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ABSTRACT

Self-supervised training enables the application of deep-
learning based methods for multi-image super-resolution of
satellite imagery. In this work we propose two improvements
on the self-supervised Deep-Shift-and-Add (DSA) method
introduced by Nguyen et al. First, we demonstrate how
the self-supervised loss of DSA can be extended to provide
the image interpreter with a spatially varying parameter to
control the trade-off between detail preservation and noise
removal at test time. Second, we endow the DSA architecture
with a mechanism that enables the network to be robust to
outliers produced for example by dead pixels, reflections or
registration errors.

Index Terms— push-frame burst satellite imaging, multi-
image super-resolution, deep-learning, self-supervised learn-
ing, robust estimators

1. INTRODUCTION

Multi-image super-resolution (MISR) by numerical methods
has recently been adopted as way to increase the resolution
of push-frame satellites [1, 2]. By leveraging high framerate
low-resolution acquisitions, low-cost constellations can be ef-
fective competitors to traditional high-cost satellites.

Satellite images are usually noisy. This noise is often con-
sidered as an unwanted artifact and is subject to removal. In
doing so, it is inevitable that some details will also be lost. In
this work, our goal is to perform robust joint super-resolution
and denoising from a burst of satellite images, with control
over the trade-off between noise removal and detail preser-
vation. We focus on push-frame satellite sensors such as the
SkySat constellation from Planet.

Most MISR methods for satellite images are still based
on classic model-based techniques [1, 2, 4]. For example,
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Fig. 1: Super-resolution from a sequence of 15 real low-
resolution SkySat L1A frames. (a) L1B from Planet, (b)
DSA [3], (c) Our improvement with an additional CNN to
detect the outliers.

Anger et al. [2] propose solving a least-squares problem that
fits spline polynomials to the observed samples (we denote it
ACT, as its early trigonometric polynomial formulation [5]).
In [6], Farsiu et al. propose a variational method that extends
the classic shift-and-add MISR to be robust to outliers, which
amounts to applying pixel-wise medians.

On the other hand, training supervised deep-learning
based MISR methods is challenging because it is difficult
to obtain real training satellite data with ground truth. To
overcome this problem, Nguyen et al. [3] propose Deep Shift-
and-Add (DSA), a neural network for MISR from satellite
image bursts that can be trained in a self-supervised manner,
i.e. it does not require ground truth HR data. This work was
recently extended in [7] to support multi-exposure bursts.
Notwithstanding its advantages, DSA does not handle out-
liers. For satellite imagery, moving objects misregistration,
reflections or dead pixels are examples of such outliers.

Besides, like most deep-learning based image restoration
algorithms, DSA tends to smooth out textures or details that
have a low contrast relative to the noise level. This is a known
problem for restoration methods based on minimizing a dis-
tortion measure (such as the MSE or L1 loss) [8]. As these
results have a bad perceptual quality, several works combine
distortion losses with adversarial losses that aim at reducing
the distance between the distribution of restored images and
that of real HR images [8, 9]. However, this requires the net-
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Fig. 2: Overview of our method, which builds upon the Deep Shift-and-Add (DSA) architecture [3].

work to “invent” plausible information in the regions where
the original content cannot be recovered. This behavior is
desired for applications where the goal is to create an aesthet-
ically pleasing natural looking image, but it is unacceptable
in cases where critical decisions are made based on the data.

In this paper we propose two contributions to address
these limitations of DSA.

1. A data-fitting term that allows controlling the amount of
detail in the solution with a spatially varying map that is given
to the network as input at test time. In this way a user can
control this noise reduction and detail preservation trade-off
depending on the application. This is inspired by a common
photography trick for recovering low contrast details lost to
image denoising, which consists in adding back to the output
a fraction of the noisy input image.

2. We also propose a robust version of DSA, thanks to the
introduction of outlier masks computed by the network itself
(see Fig. 1). Our proposed framework contains DSA, ACT
and ACT-robust (a robust variant of the ACT method formu-
lated as an L1 fitting) as particular cases (without the need to
solve a computationally complex optimization problem at test
time) and yields state-of-the-art results.

2. PROPOSED METHOD

Our network (Fig. 2) is built upon the Deep Shift-and-Add
(DSA) architecture [3] with four major modules: Motion Es-
timator, Encoder, Feature Shift-and-Add block (FS&A) and
Decoder. The self-supervised DSA loss [3] drives the net-
work to produce a super-resolved image ÎHR such that when
subsampled, it coincides with the reference frame ILR

0

DSA loss =
∥∥∥Π2(Î

HR)− ILR
0

∥∥∥
1
, (1)

where ÎHR is the network output and Π2 is the subsampling
operator. Since the reference frame is withheld from fusion
during training, the network cannot learn to reproduce the
noise in the reference. Thus the training converges to produce
a noise-free high-resolution images. This self-supervised loss

is based on the minimization of a distortion measure with re-
spect to a target. It is a known fact that these type of losses
tend to smooth fine details whose magnitude is comparable
with that of the noise [8].

