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Abstract. Digital images are matrices of regularly spaced samples, the pixels, each containing a photon
count. Each pixel thus contains a random sample of a Poisson variable. Its mean would be the ideal
image value at this pixel. It follows that all images are random discrete processes and therefore “noisy”.
Ever since digital images exist, numerical methods have been proposed to recover the ideal mean from
its random observed value. This problem is obviously ill posed and makes sense only if there is an
underlying image model. Inventing or learning from data a consistent mathematically image model is
the core of the problem. Images being 2D projections of our complex surrounding visual world, this is
a challenging problem, which is nevertheless beginning to find simple but mathematically innovative
answers. We shall distinguish four classes of denoising principles, relying on functional or stochastic
image models. We show that each of these principles can be summarized in a single formula. In addition
these principles can be combined efficiently to cope with the full image complexity. This explains
their immediate industrial impact. All current cameras and imaging devices rely directly on the simple
formulas explained here. In the past ten years the image quality delivered to users has increased fast
thanks to this exemplary mathematical modeling.

As an illustration of the universality and simplicity reached by the theory, most image denoising
algorithms discussed in this paper can be tested directly on any digital image at Image Processing On
Line, http://www.ipol.im/. In this web journal, each paper contains a complete algorithmic description,
the corresponding source code, and can be run online on arbitrary images.
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1. Introduction

Most digital images and movies are currently obtained by a matrix of sensors counting
photons hitting the surface. We shall denote by i the indices of the matrix elements also called
pixels. The value ũ(i) observed by a sensor at a pixel i is a Poisson random variable whose
mean u(i) would be the ideal image. The difference between the observed image and the ideal
image ũ(i) − u(i) = n(i) is called “noise”. By a well known property of Poisson random
variables, the standard deviation of the noise n(i) is equal to

√
u(i). On a motionless scene

with constant lighting, u(i) can be approached by simply accumulating photons for a long
exposure time, and by taking the temporal average of this photon count. Accumulating photon
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impacts on a sensitive surface is therefore the essence of photography. The first Nicéphore
Niépce photograph [16] was obtained after an eight hours exposure: it is very noisy, though!
A digitization of it can be seen on the left hand side of Figure 1.1. The image in the middle is
an attempt to denoise it. The image on the right is the “estimated noise”, namely the difference
between the noisy image and its denoised version. How was this done will be explained in
section 7.

Figure 1.1. Left: A digitization of the first ever photograph by Nicéphore Niépce “View from the
Window at Le Gras” ca. 1826 obtained after an eight hours exposure. Middle: an attempt to denoise it.
Right: the “estimated noise”, namely the difference between the noisy image and its denoised version.

Augmenting the exposure time of the camera amounts to augmenting the expectation
u(i) of the number of photons ũ(i). The number of photons has mean u(i) and variance
u(i). Since this variance measures the amount of noise, this implies that noise increases with
the exposure. But the means increases faster than the noise. Indeed, the correctly scaled
measurement of the noise is the Signal to Noise Ratio (SNR), which is defined by

SNR :=
Mean(u(i))√

Var(ũ(i))
=

u(i)√
u(i)

=
√
u(i). (1.1)

The SNR increases like the square root of the exposure time. So the more photons we have,
the better. The solution for getting a quality image, adopted from the beginning by Nicephore
Niépce, was therefore to extend the exposure time as much as possible.

Yet, in a long exposure the photographed scene is exposed to variations due to changes
in lighting, camera motion, and incidental motions of parts of the scene. For example in the
town view of Figure 1.1, the walls on the right and left are bright because the Sun had moved
during the eight hours exposure. Nowadays, digital cameras are much faster and capture fast
moving objects. But even with a short exposure time, the photograph still risks motion blur
on any animated scene. On the other hand, if the exposure time is too short, the image is
noisy. Thus the main limitation to any imaging system is noise, regardless of its resolution.

At a first glance, the denoising problem is anyway hopeless: how to estimate the mean
u(i) of a random Poisson variable, given only one sample ũ(i) of this variable? The best
estimate of this mean knowing ũ(i) is of course this unique sample ũ(i). A glimpse of a
solution comes from image formation theory. An optical image u is band-limited [63] and
therefore smooth. Thus, one can restore the band-limited image u from its noisy version ũ,
as was proposed in 1966 in [33], by imposing a decay to its Fourier spectrum. This classic
Wiener-Fourier method multiplies the Fourier transform by optimal coefficients to attenuate
the noise. It results in a convolution of the image with a “low-pass” kernel. As we shall see,
this reduces the noise, but blurs the image. This is the functional perspective on the subject.

But the band-limitedness of u also implies that the random observed image values ũ(j) at
neighboring pixels j of a pixel i are positively correlated with ũ(i). Thus, these values can be



A mathematical perspective of image denoising 1063

taken into account to obtain a better estimate of u(i). These values being nondeterministic,
Bayesian approaches are relevant and have been proposed as early as 1972 [60]. This opens
the stochastic perspective on the subject.

In short, there are two complementary early approaches to denoising, the Fourier-Wiener
method, and the Bayesian estimation. A third hint is also given: the denoising of a given pixel
value ũ(i) must involve the values of neighboring pixels ũ(j). This leads us to the question:
where are the extra image samples that could be used to denoise the single sample ũ(i)? This
question will lead us a long way. It turns out that, not only neighboring pixels in the same
image can be used, but actually even pixels from other images! The mathematical innovation
here comes from a non-local, or fully non-local approach to image processing, under the
generic name of neighborhood filters, nonlocal filters, and even global filters, involving a
whole set of images to denoise one.

These three main perspectives will permit us to review the main algorithmic principles
which have been proposed for noise removal. All of them require a noise model, which in
most of our study will be the Gaussian white noise (we will explain in the next section why
this is not a limitation). The three rough denoising principles sketched above will be further
combined into five algorithm classes, each one relying on a single formula.

