to the samples of a discrete correlation function, and then,
the maximum of this surface is searched. This methodology not only implies cal-
culating the discrete correlation between images, which is a resource consuming
task, but also to interpolate it. A more straightforward way to achieve subpixel
accuracy is to interpolate selected parts of the input images to create a much
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Nationale de la Recherche (Stereo project).



2 M. Rais, J.-M. Morel, G. Facciolo

denser grid. Then, the task is to match these grids between images, which re-
quires knowing beforehand which part of the input images to interpolate and
then match, something which is not always available.

To date, there are mainly two fast and accurate shift estimation methods
from which several branches have emerged. The first one is based on the phase
correlation technique [12, 3, 5], in which the displacement is estimated using the
cross-power spectrum between both images. This technique, although able to
obtain quite accurate results, requires at least the computation of the DFT for
both input images, a task that could be prohibitive depending on the context.

On the other hand, differential methods are normally faster than Fourier-
based methods, since they do not require computing the DFT. By using a dif-
ferential technique, the difference between two frames is related with the spatial
intensity gradient of the first image. Given I1(x, y) and I2(x, y), and denoting
the components of the translation between both images by vx and vy, we have

I2(x, y) = I1(x− vx, y − vy). (1)

Using the first order Taylor expansion yields

I1(x, y)− I2(x, y) h vx
∂I1(x, y)

∂x
+ vy

∂I1(x, y)

∂y
(2)

which is a formula known under the name of optical flow equation [6]. Since the
higher terms of the Taylor approximation were removed, this relation performs
well only when the translation is small, in particular when it is less than one pixel.
The unknown shift v is estimated by minimizing the error in this equation. This
can be done by minimizing the L2 norm. Using linear least squares is a classical
solution, introduced by Lucas-Kanade [7], and has linear complexity,

This estimator, however, ignores the higher terms of the Taylor development
and the fact that the underlying input images have noise, which biases the results.
A complete study on this bias was performed by Robinson and Milanfar [13],
followed by Pham et al. [9]. In these works, an explicit formula for the Lucas-
Kanade estimator bias was derived. However, these authors address the bias in
two completely different ways.

Robinson and Milanfar tried to reduce the influence of the estimator’s bias
by designing a gradient estimation filter (i.e. antisymmetric) which minimized
its bias derivation in the Fourier domain based on the selection of pre-filters and
on the prior knowledge of the image spectrum and some constraint about the
shift [14]. Surprisingly, this article proposed to minimize the estimator bias by
attacking the approximation error in the data model due to the linear signal
approximation performed by the Taylor development, while completely ignoring
the noise. In fact, low Signal-to-Noise Ratio situations are discarded since they
claim that in many image registration applications, the effective SNR falls into a
high SNR regime. For this reason, they achieve poor results on images with SNR
lower than 20dB. Furthermore, none of these previous approaches work under
aliased situations or badly sampled images, which are possible (yet undesired)
in computer vision problems.
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Pham et al., on the other hand, derived a complete 2D gradient-based shift
estimation bias in the spatial domain. However, instead of dealing with it explic-
itly, they note the linear dependence between the estimator’s bias with both the
shift magnitude and the noise. They also remark that the bias due to the noise
is proportional to the shift magnitude as well. Thus, they propose to reduce the
bias by iteratively computing the shift and resampling the second image onto the
first. Based on their results, with only three iterations they are able to obtain
an almost unbiased estimator. This iterative scheme was actually proposed by
Lucas and Kanade in [7], and further refined in Baker et al. [1] in a complete
study of the Lucas-Kanade estimator. However, this iterative scheme involves
performing interpolation, which becomes an expensive computation.

A different iterative scheme, such as in Thevenaz et al. [16], consists in com-
puting the image pyramid and to perform shift estimation on each level sepa-
rately. Beginning by the coarser level, the estimated shift is then used to resample
the second image on the next finer scale. Although this technique requires the
construction of the pyramid, it can allow itself to use more complex interpolation
techniques on lower scales due to its reduced cost. Most importantly, the shift
estimation performed on each scale could also be made iterative, a price that
can be payed when working on coarser scales.

