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ABSTRACT
Shape from shading (SfS) enables 3D reconstruction of stockpiles
from a single image. However, this method requires proper bound-
ary conditions to work properly. Obtaining such Dirichlet and Neu-
mann conditions is equivalent to a segmentation of the heaps. To
get a fast and accurate 3D reconstruction, we propose a simple and
interactive segmentation method. SfS is then applied on 0.5-meter
resolution Synthetic Aperture Radar (SAR) images with more pre-
cise boundary conditions. The results show that prior segmentation
is preferable to no segmentation for the stockpiles volume estima-
tion problem. Furthermore, we show that the proposed interactive
segmentation method reduces the annotation time needed for such a
prior segmentation

Index Terms— Synthetic Aperture Radar, Shape-from-shading,
interactive segmentation, Dirichlet-Neumann boundary conditions

1. INTRODUCTION

The storage and management of stockpiles of different materials is
fundamental to many industries, such as mining, construction, or
waste management. This monitoring was done manually with on-
site surveys [1], but this approach is difficult and costly. Remote
sensing tools like photography from planes or Unmanned Aerial Ve-
hicles (UAVs) are often preferred to site monitoring [2, 3]. Satellite
images provide a high revisit time and worldwide coverage [4]. SAR
imaging does not require sunlight and is free from the influence of
atmospheric conditions.

Shape-from-Shading (SfS) [5] estimates the volume of a stock-
pile from a single image. It requires the scene to be composed of
material with homogeneous reflective properties. The region of in-
terest must be carefully defined to ensure this hypothesis.

In this work, we present an interactive segmentation tool as a
prior step to shape from shading. To illustrate this approach, we
tackle the problem of coal volume estimation from high-resolution
SAR imaging. This case has two big differences with the work in
[4]: in the current paper the images are higher resolution SAR im-
ages and we introduce an interactive segmentation approach to pro-
vide mask priors. In this particular problem, coal stockpiles are lo-
cated near harbors. The sites have cranes on rails moving over the
stockpiles adding and removing material. This problem is illustra-
tive because, as in many others in which annotations are scarce and
sites differ, no segmentation tool works out-of-the-box.

Our method involves three stages: the first segments overlapping
objects, e.g. cranes, and crops the image. The second segments the
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Fig. 1: 3D reconstruction using Shape-from-Shading before and af-
ter providing segmentations of the individual stockpiles.

objects of interest. The third applies SfS with the obtained boundary
conditions.
Plan: an overview of image segmentation, interactive segmentation,
and shape from shading literature is presented in Section 2. The data
at hand is described in Section 3. Section 4 describes the interactive
segmentation method and the SfS approach. Results and conclusions
are given in Section 5 and Section 6, respectively.

2. RELATED WORK
2.1. Image segmentation
Image segmentation refers to the problem of classifying each pixel
of an image. State-of-the-art methods are deep learning methods that
are trained or fine-tuned over annotated datasets [6]. For problems in
which there are no annotated data available, the solution is to use pre-
trained models [6], unsupervised segmentation methods, e.g. [7], or
to annotate the data. Transfer learning suffers when the domain shift
is big, e.g. training with consumer images and applying on satellite
images. Unsupervised segmentation methods traditionally perform
feature extraction (classic filter stacks or neural networks [8]) and
clustering [9]. When involving neural networks these methods do
not necessarily need annotations, but they usually require domain
data, which is not always available in large enough quantities.

2.2. Interactive segmentation
Annotations are needed in most of the cases above, to provide infor-
mation relevant to general vision abilities and also to define the prob-
lem. The need for annotations is the motivation that drives the re-
search in interactive segmentation and active learning. While active



learning is concerned with reducing the number of annotations [10],
interactive segmentation reduces their cost [11]. Better annotation
efficiency can help solve big problems, e.g. in autonomous driving,
medical imaging, or remote sensing. However, current annotation
tools do not include state-of-the-art methods. At the same time, most
state-of-the-art methods present the same complication as in super-
vised segmentation: good results over the benchmarks are due to the
use of similar training data, many times provided in the benchmarks
themselves [12]. This is why they struggle to generalize to differ-
ent data, and more importantly, to quickly learn the objective of the
segmentation on a new domain.

The work [13] advanced in this direction, which is in between
the fields of continuous learning, few-shot learning, transfer learn-
ing, and representation learning. This line of research is still in its
infancy. This is why, for many problems, specific tools have to be
designed. In this paper, we describe one such tool.

2.3. Shape-from-shading
The SfS problem estimates the three-dimensional shape of a surface
from one image of this surface. It was first introduced by Horn [5]
and is modeled by the ”image irradiance equation”

I(x, y) = R(n(x, y)), (1)

where I(x, y) is the gray level measured at pixel (x, y) and R is the
reflectance function, giving the value of the light re-emitted by the
surface z = u(x, y) as a function of its 3D normal n(x, y). One of
the features that make this problem interesting is that the input data
are minimal: a single gray level image is used.