We propose a loss that permits to control the trade-off be-
tween noise reduction and detail preservation. For that we
incorporate a multi-frame data fitting term controlled by a
spatial map D (Sec. 2.1). In addition we introduce in the
DSA network architecture MaskNet, a new trainable module
(Fig. 2), whose purpose is to produce outlier masks O that
indicate the presence of outliers (Sec. 2.2).

2.1. Noise reduction – detail preservation trade-off

The self-supervised DSA loss imposes a data-driven prior that
favors smooth reconstruction in regions with lower contrast.
The cost of producing a noiseless image is that some details
might be lost. To counteract this, we add the following loss,
which corresponds to ACT [2, 5] when p = 2:

LLp loss =
1

T

T∑
i=1

∥∥∥Π2

(
Warp(ÎHR, 2Fi→0)

)
− ILR

i

∥∥∥p
p
,

(2)
with 1 ≤ p ≤ 2 (in this work we only consider p = 1 and
p = 2) and where Warp is an operator that warps its input
according to the estimated motion field Fi→0 (see [3] for de-
tails). This loss corresponds to the likelihood of the data under
a generalized Gaussian noise model [6].

To understand the rationale behind this loss, consider a
case in which the images can be aligned with an integer shift
(so that no interpolation is needed). Then the minimizer of
the LLp loss is obtained by aligning and aggregating the LR
images on the HR grid. For p = 2 the aggregation is the
average, and for p = 1 is the median. For Gaussian noise,
these solutions are unbiased estimators of the high-resolution
image. Thus no details are lost and the noise is reduced via
the temporal aggregation. Of course some noise will remain,
with variance depending on the number of images in the se-
quence. Note that these solutions do not require any data-
driven learning: i.e. they do not depend on any priors learned



from the data; they only depend on the set of LR images. This
is because the target frames ILR

i are all part of the input.
Since the least-squares (LS) solution (p = 2) is sensitive

to outliers [6], we propose using the p = 1, which we call
least absolute value (LAV) loss.
Complete training loss. Most of the time, our priority is
to produce a noise-free HR image. Nevertheless keeping
details might be preferred when we have few images or
when we want to detect very high-frequency objects such
as crosswalks, solar panels, etc. To control the trade-off be-
tween noise removal and detail conservation, we introduce a
noise-detail map (denoted D) as a parameter to balance the
losses (1) and (2). This map is spatially varying and takes
values between 0 and 1. Values closer to 1 indicate that we
want to keep details (and noise), whereas small values imply
that the corresponding region should be denoised. The train-
ing loss is defined as the balance between the DSA and the
LAV loss per pixel

loss =
∥∥∥(Π2(Î

HR)− ILR
0

)
· (1−Π2(D))

∥∥∥
1
+

1

T

T∑
i=1

∥∥∥(Π2(Warp(ÎHR, 2Fi→0))− ILR
i

)
·Π2(D)

∥∥∥
1
, (3)

where ÎHR = Net(ILR
i=1,...,T ,D) is the network output and

“·” denotes the element-wise multiplication. To simplify, we
assume that D is smooth and that the images are coarsely pre-
aligned so that the D does not have to be warped in the loss.

2.2. Outlier handling

In DSA [3], the features computed by the encoder are aver-
aged by the Feature Shift-and-Add module. Because of this
averaging, outliers have a strong impact that the decoder can-
not entirely mitigate. For this reason, we propose remov-
ing them from the averaging by incorporating a submodule
MaskNet to the DSA architecture to predict outlier masks.
We take inspiration from a video denoising application [10]
where a similar mask predicting network is used for removing
misaligned areas in a recursive frame fusion method. We de-
fine outliers as regions that are inconsistent with the majority
of frames in the sequence, and masks allow to exclude them
from fusion. To estimate such masks, we first approximate a
low-resolution outlier-free image using a temporal median of
the LR frames aligned to the reference, which we denote by
MLR. Then the absolute difference [10] between the warped
median image and each image is used as input for MaskNet

Oi = MaskNet
(
|Warp(MLR, Fi→0)− ILR

i |
)
. (4)

We also impose the smoothness of the produced masks by
adding a TV regularization term in the loss. The outlier masks
are then used as weights in the weighted FS&A block