Objective. Both iterative techniques (direct and multiscale) succeed in reducing
the bias when enough iterations are applied. However, it is not straightforward,
based on the shift magnitude and on the noise conditions of the input images,
to estimate which methodology achieves better results on each condition. For
example, if the shift magnitude is above one pixel, the multiscale approach
will definitely be necessary. Furthermore, under noisy conditions, working on
a coarser scale permits to reduce the noise influence, however less pixels (and
thus equations) will be available to perform shift estimation.

In this article we evaluate both methodologies by varying the noise, the
shift to estimate, the derivative kernels used, the amount of iterations and the
underlying interpolation method in order to understand how each methodology
performs. What is more, we answer the question of deciding between applying a
multiscale approach or sticking to the original solution.

The rest of this paper is organized as follows. In section 2 both methodologies
are explained in detail. In section 3 we evaluate each of them, under all possible
conditions, and based on this we draw conclusions on section 4.

2 Methods

2.1 Iterative Lucas-Kanade shift estimation method

The Lucas-Kanade algorithm is based on the optical flow equation:

It(x, y) h ∇I1(x, y)v. (3)

where ∇I1(x, y) =
[
∂I1(x,y)

∂x , ∂I1(x,y)∂y

]
and v =

[
vx
vy

]
is the unknown shift. Then,

to estimate the global optical flow between both grayscale images I1 and I2,
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the Lucas-Kanade algorithm assumes a constant flow for the whole image, thus
implying a unique translation vector v for every pixel. This assumption leads to
the construction of an overdetermined system of equations, Av = b, where A is
composed of spatial intensity derivatives and b has temporal derivatives

A =


∂I1
∂x (p1) ∂I1

∂y (p1)
...

...
∂I1
∂x (pn) ∂I1

∂y (pn)

 v =

(
vx
vy

)
b = −


∂I1
∂t (p1)

...
∂I1
∂t (pn)

 (4)

and pi with i = 1 . . . n represents the ith pixel and n the number of pixels.
To solve this system, (vx, vy) is obtained by performing the linear least squares
method, using the Moore-Penrose pseudo-inverse. Let Ix, Iy and It denote ∂I1

∂x ,
∂I1
∂y and ∂I1

∂t respectively, the following linear system has to be solved

ATAv = ATb (5)

where ATA =

[ ∑
I2x

∑
IxIy∑

IxIy
∑
I2y

]
is the second moment matrix, and ATb =[∑

ItIx∑
ItIy

]
is a spatio-temporal gradient correlation term. To solve this system,

the matrix ATA must be invertible in which case the solution is (ATA)−1ATb.
It is not a coincidence that the results of the method depend on the inversion

of this second moment matrix since the determinant of this matrix is crucial
for determining the limits on the estimation performance [9]. A study on this
matrix before performing the shift estimation can be used to discard ill-posed
cases. This happens for example when the gradient occurs on its majority on
a single direction and therefore we are dealing with a potentially unsolvable
situation, commonly known as the aperture problem. Last but not least, since
the Taylor development is centered at 0, this method performs well only when
the translation is small, i.e., shifts larger than 1 would not be correctly estimated.

Lucas and Kanade also suggest iterating the method to obtain better results
and converge to the true displacement value. This algorithm is easily understood
in the following lines:

1 i← 0; I2(0)← I2; w ← 0
2 while i ≤ k and |v(i− 1)− v(i− 2)| ≥ min do
3 v(i)← findshift(I1, I2(i))
4 w ← w + v(i)
5 I2(i+ 1)← Resample(I2,−w)
6 i ← i+ 1

where findshift uses Eq. (5) to solve for v(i) and Resample performs inter-
polation on the input images, which is a costly operation. In particular, if an
inappropriate interpolation algorithm is used, it could lead to poor results, im-
plying a non-negligible computational cost.

On the other hand, it was proved in Pham et al. [9] that this iterative
method is able to significantly reduce the bias, provided an appropriate resam-
pling method is used. Due to this reason, very poor results are obtained when
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dealing with highly aliased images, as shown in [10] when a single iteration out-
performs the multi-iteration method. Nevertheless, with a correct resampling
and with a sufficient number of iterations, this method is the only capable, to
our best knowledge, of practically removing the bias.