• The Fourier-Wiener transform thresholding principle, section 2 : uses the regu-
larity of the image (reflected by its sparsity in a well-chosen orthonormal transform).
For the associated Fourier-Wiener image filters, the assumption is that the Fourier (or
cosine transform, or wavelet transform) of the image decays quickly, and therefore
faster than white noise, which is homoscedastic over all frequencies. An extreme view
of this denoising principle is called “sparsity”. According to this popular assumption
used in compressed sensing [13], the ideal image has a few “sparse” coefficients in the
right basis. If that is true, a simple threshold on the transform coefficients (on the right
Hilbert basis) maintains the signal and kills most of the noise;

• The self-similarity principle and the patch based methods (section 3): The image is
self-similar, and one can therefore use other “neighboring” pixels of the same image
with the same expected colour to denoise a given pixel. The neighborhood filters
propose to average the samples with similar colours, thus performing an artificial
photon accumulation. This self-similarity principle is enhanced by deciding on the
similarity of two pixels i and j by comparing two image patches surrounding them.

• The Bayesian patch denoising principle, section 4: The Bayesian principle extends
the above considerations by giving them an optimal formulation, under the assumption
that the patches similar to a given image patch follow a stochastic model.

• The global denoising principle, section 5. In this extension of the Bayesian model,
not only image patches from the same image, but also image patches from other images
can be used for image denoising. In its maximal extension, this principle can use
literally all images of the world, thus giving an explicit point density function for the
patch stochastic model.

• Global neural denoising, section 6 learns directly the denoising algorithm by a super-
vised learning algorithm, again learnt from a huge patch database.

• Blind denoising, section 7 is the ultimate achievement of the theory, as it considers
denoising the image with a completely flexible noise model, learnt from the image
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itself. This is the principle that must be used for old photographs and for degraded
digital photographs, for which the noise model is unknown.

2. Fourier-Wiener transform thresholding

The white noise model. In this section and in the rest of the paper we shall adopt a con-
venient simplification of the noise model. We defined the noise as the difference between
the observed image and the ideal image ũ(i)− u(i) = n(i). For large enough values of u(i)
this random variable tends to be Gaussian. Furthermore, the Anscombe scalar transform
f(ũ(i)), where f is a special function proposed by Anscombe [2] transforms this Poisson
noise with a variance depending on the signal u(i) into a nearly Gaussian variable with
fixed variance. By applying the Anscombe transform to the image its noise becomes white,
homoscedastic and Gaussian. White means that the random value is independent at each
pixel, which is true because the fluctuations of the photon numbers hitting each pixel are
independent. Homoscedastic means that all pixels noises have the same variance which we
will denote by σ2. This noise model will simplify the discussion without loss of generality.

Classic transform thresholding algorithms use the observation that images are faithfully
described by keeping only their large coefficients in a well-chosen basis. By keeping these
large coefficients and setting to zero the small ones, noise should be removed and image
geometry kept. By any orthogonal transform, the coefficients of an homoscedastic de-
correlated noise remain de-correlated and homoscedastic. Here we refer to the classic Fourier,
wavelet or cosine transforms, in their discrete version applied to the image matrix viewed as a
vector in a large but finite dimension. Applied to digital images, each one of these transforms
is an orthogonal transform in the finite dimensional image space. For the Fourier method
this amounts to use the DFT (Discrete Fourier Transform). This Fourier method has been
extended in the past thirty years to generalized linear space-frequency transforms such as the
windowed cosine transform [70] or the many wavelet transforms [50].

The wavelet, or DCT, or Fourier coefficients of a Gaussian white noise with variance σ2

remain a Gaussian diagonal vector with variance σ2. The sparsity model assumes that the
most “important” image coefficients are much larger than 3σ. Thus, cancelling the coefficients
of the noisy image that are smaller (in absolute value) than, for example, 3σ will remove
most of the coefficients that are only due to noise, while keeping the large image coefficients.
This sparsity of image coefficients in certain bases is an empirical observation, used in most

denoising and compression algorithms. For example the established image compression
algorithms are based on the DCT (in the JPEG 1992 format) or, like the JPEG 2000 format
[3], on biorthogonal wavelet transforms [17]. A bit more formally, let B = {gi}Mi=1 be an
orthonormal basis of RM , where M is the number of pixels of the noisy image ũ (handled
here as a vector). Then

ũ =
M∑

i=1

⟨ũ, gi⟩gi, with ⟨ũ, gi⟩ = ⟨u, gi⟩+ ⟨n, gi⟩ , (2.1)

where ũ, u and n denote respectively the noisy, ideal and noise images and ⟨·, ·⟩ denotes the
Euclidean scalar product in RM . Being independent, the noise values n(i) are uncorrelated.
They have by assumption zero mean and variance σ2. We can deduce that the noise coefficients
in the new basis remain uncorrelated, with zero mean and variance σ2. Indeed, denoting by E
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the expectation (with respect to the stochastic noise model) we have ⟨n, gi⟩ =
∑M

r=1 gi(r)n(r)
and therefore

E[⟨n, gi⟩ ⟨n, gj⟩] =
M∑

r,s=1

gi(r)gj(s)E[n(r)n(s)]

= ⟨gi, gj⟩σ2 = σ2δ[j − i].