Most SfS methods assume the surface as Lambertian with a con-
stant and known albedo, a unique far enough light source so that the
incident direction may be taken as constant, and a viewer standing
far enough, so that the direction to the viewer is roughly constant in
the scene. Under these hypotheses, the reflectance function is

R(x, y) = A d · n, (2)

where the vector d = (α, β, γ) is the incident light direction and A
is a constant modeling several proportionality factors, among which
the albedo of the surface and the light source intensity.

Many numerical methods have been proposed for solving the
SfS problem [14]. Although SAR images do not exhibit Lambertian
reflectance properties, in this work we use a method based on the lin-
earization of the reflectance function, thus we assume Lambertianity
and we solve the equation in the range-azimuth plane.

3. DATA

SAR is an active sensor that first transmits microwave signals and
then receives back the signals that are reflected from the surface of
the Earth. Taking into account the motion of the radar antenna, the
received signals are then processed to produce an image. One ad-
vantage of SAR images over optical images is that they are almost
not affected by meteorological phenomena, e.g. clouds. The images
we shall use were provided by Capella.

Capella operates a constellation of seven satellites, each carrying
an X-band SAR. Two additional satellites are launching in 2022. The
SAR instrument can be operated in spotlight, sliding spotlight, and
stripmap modes. It acquires single polarization images. The images
used in this work were acquired in sliding spotlight mode, covering
a 5 km by 10 km area at 0.5 meter slant-range resolution, and were
multi-looked, orthorectified, and geocoded on a 60 cm UTM grid
(GEO product).

We worked with 6 images of the same site taken at different
dates with intervals ranging from 2.5 days to 2 months. All images
are cropped to a size of 2432 × 2337 pixels, corresponding to an
area of ∼1.4×1.4km. An example image we will use throughout
the paper is Figure 2. For visualization purposes, we clipped the 3%
largest values.

4. INTERACTIVE SEGMENTATION METHOD

The interactive segmentation method has three main components.
The first is the determination of the region of interest. The second
component is the interactive segmentation of the cranes. The last
component is the interactive segmentation of the coal heaps.

The method is summarized as follows: if there is not a region of
interest for the site, it is generated with polygon-based tools. The site
information is then taken into account (see Subsection 4.1); cranes
are removed according to Subsection 4.2; lastly, stockpiles are seg-
mented according to Algorithm 1.

4.1. Site information
Only once for each site and in a very short time, some site infor-
mation is extracted, which is useful to ignore parts of the images
that are irrelevant for our use case and facilitates further process-
ing. The main site-information is the region of interest, which is the
same from image to image and whose determination amounts to a
negligible annotation time. This is why it has not been mentioned in
previous works [4].

More specifically, the site information consists of a rotation an-
gle, a region of interest, and a segmentation of the rails. The rotation
is conducted because the stockpile formation follows the natural di-
rection of the rails, a diagonal in Figure 2. The angle is easily ob-
tained by selecting two points in a rail line. The region of interest is
determined by a polygon. Finally, the rails are masked out, after ro-
tation, using bounding boxes. The angle, mask, and the coordinates
of a bounding box on the mask are saved for consequent steps. The
output of this stage is shown in Figure 2. As the site-information is
saved it is possible at any time to invert the processing back to the
original image format.

4.2. Crane segmentation
Crane detection is done via interactive segmentation. As a prepro-
cessing step, we smooth the image, filtering it with a Gaussian fil-
ter. The user can choose to apply the filter again and again, which
equates to filtering with a wider Gaussian kernel (convolving n times
a Gaussian with itself increases the resulting standard deviation by a√
n factor). This allows the user to remove details and control how

fine-grained the segmentation should be.
Cranes produce distinctive bright reflections in the SAR images.

However, segmenting them with a global threshold is not possible
because both the cranes and the edges of the heaps present high in-
tensity values. This is why only local intensity thresholding is pro-
posed after the image was smoothed. To do this, the user draws a
bounding box and selects an intensity threshold to be applied inside
it. This is complemented by an area filtering that allows the removal
of little connected components. See Figure 2.

4.3. Heap segmentation
Preprocessing. Once the cranes were segmented they are masked
out, i.e. fused with the region-of-interest mask. As our heap seg-
mentation tool depends on intensity thresholding, smoothing is again
convenient. We apply a non-local-means denoiser [15] as smoother
so as to preserve image edges.



Fig. 2: Left: Example image site. Middle: Site-information processing, rail segmentation step. Right: Crane segmentation using bounding
box: top-left of the image shows a segmented crane and bottom-center shows a bounding box to be thresholded.

Algorithm 1 Segment heaps

mask_in = merge_masks(site_mask, cranes_mask)
mean_color = i_background_color(img)
img_nl = i_uniformize(img * mask_in, ’nl-means’)
img_hwr = abs(img_nl - mean_color) * mask_in
seg = i_segment(img_nl, img)
seg = fill_horizontal(seg)
seg = i_horizontal_merge(img, seg)
seg = i_segment_bbox(img_nl, img, seg)
seg = i_area_filter(img, seg)
final_mask = site_process_inv(seg)

Fig. 3: Horizontal filling before and after merging. A line was drawn
between the disconnected components. After the second click, the
intermediate area was automatically filled.