2.2 Multiscale Lucas Kanade shift estimation method

By building a pyramid representation of the input images, Eq. (5) can be applied
on each scale to estimate the shift between images, and this estimated shift can in
turn be used to resample the second image on the following level of the pyramid.
In our case, a dyadic Gaussian pyramid approximation was used [2]. We also
evaluated using an exact dyadic Gaussian pyramid [8], filtering with σ = 1.4
before subsampling, however the results were similar. Starting from the coarse
image at scale n > 1, the method is summarized in the following lines:

1 I1...n1 ← ComputeImagePyramid(I1, n) // Burt &Adelson’s Gaussian Pyramid [2],

2 I1...n2 ← ComputeImagePyramid(I2, n) // i.e., impyramid function from Matlab

3 i← n; w ← 0
4 while i > 0 do
5 v(i) ← findshift(Ii1, I

i
2)

6 w ← w ∗ 2 + v(i) ∗ 2

7 Ii−1
2 ← Resample(Ii−1

2 ,−w)
8 i ← i− 1

9 v(i) = findshift(I11 , I
1
2 )

3 Results

Both methodologies described in sections 2.1 and 2.2 were evaluated extensively
under different noise conditions, shifts and gradient estimators. To show the most
representative results, four SNR conditions were evaluated: noiseless, low noise
(σ = 5), medium noise (σ = 25) and high noise (σ = 50). Each table is organized
in groups of four lines corresponding to each of these four noise configurations.
Also, the four most significative shifts in terms of results are shown: a big shift
(0.5,−0.9), a medium shift (0.2,−0.2), a small shift (0.024, 0.052) and no shift.

The performance of each algorithm under each condition was evaluated by
simulating shifted images obtained from a high resolution satellite image of
10000 × 10000 pixels. For each noise and shift, 100 experiments were averaged,
and each experiment was performed by shifting the large image using Fourier
interpolation and taking a 50× 50 subimage from a random position away from
the edges to avoid ringing artifacts followed by adding white Gaussian noise and
evaluating all the methods (Fig. 1). The results shown were later validated using
the Cramer-Rao bound (verifying that both var(v̂x) and var(v̂y) are lower than
0.01) so that the averaged values contain only valid shift estimations.

In tables 1 and 2 results are shown for 2 iterations and bicubic interpolation
and for 3 iterations with spline interpolation respectively. From these results
several conclusions can be drawn. First, as expected, the multiscale method is
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Fig. 1. Two problems: a noisy and an almost unidimensional gradient situation

Shift (px) Noise IT2G1 IT2G2 IT2G3 MS2G1 MS2G2 MS2G3

(0.5000,-0.9000)

σ = 0 0.0514 0.0818 0.0472 0.0387 0.1600 0.0316
σ = 75 0.1375 0.1053 0.1103 0.0744 0.1808 0.0582
σ = 150 0.2875 0.1414 0.2305 0.1267 0.2130 0.1009
σ = 300 0.4927 0.2327 0.4292 0.2319 0.2872 0.1909

(0.0000,0.0000)

σ = 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σ = 75 0.0114 0.0188 0.0132 0.0164 0.0188 0.0175
σ = 150 0.0168 0.0330 0.0219 0.0300 0.0326 0.0313
σ = 300 0.0191 0.0539 0.0307 0.0527 0.0549 0.0573

(0.2000,-0.2000)

σ = 0 0.0115 0.0117 0.0154 0.0115 0.0360 0.0159
σ = 75 0.0249 0.0267 0.0223 0.0192 0.0470 0.0225
σ = 150 0.0652 0.0424 0.0487 0.0360 0.0591 0.0358
σ = 300 0.1295 0.0765 0.1103 0.0738 0.0899 0.0694

(0.0240,0.0520)

σ = 0 0.0040 0.0019 0.0052 0.0039 0.0073 0.0054
σ = 75 0.0122 0.0181 0.0138 0.0156 0.0189 0.0166
σ = 150 0.0198 0.0326 0.0231 0.0296 0.0326 0.0311
σ = 300 0.0300 0.0543 0.0354 0.0547 0.0564 0.0581

Avg.