In the Fourier-Wiener method, each noisy transform coefficient ⟨ũ, gi⟩ is modified inde-
pendently and then the denoised image is estimated by the inverse transform of the new
coefficients. Denoting by a(i) the attenuation factor a(i) for the i-th coefficient, the inverse
transform yields the denoised version

Dũ =
M∑

i=1

a(i) ⟨ũ, gi⟩ gi, (2.2)

to be compared with (2.1). D is often called a diagonal operator. The following result,
generally attributed to Norbert Wiener, gives the ideal values for a(i):

Theorem 2.1. The operator Dinf minimizing the mean squared error (MSE) Dinf = argminD
E{∥u− Dũ∥2} satisfies

a(i) =
|⟨u, gi⟩|2

|⟨u, gi⟩|2 + σ2
. (2.3)

The previous optimal operator attenuates all noisy coefficients. In the methods assuming
a “sparsity” for the ideal image u, one further restricts a(i) to be 0 or 1. Then the diagonal
operator becomes a projection operator. In that case, a subset of coefficients is kept, and the
rest are set to zero. The projection operator that minimizes the MSE under that constraint is
obtained with

a(i) =

{
1 if |⟨u, gi⟩|2 ≥ σ2,

0 otherwise.

A transform thresholding algorithm therefore keeps the coefficients with a magnitude larger
than the noise, while setting to zero the rest. Note that both above mentioned filters are
“ideal”, or “oracular” operators. Indeed, they use the coefficients ⟨u, gi⟩ of the original image,
which are not known. For this reason, such algorithms are calledoracle filters. The classical
transform threshold filters must approximate the oracle coefficients by using the observable
noisy coefficients. The real denoising method is therefore called empirical Wiener filter,
because it approximates the unknown original coefficients ⟨u, gi⟩ by invoking the identity

E|⟨ũ, gi⟩|2 = |⟨u, gi⟩|2 + σ2

to replace the optimal attenuation coefficients a(i) by the empirical attenuation coefficients

α(i) = max

{
0,

|⟨ũ, gi⟩|2 − cσ2

|⟨ũ, gi⟩|2

}
(2.4)

where c is a parameter, usually larger than one.
The global Fourier basis is not used for denoising. Indeed, modifying Fourier coefficients

by the diagonal operator often causes undue oscillation. To avoid this effect, the orthogonal
bases are usually more local, of the wavelet or block DCT type. We give now two examples.
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The sliding window DCT. The local adaptive filters were introduced by Yaroslavsky and
Eden [70] and Yaroslavsky [72]. The noisy image is analyzed in a moving square block,
typically with dimensions 8 × 8. At each position of the block center, its DCT spectrum is
computed and modified by using the empirical coefficients (2.4). Finally, an inverse transform
is used to estimate only the signal value in the central pixel of the block.

Wavelet thresholding. Let B = {gi}i be a wavelet orthonormal basis [49]. The so-called
hard wavelet thresholding method [26] is a (nonlinear) projection operator setting to zero all
wavelet coefficients smaller than a certain threshold. The performance of the method depends
on the ability of the basis to approximate the image U by a small set of large coefficients.
There has been a strenuous search for wavelet bases adapted to images [52].

Unfortunately, the brutal cancelation of DCT coefficients near the image edges1 creates
small oscillations by the Gibbs phenomenon. Similarly, the undue cancelation of some of the
small wavelet coefficients may also cause the appearance of isolated wavelets in flat image
regions. These annoying artifacts are sometimes called wavelet outliers [27]. They can be
partially avoided with the use of a soft thresholding [25],

α(i) =

{ ⟨ũ,gi⟩−sgn(⟨ũ,gi⟩)µ
⟨ũ,gi⟩ , if |⟨ũ, gi⟩| ≥ µ,

0 otherwise,

which reduces the Gibbs oscillation near image discontinuities.
Several carefully designed orthogonal bases adapt better to image local geometry and

discontinuities than wavelets, particularly the “bandlets” [52] and “curvelets” [65]. This
tendency to adapt the transform locally to the image is accentuated with the methods adapting
a different basis to each pixel, or selecting a few elements or “atoms” from a huge patch
dictionary to linearly decompose the local patch on these atoms. This point of view is
developed in sparse coding methods and the K-SVD algorithm [1, 29, 47].

2.1. A case study: DCT denoising. We shall illustrate transform thresholding by at least
one good detailed example. A basic DCT denoising can be drastically improved by several
ingredients illustrated in Figure 2.1. This figure shows how the result improves by successively
using a better colour space2, by aggregating [18] the 64 denoised values obtained for each
pixel, which is contained in 64 patches with 8 × 8 dimensions, by making a statistically
more correct aggregation of these estimates, and finally by iterating the method, using the
first denoised image as “oracle” for applying the Wiener filter a second time. The method is
summarized in Algorithm 1. See [32] for an online implementation.

3. The self-similarity principle and the patch based methods

If m noisy independent pixels with the same expected colour are averaged, the noise (namely
the variance of the average of these m values) is divided by m. The first application of this

1So are called the strong image discontinuities along apparent contours of visible objects.
2A colour image is a set of three images (R,G,B) giving scalar values to three chromatic components, Red,

Green, Blue. The linear transform improving the denoising performance is simply Y0= (R+G+B)/3, U0=
1
2(R−B), V0= 1

4(R+B)− 1
2G, where Y0is the luminance, and U0and V0contain the colour contrast between

green and blue and green and red respectively.
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Algorithm 1 DCT denoising algorithm. DCT coefficients lower than 3σ are canceled in the
first step and a Wiener filter is applied in the “oracle” second step. In colour this strategy is
applied to Y0 . Its attenuation coefficients are also applied to Uo, Vo.