The main complication brought by these images to classical seg-
mentation algorithms is that stockpiles are defined by both dark and
bright regions, not always connected. We tackle this by half-wave-
rectifying the uniformized image. More specifically, the background
color is extracted as the mean of a user-defined area (drawing a
polygon). Then the absolute difference between the uniformized
image and the background color is computed.

Segmentation: The interactive segmentation follows, with a global
thresholding step and a local thresholding step for crane segmen-
tation. Both steps are followed by area filtering. The interactive
segmentation is done twice: before and after the merging and filling.
This allows for more flexibility. After the primary segmentation has
been conducted, some segments corresponding to the same stockpile
might be separated. Indeed, sometimes the top of the stockpiles has
background intensity, and it is hard to differentiate from the back-
ground itself without further contextual information. To solve this, a
horizontal filling is applied in conjunction with the interactive merg-
ing of regions. The horizontal filling runs for each segmented com-
ponent individually. For a given segmented component, each row
of pixels is painted between the first and the last segmented pixels

on the row. The process involves interaction by merging. Merging
means that the user can draw a line between unconnected compo-
nents to connect them. After each connection, the horizontal filling
takes place and allows to easily segment all pixels between two seg-
mented components (see Figure 3).

The baseline method: The previous segmentation method used to
find cranes and stockpiles consisted of a paintbrush with varying
sizes and an eraser. This is as flexible as one can get but takes non-
negligible time per stockpile or crane. In aggregate, using global
operations at least doubles the speed of the method, while eliminat-
ing trembling hand blur. The paintbrush approach is nevertheless
compatible with the interactive approach here proposed.

Shape from shading: For the SfS step, we use a variational ap-
proach that builds upon a linearization of the reflectance map [4].
Because of the global linearization, this method is not very accurate
for synthetic examples. Compared to more precise methods, it has
the advantage of being very robust to the perturbations occurring in
real images.

Our SfS approach expects the observed image to be nadir, so
we solve the equation in the range-azimuth plane. In this system of
coordinates, the vector d in (2) is d = (1, 0, 0). The ground is mod-
eled as a slope whose angle depends on the incidence angle of the
satellite. This slope is used to encode Dirichlet boundary conditions.
To deal with occluding objects like the cranes we enforce homoge-
neous Neumann conditions and inpaint the occlusion area with the
heat equation. Finally, we project the solution in the UTM grid.

5. RESULTS AND CONCLUSION

Interactive segmentation times: We measured the segmentation
time with both the paint-brush tool and the interactive segmentation
tool. For the first, the average segmentation time of both cranes and
stockpiles was 25 minutes for the reference image. For the second,
the average time over 6 images is 11.75 minutes, with extremes being
9.76 min and 13.46 min.

These times can still be reduced. The demo video illustrates the
full process, including the first region of interest selection, which is
done only once per site. It takes less than 9 minutes.

Masks influence on ground height estimation: The difference be-
tween providing masks or using site information only is depicted in
Figure 4. The main advantage is that we do not have any incorrect
estimation of the ground level, which is forced to be zero in the case
using masks. The influence of this is quite drastic: for the refer-
ence image, the volume estimated from Figure 4-middle which uses
the masks is 2.0, while the volume assigned to the ground in Fig-
ure 4-left is −1.4, a negative bias of 70%. When computing the bias



Fig. 4: Height maps yielded by the SfS method using only site information (left), using provided masks (middle), and the comparison between
these two cases as total estimated volume over masks per image (right).

introduced by the height estimation of the ground on other images, a
similar behavior was found. The minimum absolute bias introduced
is 60% while the maximum is 100%. The average bias is −74.6%.

Influence of masks on heaps height estimation: We also note
a non-negligible difference between the volume estimate with and
without masks, as shown in Figure 4-right. Note that volume esti-
mation is simply a sum, which represents volume up to a constant
factor. This constant factor is obtained by calibrating the data with
on-site volume measures. The phenomenon observed in Figure 4-
right is explained by the effect of ground height estimation. As ob-
served, the ground height estimation introduces a negative bias as the
average ground height is negative. Thus, the heaps start from under
zero height.

Limitations of the method: This method is useful for an homoge-
neous material, i.e. with constant texture and reflectance properties.
Layover is an issue not addressed here, inherent to SfS methods ap-
plied to SAR: it affects slope estimation but not height estimation
after the layovered part. We can expect a perturbation in the recon-
struction that is relatively minor.

6. CONCLUSION

This paper explored the impact of boundary conditions on SfS ap-
plied to SAR images to estimate stockpile volumes. We showed
that the rough volume estimation was biased because the volume as-
signed to the ground is far from zero. At the same time, this bias
can be avoided by segmenting the stockpiles and using the masks
for determining mixed boundary conditions. We finally proposed an
interactive segmentation tool that halves the annotation time.
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