σ = 0 0.0167 0.0238 0.0170 0.0135 0.0508 0.0132
σ = 75 0.0465 0.0422 0.0399 0.0314 0.0664 0.0287
σ = 150 0.0973 0.0624 0.0811 0.0556 0.0843 0.0498
σ = 300 0.1678 0.1043 0.1514 0.1033 0.1221 0.0939

Table 1. Estimation error (in pixels) per shift of every method using 2 iterations and
bicubic interpolation from valid estimations. For each shift and estimation method,
four SNR conditions were tested. The first three columns are for the iterative method
(IT) while the last three are for the multiscale approach (MS) with a single iteration per
scale. In each case, three gradient estimation methods were used: backward difference
and Gaussian derivative with σ = 1 and with σ = 0.3 respectively.

much more robust when the shift magnitude is high. In fact, even at a shift
of (0.2,-0.2) it is recommendable to use the multiscale method instead of the
standard iterative version. Second, when no shift or a small shift is present, the
non-multiscale methods achieve much better accuracies. Apparently, the multi-
scale algorithms are not suited for such small shifts since their poor performance
on lower scales results in less accurate results. This result contradicts several
state-of-the-art methods and is worth remarking. Third, regarding the amount
of iterations/scales to use, in presence of high noise, performing more iterations
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Shift (px) Noise IT3G1 IT3G2 IT3G3 MS3G1 MS3G2 MS3G3

(0.5000,-0.9000)

σ = 0 0.0156 0.0238 0.0065 0.0114 0.1007 0.0086
σ = 75 0.0646 0.0437 0.0437 0.0293 0.1194 0.0251
σ = 150 0.1869 0.0727 0.1326 0.0533 0.1488 0.0497
σ = 300 0.4092 0.1480 0.3337 0.1093 0.2143 0.1001

(0.0000,0.0000)

σ = 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
σ = 75 0.0116 0.0199 0.0133 0.0261 0.0330 0.0260
σ = 150 0.0194 0.0357 0.0246 0.0468 0.0547 0.0467
σ = 300 0.0250 0.0621 0.0391 0.0980 0.1065 0.1001

(0.2000,-0.2000)

σ = 0 0.0027 0.0045 0.0043 0.0206 0.0205 0.0235
σ = 75 0.0201 0.0229 0.0182 0.0304 0.0430 0.0334
σ = 150 0.0475 0.0395 0.0373 0.0483 0.0593 0.0489
σ = 300 0.1096 0.0718 0.0913 0.0982 0.1195 0.0977

(0.0240,0.0520)

σ = 0 0.0007 0.0009 0.0013 0.0068 0.0041 0.0080
σ = 75 0.0120 0.0188 0.0132 0.0219 0.0283 0.0225
σ = 150 0.0207 0.0348 0.0248 0.0471 0.0548 0.0464
σ = 300 0.0313 0.0622 0.0412 0.1011 0.1056 0.1001

Avg.

σ = 0 0.0047 0.0073 0.0030 0.0097 0.0313 0.0100
σ = 75 0.0271 0.0263 0.0221 0.0269 0.0559 0.0268
σ = 150 0.0686 0.0457 0.0548 0.0489 0.0794 0.0479
σ = 300 0.1438 0.0860 0.1263 0.1017 0.1365 0.0995

Table 2. Estimation error (in pixels) per shift of every method using 3 iterations
and spline interpolation from valid estimations. Table configuration is the same as in
Table 1.

in the original scale or using more scales in the multiscale approach gives worse
results in terms of accuracy. When dealing with a noisy situation, the resampling
operation proved to be negative for the shift estimation algorithm. This result is
more accentuated for the multiscale approach. Finally, the multiscale algorithm
proved to be a better contender when dealing with noise in general, although
this factor is greatly influenced by the shift magnitude. However, except when
the shift magnitude is lower than a fifth of a pixel, its use is recommended.
Moreover, its computational cost is lower than the iterative counterpart since
the resampling is performed on lower resolution images.

4 Conclusions

In this paper we dealt with a simple question never answered in the community:
should we use a multiscale strategy to perform gradient based shift estimation or
should we directly attack the problem by simply iterating in the original scale.
The answer of this question was shown to depend heavily on the shift magnitude
more than the SNR of the images. Under small shift magnitudes, performing a
multiscale strategy achieves poorer results, in particular due to the lack of dis-
placement on the lower scales that makes the method less accurate. However,
when dealing with shifts higher than one fifth of a pixel, the multiscale strat-
egy showed strong improvements over traditional iterative Lucas-Kanade shift
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estimation. Last but not least, in situations under low SNR, we concluded that
performing fewer iterations or using fewer scales achieves improved accuracy,
and this result is even more remarked in the multiscale approach. As a future
work, experimentation is planned on a larger dataset of images with different
characteristics, and by testing several other interpolation methods for image
resampling when iterating the algorithm.
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