Input: noisy image ũ, σ noise standard deviation, (optional) prefiltered image û1 for “oracle”
estimation, h = 3σ: threshold parameter.
Output: output denoised image u.
for each patch P̃ of size 8×8(if û1, patch P1 in û1) do

Compute the DCT transform of P̃ (if û1, of P1).
if û1then

Modify DCT coefficients of P̃ as P̃ (i) = P̃ (i) P1 (i)
2

P1 (i)2+σ2 .
else

Cancel coefficients of P̃ with magnitude lower than h.
end if
Compute the inverse DCT transform obtaining P̂ .
Compute the aggregation weight wP̃ = 1/#{number of non-zero DCT coefficients}.

end for
for each pixel i do

Aggregation: recover the denoised value at each pixel i by averaging all values at i of all denoised
patches Q̂ containing i, weighted by wQ̃.

end for

very simple denoising principle is the use of accumulation: when the camera and the scene
do not move, the larger the photon count, the larger the signal (mean) to noise (standard
deviation) ratio. When we only dispose of a single image, some succedaneous of the above
averaging principle must be found to compensate for the limited amount of observed photons.
A rather trivial idea is to average the closest pixels to a given pixel. This amounts to convolve
the image with a fixed radial positive kernel, for example a Gaussian kernel. This approach
works only for pixels inside the homogeneous image regions, but not for those in contrasted
image regions. A convolution with a Gaussian may reduce the noise, but it makes the image
blurry.

Averaging pixels with similar colours. The sigma-filter [43] or neighborhood filter [71] is
an elegant solution to avoid this blur risk. Neighborhood filters average nearby pixels of i, but
under the condition that they have a colour value similar to that of i. These filters denoted by
NF for neighborhood filter are defined by

NFh,ρũ(i) =
1

C(i)

∑

j∈Bρ(i)

ũ(j) e−
|ũ(i)−ũ(j)|2

h2 , (3.1)

where Bρ(i) is a ball of center i and radius ρ > 0, h > 0 is the filtering parameter and

C(i) =
∑

j∈Bρ(i)
e−

|ũ(j)−ũ(i)|2

h2 is the normalization factor to make the above an averaging
filter. The parameter h expresses the required degree of colour similarity between i and j. The
filter (3.1) is so powerful that it has been been reinvented several times and received several
names: σ-filter [43], SUSAN filter [64] and Bilateral filter [66].

3.1. Non-local means. The Non-local means filter extends the concept of a neighborhood
filter by implicitly assuming a Markov field structure for the image. Its idea stems from the
now famous algorithm to synthesize textures from examples [28]. Its Markovian assumption
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Figure 2.1. Original and noisy images with additive Gaussian white noise; crops of denoised images
by Algorithm 1 when incrementally adding the use of a YoUoVo colour system, uniform aggregation
of the 64 estimated values at each pixel, statistically optimal aggregation of the same estimates, and
iteration of the Wiener filter with the “oracle” given by the first step. Image quality and SNR increase
significantly at each step.

is that, in a textured image, the stochastic model for a given pixel i can be predicted from a
local image neighborhood P of i, which we shall call “patch”.

The assumption for recreating new textures from samples is that there are enough pixels
j similar to i in a texture image ũ to recreate a new but similar texture u. This algorithm
goes back to Shannon’s theory of communication [63], where it was used for the first time to
synthesize a probabilistically correct text from a sample.

An adaptation of the above synthesis principle yields an image denoising algorithm [7]3.
The observed image is the noisy image ũ. The reconstructed image is the denoised image û.
A noisy patch P̃ surrounding a pixel i is restored by looking for the patches Q̃ in ũ with the
same dimensions as P̃ and resembling P . Then the restored value û(i) is a weighted average
of the central values ũ(j) of the patches resembling P . This defines the“non-local means”
algorithm, called “non-local” because it uses patches Q̃ that can be lie far away from P̃ , and
even patches taken from other images.

The underlying self-similarity hypothesis is that for every small patch in a natural image
one can find several similar patches in the same image, as illustrated in figure 3.1. Let us now
give the formula. NL-means denoises a square reference patch P̃ around i of dimension κ× κ
by replacing it by an average of all similar patches Q̃ in a square neighborhood of i of size
λ× λ. To do this, a normalized Euclidean distance between P̃ and Q̃, d(P̃ , Q̃) = 1

κ2 ∥P̃−Q̃∥2

is computed for all patches Q̃ is the search neighborhood. Then the weighted average is

P̂ =

∑
Q̃ Q̃e−

d(P̃ ,Q̃)2

h2

∑
Q̃ e−

d(P̃ ,Q̃)2

h2

. (3.2)

The whole method is given in Algorithm 2 and can be tested in IPOL [10].
NL-means works better than the neighborhood filters because the distances of colours

between pixels are computed on a patch surrounding the pixel instead of just the central pixel.

3See also the related attempts [4, 23, 51, 69].
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Algorithm 2 NL-means algorithm.
Input: noisy image ũ, σ noise standard deviation. Output: denoised image û.
Parameters: κ = 3: patch size, λ = 31: size of search zone for similar patches, h = 0.6σ: filtering
parameter (these values may depend on the noise level)
for each pixel i do

Select a square reference patch P̃ around i of dimension κ× κ. Set P̂ = 0and Ĉ = 0.
for each patch Q̃ in a square neighborhood of i of size λ× λ do

Compute the normalized Euclidean distance d(P̃ , Q̃) = 1
κ2 ∥P̃ − Q̃∥2.

Accumulate Q̃e−
d(P̃ ,Q̃)2

h2 to P̂ and e−
d(P̃ ,Q̃)2

h2 to Ĉ.
end for
Normalize the average patch P̂ by dividing it by the sum of weights Ĉ.

end for
for each pixel x do

Aggregation: recover the denoised value at each pixel i by averaging all values at i of all denoised
patches Q̂ containing i.

end for

Thus only values of really similar pixels are averaged. This progress is illustrated in Figure
3.2 where the pixel “neighborhoods” have an increasing sophistication: the first result, on
an original scanned image, is obtained by a Gaussian convolution. Efficient in flat regions,
this filter blurs the edges. The second result is obtained by Yaroslavsky’s neighborhood filter:
each pixel is replaced by an average of the pixels which are close to it in both the image
domain and colour range. The result is much sharper. The last result is obtained by NL-
means. The choice of resembling pixels is still more selective. The image differences between
original and denoised demonstrate the progress. This difference looks increasingly like noise
when the pixel neighborhood becomes more sophisticated. The underlying self-similarity
assumption can be formalized by an ergodic assumption, under which NL-means can be
proved to converge asymptotically to the noiseless image 4. The more samples the better, so
the algorithm is immediately extendable to video [9]. Figure 3.1 illustrates how NL-means
chooses the right weight configuration for each sort of image self-similarity.