JHR =

∑T
i=1 SPMC(JLR

i · Oi, Fi→0)∑T
i=1 Max(SPMC(Oi, Fi→0), ϵ)

, (5)

D = 0 D = 1 with mixed map Mixed map

D = 0 D = 1 with mixed map HR

Fig. 3: Super-resolution from a stack of 4 (first row) and 14
(second row) noisy synthetic images. From left to right: Re-
construction with D = 0 (without detail preservation), with
D = 1, and with a mixed D map.

where ϵ is a threshold to avoid division by 0, {JLR
i } are

the features computed by the Encoder, {Fi→0} are the opti-
cal flows estimated by the Motion Estimator, and the SPMC
module [3,11] maps the LR features onto a common HR grid.
The outliers will be assigned negligible weights in the outlier
masks so that they do not contribute in the fusion.

3. EXPERIMENTS

In our experiments, we first demonstrate the trade-off between
denoising and detail restoration using the noise-detail map.
Then we justify our choice of architecture and losses in order
to handle outliers.

3.1. Examining detail preservation map D

In order to train the network, we prepare sets of training in-
put data {ILR

i=0,...,T ;D}. The random spatially-varying noise-
detail maps D are generated first by thresholding a filtered
Gaussian noise image (σ = 40) (the filter itself is a Gaussian
filter with σ = 28), then the resulting binary image is then
smoothed with a small Gaussian filter (σ = 3).

Fig. 3 illustrates the trade-off between noise reduction and
detail preservation when we change D for the cases of 4 and
14 input frames. As expected, with D = 0 the network re-
moves noise while smoothing out the textures as it cannot dis-
tinguish high frequencies from noise. On the other hand, with
D = 1 the output is noisier but it better preserves the high fre-
quency details. The difference between the two behaviors is
particularly noticeable when using few input frames. More-
over, we can use a spatially varying map to reduce noise in
uniform regions and preserve details in textured regions as
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Fig. 4: Effect of the architecture and the loss in robustness to
outliers. First line: 7 LR with outliers. Second line: Recon-
struction with the LS or LAV loss, with and without MaskNet.

Table 1: Average PSNR on the synthetic test set with outliers.

D = 1 D = 0 (D = 1) + Mask (D = 0) + Mask

T = 4 31.10 36.87 32.65 37.16
T = 14 36.52 40.45 37.25 40.77

shown in Fig. 3. Since the map D is a network input pro-
vided at test time, it lends itself to applications where a user
interactively edits the map.

3.2. Robustness to outliers

To train MaskNet we add synthetic outliers in the LR images
during training. To this aim, we first generate random blobs in
an image and then substitute the pixels of these regions with
data from a different stack.

As the LLp loss optimization is not data-driven, it is
strongly affected by outliers. Here, we justify two key fea-
tures in our framework that enable its robustness to outliers:
The MaskNet and the L1 norm in the LAV loss.

The authors of [6] show that the optimal solution of the LS
(resp. LAV) problem is the pixelwise average (resp. median)
of the LR images. Consequently, the LS problem is not robust
to outliers. We experimentally observed (Fig. 4) that using the
L2 norm, MaskNet learns to produce only constant maps and
the network produces artifacts in the SR result. Conversely,
with the L1 norm, the MaskNet is able to detect outliers in the
LR images and impose a negligible weight to these regions.

SR on synthetic data with outliers. Table 1 highlights the
usefulness of the MaskNet when the image stacks contain out-
liers. We can notice that with few or many frames, both for
D = 0 or D = 1, MaskNet helps to increase significantly the
PSNR by 0.3 - 1.5dB.

SR on real satellite data with moving objects. Moving ob-
jects that are not correctly aligned can be considered as out-

liers. Fig. 1 illustrates how our architecture with and with-
out MaskNet handles moving objects. As expected, the mo-
tion estimator of L1B [1] and DSA predicts smooth optical
flows and ignores small moving objects. Consequently, with-
out MaskNet we observe a blur trait on the highway. On the
other hand, when we use MaskNet, the network is able to filter
out the motion of the car, leading to a better reconstruction.

4. CONCLUSION

We extended the self-supervised DSA method [3] by provid-
ing a spatially varying parameter to control the trade-off be-
tween detail preservation and noise removal at test time. In
addition we endow the DSA architecture with a mechanism
that enables the network to be robust to outliers produced
for example by dead pixels, reflections or registration errors.
All within a self-supervised framework. These improvements
lead to state-of-the-art results.

In this work we assume that outliers are everything not
consistently visible in most of the frames. However, if we
want to preserve the content of the reference image some
modifications might be necessary. This will be the subject
of future work.
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