4. The Bayesian patch denoising principle

Given u the noiseless ideal image and ũ the noisy image corrupted with Gaussian noise of
standard deviation σ so that

ũ = u+ n, (4.1)

the conditional distribution P(ũ | u) is

P(ũ | u) = 1

(2πσ2)
M
2

e−
||u−ũ||2

2σ2 , (4.2)

where M is the total number of pixels in the image. In order to compute the probability of

4It can be proved [7] that if the image is a fairly general stationary and mixing random process, for every pixeli,
NL-means converges to the conditional expectation of i knowing its neighborhood, which is the best Bayesian
estimate.
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(a) (b) (c)

(d) (e) (f)

Figure 3.1. On the right-hand side of each pair, one can see the weights in the NL-means average used
to estimate a 3× 3 patch located in the center of the left image by NL-means.

Figure 3.2. A comparison of the efficiency of neighborhood filters. The first row shows a piece of a
famous test image (Lena) followed by its denoised version by a Gaussian convolution, a neighborhood
filter, and NL-means. The second row shows the difference between the image and its denoised version,
which increasingly resembles white noise.

the original image given the degraded one, P(u | ũ), we need a prior on u. In the first models
[30], this prior was a parametric Markov random field, specified by its Gibbs distribution. A
Gibbs distribution for an image u takes the form

P(u) = 1

Z
e−E(u)/T ,

where Z and T are constants and E is called the energy function and writes

E(u) =
∑

C∈C
VC(u),
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where C denotes the set of cliques associated to the image and VC is a potential function. The
maximization of the a posteriori distribution writes by Bayes formula

Argmax
u

P(u | ũ) = Argmax
u

P(ũ | u)P(u),

which is equivalent to the minimization of − logP(u | ũ),

Argmin
u

∥u− ũ∥2 + 2σ2

T
E(u).

This energy writes as a sum of local derivatives of pixels in the image, thus being equivalent
to a classical Tikhonoff regularization, [30], [6].

Recent Bayesian methods have abandoned as too simplistic the global patch models
formulated by a parametric Gibbs energy. Instead, the methods build local non parametric
patch models learnt from the image itself, usually as a local Gaussian model around each
given patch, or as a Gaussian mixture. The term “patch model” is now preferred to the
notion of “clique” previously used for the Markov field methods. But the underlying notion is
the same: a “patch” is nothing but a clique. The difference is that the patch model is local
and empirical while the clique probability model was usually global and parametric. In the
nonparametric local patch models, the patches can become larger, up to an 8 × 8 size, while
the cliques were often confined to very small neighborhoods. Given a noiseless patch P of u
with dimension κ × κ, and P̃ an observed noisy version of P , the same model gives by the
independence of noise pixel values

P(P̃ |P ) = c · e−
∥P̃−P∥2

2σ2 (4.3)

where P and P̃ are considered as vectors with κ2 components ||P || denotes the Euclidean
norm of P , and c is the normalizing constant. Knowing P̃ , our goal is to deduce P by
maximizing P(P |P̃ ). Using Bayes’ rule, we can compute this last conditional probability as

P(P |P̃ ) =
P(P̃ |P )P(P )

P(P̃ )
. (4.4)

P̃ being observed, this formula can in principle be used to deduce the patch P maximizing
the right term, viewed as a function of P . This is only possible if we know the probability
model P(P ). This model will be learnt from the image itself, or from a set of images5. For
example, once we have obtained (like with NL-means) a group of similar patches Q similar
to a given noisy patch P , these patches can be treated as a set of samples of a Gaussian vector.
This permits to denoise each observed patch by a Bayesian estimation under this Gaussian
model [38]. Let us assume that the patches Q similar to P follow a Gaussian model with
(observable, empirical) covariance matrix CP and (observable, empirical) mean P . This
means that

P(Q) = c.e−
(Q−P )tC−1

P
(Q−P )

2 (4.5)

From (4.2) and (4.4) we obtain for each observed P̃ the following equivalence of problems:

max
P

P(P |P̃ ) ⇔ max
P

P(P̃ |P )P(P )

5For example [15], [68] or [75] apply a clustering method to the set of patches of a given image before restoration,
and [77] applies it to a huge set of patches extracted from many images.
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⇔ max
P

e−
∥P−P̃∥2

2σ2 e−
(P−P )tC−1

P
(P−P )

2

⇔ min
P

∥P − P̃∥2

σ2
+ (P − P )tC−1P (P − P ).

This expression does not yield an algorithm. Indeed, the noiseless patch P and the patches
similar to P are not observable. So we face the same problem as with the oracular Fourier-
Wiener filter. Nevertheless, we dispose of the noisy version P̃ and can compute the patches
Q̃ similar to P̃ . An empirical covariance matrix can therefore be obtained for the patches Q̃
similar to P̃ . Furthermore, using (4.1) and the fact that P and the noise n are independent, it
is easily checked that

CP̃ = CP + σ2I; EQ̃ =P . (4.6)

If the above empirical estimates are reliable, the maximum a posteriori estimation problem
finally boils down by (4.6) to the minimization problem:

max
P

P(P |P̃ )⇔ min
P

∥P − P̃∥2

σ2
+ (P − P̃ )t(CP̃ − σ

2I)−1(P − P̃ ).

Differentiating this quadratic function with respect to P and equating to zero yields the
amazingly simple denoising formula

P̂1 = P̃ +
[
CP̃ − σ

2I
]
C−1

P̃
(P̃ − P̃ ). (4.7)

The formula (4.7) gives a direct denoising algorithm, provided we can compute the patch
expectations and patch covariance matrices. This is done in [38] by computing empirical
means and covariances from the patches similar to a given noisy patch. Since the first such
estimate is not accurate, it is natural to iterate the algorithm, so that means and covariances are
computed again from denoised patches at the first step. Thus, Algorithm 3 is a self-explanatory
application of the single formula (4.7).

As pointed out in [41], the above Nonlocal Bayes algorithm is a Bayesian interpretation
(with some generic improvements like the aggregation) of the PCA based algorithm proposed
in [76]6.

5. The global patch denoising principle

The most recent denoising methods tend to give up any image model. Indeed, they directly
use the observed set of images to denoise a new one. More specifically they denoise image
patches by a fully non-local algorithm, in which the patch is compared to a patch model
obtained from a large or very large patch set, of up to 1010 patches. Each patch is denoised
by deducing its likeliest estimate from the set of all patches. In the method proposed in [77],
this patch space is organized as a Gaussian mixture with about 200 components7.

6See also [24] for a comparison of several local and more global strategies. Non Gaussian, Bayesian models are
possible, depending on the patch and noise models. For example [ 59] treats the case of a local exponential density
model for the noisy data.

7A similar idea was used in [34] who claim performing a “Scene completion using millions of photographs” to
fill in missing parts of a given image.
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Algorithm 3 Non local Bayes image denoising
Input: noisy image ũ, σ noise standard deviation. Output: denoised image û.
for all patches P̃ of the noisy image do

Find a set P(P̃ ) of patches Q̃ similar to P̃ .
Compute the expectation P̃ and covariance matrix CP̃ of these patches by

CP̃ ≃ 1

#P(P̃ ) − 1

∑

Q̃∈P(P̃ )

(
Q̃ − P̃

)(
Q̃ − P̃

)t
, P̃ ≃ 1

#P(P̃ )

∑

Q̃∈P(P̃ )

Q̃.

Obtain the first step estimation P̂1= P̃ +
[
CP̃ − σ2I

]
C−1

P̃
(P̃ − P̃ ).

end for
Obtain the pixel value of the basic estimate image û1 as an average of all values of all denoised
patches Q̂1which contain i.
for all patches P̃ of the noisy image do

Find a new set P1(P̃ ) of noisy patches Q̃ similar to P̃ by comparing their denoised “oracular”
versions Q1 to P1.

Compute the new expectation P̃
1

and covariance matrix CP̂1
of these patches:

CP̂1
≃ 1

#P(P̂1) − 1

∑

Q̂1∈P(P̂1 )

(
Q̂1− P̃

1
)(

Q̂1− P̃
1
)t

, P̃
1
≃ 1

#P(P̂1)

∑

Q̂1∈P(P̂1 )

Q̃.

Obtain the second step patch estimate P̂2= P̃
1
+CP̂1

[
CP̂1

+ σ2I
]−1

(P̃ − P̃
1
).

end for
Obtain the pixel value of the denoised image û(i) as an average of all values of all denoised patches
Q̂2which contain i.

In image denoising, the same idea [45] leads to define the simplest universal method,
where a huge set of patches is used to estimate the upper limits a patch-based denoising
method will ever reach8. The preliminary experiments of this paper involved a set of 20, 000
images [62]. The method, even if certainly not practical, is of exquisite simplicity. Given a
clean patch P the noisy patch P̃ with Gaussian noise of standard deviationσ has probability
distribution

P(P̃ | P ) =
1

(2πσ2)
κ2
2

e−
||P−P̃ ||2

2σ2 , (5.1)

where κ2 is the number of pixels in the patch. Then given a noisy patch P̃ its optimal estimator
for the Bayesian minimum squared error (MMSE) is by Bayes’ formula

P̂ = E[P | P̃ ] =

∫
P(P | P̃ )PdP =

∫ P(P̃ | P )

P(P̃ )
P(P )PdP. (5.2)

Using a huge set of M natural patches (with a distribution supposedly approximating the
real natural patch density), we can approximate the terms in (5.2) by P(P )dP ≃ 1

M and

8The results of this paper support the “near optimality of state of the art denoising results”, the results obtained
by the classic state of the art BM3D algorithm being only 0.1 decibel away from optimality for methods using small
patches (typically 8×8.) See also [14].
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P(P̃ )≃ 1
M

∑
i P(P̃ | Pi), which in view of (5.1) yields

P̂ ≃
1
M

∑
i P(P̃ | Pi)Pi

1
M

∑
i P(P̃ | Pi)

. (5.3)

Thus the final MMSE estimator is nothing but the exact application of NL-means, denoising
each patch by matching it to the huge patch database. The final algorithm is summarized in
Algorithm 4. Although this algorithm is optimal, it is not yet fully realizable in our current
technology9.

Algorithm 4 Global Bayesian denoising
Inputs: Noisy image ũ in vectorial form; very large set of M patches Pi extracted from a large set
of noiseless natural images. Output: Denoised image û.
for all patches P̃ extracted from ũ do

Compute the MMSE denoised estimate of P̃

P̂ ≃
∑M

i=1P(P̃ | Pi)Pi∑M
i=1P(P̃ | Pi)

where P(P̃ | Pi) is known from (5.1).
end for
At each pixel i get û(i) as P̂ (i), where the patch P is centered at i.
(optional Aggregation) : for each pixel j of u, compute the denoised version ûj as the average of all
values P̂ (j) for all patches containing j. (This step in not considered in [45].)

5.1. Comparing visual quality. The visual quality of the restored image is obviously a
necessary, if not sufficient, criterion to judge the performance of a denoising algorithm. It
permits to control the absence of artifacts and the correct reconstruction of edges, texture
and fine structure. Figure 5.1 displays the noisy and denoised images for several classic
algorithms for noise standard deviations of 30 (where each colour image is on a scale from 0
to 255). The experiment illustrates that algorithms based on wavelets or DCT, like DCT and
BLS-GSM, suffer of a strong Gibbs effect near all image edges. This Gibbs effect is nearly
not noticeable in the denoised image by K-SVD which uses a transform method in a learned
redundant patch basis, or patch dictionary. The NL-means denoised image has no visual
artifacts but is more blurred than those given by BM3D and Non-Local Bayes, that have a
clearly superior performance to the rest of the algorithms. The BM3D denoised image has
some Gibbs effect near edges, which sometimes degrades the visual quality of the solution.
Indeed, the BM3D method is a syncretic method combining the grouping of similar patches
with a DCT transform thresholding.

In short, the visual quality of DCT, BLS-GSM and K-SVD is inferior to that of NL-means,
BM3D and NL-Bayes, because of strong colour noise low frequencies in flat zones, and of a
Gibbs effect.

9A clever change of variables in the integral (5.2) found in [53] permits to accelerate the calculation in (5.3) by a
1000 factor, but this is still insufficient!
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Figure 5.1. Comparison of visual quality. The noisy image was obtained adding a Gaussian white noise
of standard deviation 30. From top to bottom and left to right: original, noisy, DCT sliding window,
BLS-GSM, NL-means, K-SVD, BM3D, and Non-local Bayes.

6. Global neural denoising

Though optimal in theory, the global Bayesian denoising formula (5.2) has been recently very
well approximated by a neural network learning from an equally huge set of image patches.
A feed-forward neural network is a succession of non-linear hidden layers followed by an
application-dependent decoder

f(·, θ) = d ◦ hn ◦ · · · ◦ h1(·), n ≥ 1

with

∀1 ≤ l ≤ n, hl(zl) = a(Wlzl + bl)

and

d(zn) = Wn+1zn+1 + bn+1

in case of a linear decoder. The parameters θ comprise the connection weights Wl and biases
bl. The activation function a(·), typically implemented with the hyperbolic tangent or the
logistic function, is applied to its input vector element-wise.

Besides being infinitely differentiable, neural networks can approximate arbitrarily well
any continuous function on a compact set [35, 44], thereby making them a candidate for
regression tasks

θ∗= Argmin
θ

E∥f(x̃, θ)− x∥22 (6.1)

= Argmin
θ

E∥f(x̃, θ)− E[x|x̃]∥22

where (x̃, x) denotes a random pair of observation and its ideal prediction, whose joint
behavior is governed by some probability law used to define the expectation in (6.1). Note
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BM3D NL-Bayes DNN
σ = 25 32.53 32.61 32.88
σ = 50 29.20 29.34 29.72
σ = 75 27.28 27.22 27.95
σ = 170 13.84 22.99 24.56

Table 6.1. Table comparing two state of the art denoising methods with DNN: the PSNR, qui is a
logarithm of the SNR defined in (1.1) measures the image quality (the higher the better).

that although we can sample from it, the underlying probability does not have a closed form
in general. Moreover, the function θ ,→ f(x̃, θ) is not convex, leaving us with little choice but
to substitute the expectation with an empirical surrogate and rely on the method of steepest
descent [5, 42] to conduct the minimization.

Recently, a set of image denoising neural networks [11] has been shown to outperform
BM3D [22] and non-local Bayes [38] at several rather high levels of Gaussian noise for
which they were trained. Note that these spin-offs of the original non-local means [7] seek
information exclusively inside the noisy image while the neural networks learned to estimate
the 17-by-17 patch lying at the center of a noisy 39-by-39 noisy observation by looking at
noisy and clean patch pairs gathered from other many images. Table 6.1 is a comparison
of these algorithms on a benchmark set and the deep neural networks (DNN) consistently
dominate the other two for all the four noise levels.

A look at the output layer of the neural network trained at σ = 25 (Figure 6.2) reveals a
locally oscillating behaviour akin to that of wavelets for those visually meaningful synthesis
features. This suggests that a sort of optimal Fourier-Wiener filter is being performed.

This impressive performance is reached with neural networks of four hidden layers, each
carrying up to 3000 nodes, thereby requiring a computational cost of several 106 operations
per pixel. Moreover, their enormous sizes also mean long training time: it could take weeks
on a modern GPU platform to train just one neural network [12] under a specific level of
noise with tens of millions of example pairs. Although through an investigation of the natural
patch distribution, it can be shown [67] that a simple linear transform is readily available to
make a single neural network work well across all levels of Gaussian noise, the challenge
lying ahead is to scale down such a neural network while preserving its performance.

7. Blind denoising

We have shown that all efficient denoising methods boil down to a single formula and to
very simple image models. But we assumed a simple noise model, the Gaussian white noise.
In this section the focus will be on performing “blind denoising”, namely a fully automatic
denoising on any digital image.

In most images handled by the public and even by scientists, the noise model is indeed
imperfectly known or unknown. Recent progress in noise estimation permits to estimate
from a single image a noise model which is simultaneously signal and frequency dependent.
We describe here a multiscale denoising algorithm [39] adapted to this broad noise model.
This leads to a blind denoising algorithm which can be tested for example on scans of old
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(a) Original (b) BM3D

(c) Non local Bayes (d) Neural Network

Figure 6.1. (b), (c) and (d) are the denoised versions of the original image corrupted by some Gaussian
noise with standard deviation at 25. The figure shows that a blindly learned algorithm by neural network
can outperform all carefully hand-crafted algorithms. Nevertheless the resulting neural network is still
unpractical, necessitating tens of millions of connections to denoise a single patch.

(a) output features

Figure 6.2. A random selection of output features. Most of the output features resemble classic wavelets.

photographs, for which the noise model is unknown.
Blind denoising is the conjunction of a noise estimation method followed by the appli-

cation of an adapted denoising method. Yet, to cope with the broad variety of observed
noises, the noise model must be far more comprehensive than the usual white Gaussian noise.
Because images have undergone nonlinear operations and filters, a flexible denoising method
must cope with a noise model that depends on the signal, but also on the spatial frequency (in
technical terms, a coloured noise). The archives of the online executions at the IPOL journal
of seven classic denoising methods, namely DCT denoising [72–74], TV denoising [31, 61],
K-SVD [40, 48], NL-means [8, 10], BM3D [21, 37], BLS-GSM [58] and NL-Bayes [41] are
full with puzzling noisy images.
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There are only a few references on blind denoising approaches: Portilla [56], [55], Rabie
[57] and Liu, Freeman, Szeliski and Kang [46]. Portilla’s method is an adaptation of the
BLS-GSM algorithm, which models wavelet patches at each scale by a Gaussian scale mixture
(GSM), followed by a Bayesian least square (BLS) estimation for wavelet patches. The “noise
clinic” described in this section is based on a noise signal and frequency noise estimator
proposed by Colom et al. [19, 20], relying on a Ponomarenko et al. general principle [54] to
build a noise patch model.

As evident in its formula (4.7), the NL-Bayes method described in section 4 only requires
the knowledge of a local Gaussian patch model and of a Gaussian noise model. We already
saw in Algorithm 3 how to estimate the local patch Gaussian model, described by an empirical
mean and an empirical covariance. So we only need to hint at how to estimate the covariance
matrix of the noise. The noise model being signal dependent, for each intensity i in the
range intensity [0, 255] of the image a noise covariance matrix Cni must be estimated. The
noise model for each group of patches similar to P̃ will depend on P̃ through their mean
i. The reference intensity for the current 3D group P(P̃ ) must therefore be estimated to
apply (4.7) with the appropriate noise covariance matrix. This intensity is simply estimated
as the average of all pixels contained in P(P̃ ). So we need to estimate the noise covariance
matrices {Cni}i∈[0 ,255]. Colom et al., [20], proposed an adaptation of the Ponomarenko et
al. [54] method estimating a frequency dependent noise to estimate noise in JPEG images.
Given a patch size κ × κ, the method extracts from the image a set with fixed cardinality of
sample blocks with lowest variance, and with mean approximately equal to i. These blocks
are therefore likely to contain only noise. They are transformed by a DCT, and an empirical
standard deviation of their DCT coefficients is computed. This algorithm computes for every
intensity i with a multi-frequency noise estimate given by a κ2 × κ2 matrix

Mi := E
(
DNi (DNi)

t
)

(7.1)

where D is the κ2 × κ2 matrix of the discrete cosine transform (DCT) and Ni denotes the
κ × κ stochastic noise patch model at intensity i. This method estimates the variances of
the DCT coefficients of noise blocks and not their covariances. The covariance matrices are
assumed to be diagonal, since generally the DCT decorrelates the noise.

For a given intensity i, the covariance matrix of the noise is Cov(Ni) = E
(
NiN

t
i

)
which

leads to
DCov(Ni)Dt = DE

(
NiN

t
i

)
Dt = E

(
DNi (DNi)

t
)
= Mi (7.2)

thanks to (7.1). The DCT being an orthogonal transform , from (7.2) we get Cov(Ni) =
DtMiD.

We shall apply the blind denoising to a real noisy image for which no noise model was
available. To illustrate the algorithm structure and its action, we present the noisy input image,
the denoised image, the difference image = noisy - denoised, the average noise curve over
high frequencies, and the average noise curve over low frequencies. The results are shown in
Figure 7.1. As the noise curves illustrate, the noise is frequency and signal dependent.

Results on old photographs. Scanned old photographs form a vast image corpus for which
the noise model can’t be anticipated. The noise is chemical, generally with big grain and
further altered by the scanning and JPEG encoding. Figure 7.2 shows results obtained by the
Noise Clinic over this kind of noisy images. The results compare well with those obtained
with blind BLS-GSM [55, 56], another state-of-the-art blind denoising algorithm.
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Figure 7.1. Top: Illustration of blind denoising of a JPEG image, the “Frog” image. It is advised to
zoom in the high quality pdf file to see detail. Left, noisy image, middle denoised image and right,
difference image. Bottom: noise variance estimation of the “Frog” image, as a function of the image
value and of the local spatial DCT frequency . Left: average of the low frequency curves in the DCT.
Right: average of high frequencies.

Figure 7.2. Blind denoising results on two old photographs. The first is a portrait of young Marylin
Monroe. The second is a detail of a group photograph at the Solvay conference, 1927. For both, a crop
of a scan of the original image is followed result of the Noise Clinic. It is advised to zoom in the pdf to
see image details.

8. Conclusion

Fifty years effort have ended up with denoising methods that can be fully described with six
short formulas that guarantee optimality for a definite image model: these formulas are : (2.2)
and (2.4) for the Wiener-Fourier transform thresholding assuming an image sparsity model;
(3.1) for the neighborhood filter and (3.2) for NL-means, both assuming a self-similarity
model; (4.7) for nonlocal Bayes, which assumes again an image self-similarity and local
Gaussian behavior for patches. Finally the single formula (5.3) for global Bayesian denoising,
which is asymptotically optimal given a (virtually infinite) sample set of image patches. The
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global (Bayesian or neural) methods bypass the question of a mathematical image model by
using an in extenso model, namely all image patches of the world. For this precise reason,
they are still impractical. On the other hand, the best simple image models obtain a denoising
performance equivalent to global methods. This is encouraging for mathematical modeling!
But are the three main image mathematical models compatible? The answer is yes: the
Bayesian self-similarity image model (Nonlocal Bayes) combines the three main principles.
Indeed, the Bayesian local estimate of a patch is a diagonal operator on the patch basis given
by the local Gaussian model. Similarly, a recent method, dual domain denoising [36], also
shows excellent performance by alternating and iterating a neighborhood filter with a DCT
transform thresholding.
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