
AUTOMATIC METHANE PLUME QUANTIFICATION USING SENTINEL-2 TIME SERIES

T. Ehret1 A. De Truchis2 M. Mazzolini2 J.-M. Morel1 G. Facciolo1

1Université Paris-Saclay, CNRS, ENS Paris-Saclay, Centre Borelli, France
2Kayrros SAS

ABSTRACT

Methane emissions monitoring is essential to control methane
pollution. In this paper, we propose an automatic practical
methodology using time series to estimate the quantity of
methane in a given plume using a multispectral satellite like
Sentinel-2. Sentinel-2 proposes a low revisit time, a good
spatial resolution and a low acquisition cost. Contrary to
previous methods, the proposed approach does not require a
manual selection of an optimal reference image. We com-
pared its performance on an oil-and-gas site in Kazakhstan.
This is the first step toward an automatic global monitoring
system for methane plume detection and quantification with
these satellites.

Index Terms— Methane, quantification, automatic, mon-
itoring, satellite, sentinel-2

1. INTRODUCTION

Recently, the detection of large and frequent methane emis-
sions has raised concerns in the ability of natural gas to ef-
fectively reduce greenhouse gas emissions as a substitute to
coal [1, 2]. Over a 20-year horizon, a methane molecule has
a global warming potential about 85 times larger than carbon
dioxide [3]. However, it has also been shown that a large
part of methane emissions could be controlled or avoided [4].
This show that methane monitoring is now essential to reduce
methane pollution.

Airborne campaigns [5] are often used to perform moni-
toring. While these campaigns have very good spatial resolu-
tions and low detection thresholds, they suffer from a limited
spatial coverage. Indeed, these campaigns can only cover a
limited area and are costly to perform so they often have very
limited revisit.

In order to perform a more global monitoring of green-
house gas emissions produced by human activities, several
satellites, such as GOSAT and TROPOMI [6], have been
placed in orbit over the past ten years. Contrary to airborne
campaigns, these satellites cover the entire Earth daily and
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were used successfully to detect unintended very large emis-
sions [7]. However, it is difficult to detect small emissions
due to its very low spatial resolution (5-7km). An alterna-
tive would be high resolution hyperspectral satellites such as
PRISMA [8] and GHGSat [9]. However, the tasking nature,
the relatively small field of view and the cost of data makes
them unsuitable for a recurrent global monitoring.

The Sentinel-2 mission presents many advantages: it is
recurrent with a low revisit time, it covers the entire planet
and has a low acquisition cost. Sentinel-2 images comprise
12 bands, from visible to SWIR, with spatial resolutions from
10m per pixel to 60m per pixel. Although it was not initially
designed for methane detection, it has been shown by Varon et
al. [10] that some the bands are sensitive enough to methane
to allow detection of moderate CH4 emissions.

In this work, we propose an automatic methodology to
quantify methane plumes using a multi-spectral satellites
such as Sentinel-2 or Landsat-8. Starting from a timeseries
of Sentinel-2 images, the background image without any
methane plume is estimated by doing a temporal regression.
The quantity of methane corresponding to the plume is then
estimated for each pixel using an approximated atmospheric
model.

2. AUTOMATIC METHANE QUANTIFICATION
FROM MULTI-SPECTRAL TIME SERIES

We focus on the quantification of isolated excess concentra-
tions of methane in the atmosphere. As shown in Fig. 1, bands
B11 and B12 of Sentinel-2A are impacted by the presence of
methane in the atmosphere. This means that it is possible to
detect the presence of methane based on the dimming caused
by the concentration of the gas.

The Beer-Lambert law states that for a light source with
intensity I0 and a wavelength λ

I = I0e
−

∑N
i=0 Ai(λ)li , (1)

where the light goes through N gases defined by their ab-
sorption Ai(λ) and equivalent optical path length li defined
as the product of the actual optical path and the concentration
of the ith gas. In our case, the light source is the sun and I0
corresponds to its intensity in the SWIR spectrum. It is usu-
ally assumed that I0 is constant. Taking into account that the
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Fig. 1. Methane transmittance spectrum for 1cm of methane,
in gray, and Sentinel-2A spectral sensitivity for all its bands,
one color for each band. Bands B11 (1568-1659 nm, in or-
ange on the right) and B12 (2114-2289 nm, in green on the
right) are impacted by the presence of methane in the atmo-
sphere thus allowing its measurement.

sensor of a satellite integrates over a band of wavelengths de-
scribed by a sensitivity function s, the intensity of the light
seen by a space-borne sensor becomes

I = I0

∫
s(λ)α(λ)e−γ

∑N
i=0 Ai(λ)lidλ, (2)

where the two passes through the atmosphere are taken into
account in γ, which is a function of both the sun azimuth
angle θsun and the satellite view angle θsat (both defined in
Fig. 2 such as γ = 1

cos(θsun)
+ 1

cos(θsat)
). The albedo α(λ)

models the reflection on the ground.
In practice, the atmosphere model can be well approxi-

mated with a simple fixed “pure methane atmosphere". This
means that N = 1, latm the quantity of methane in the atmo-
sphere is considered fixed and the only absorption coefficient
is ACH4. We discuss this approximation in Section 4. In the
presence of a methane emission, characterized by lem, the in-
tensity of the light seen by the sensors then becomes

Iem = I0

∫
s(λ)α(λ)e−γACH4(λ)(latm+lem)dλ. (3)

The problem is that α is usually unknown. We propose to
estimate its contribution by estimating the observation with-
out methane, also called background observation, Ibg . When
we assume that methane emissions are anomalous events,
it is to be expected that most observations in a time series
should not contain excess methane. So, if we suppose that α
is rather stable in time, the time series can be used to estimate
a methane free background model that can be compared with
the current observation. Here, we compute the background
for a given date as its linear regression over the previous
dates. If we denote by It the observation at time t, then the
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Fig. 2. Observation model for a satellite like Sentinel-2 with
a passive sensor.

regression computes the optimal weights wi that solve

min
{wi}

∥∥∥∥∥It −
t−1∑
i=0

wiIi

∥∥∥∥∥
2

. (4)

Then the background is obtained as the linear combination
Ibg =

∑t−1
i=0 wiIi. The estimation is performed on the loga-

rithm of the images so as to limit the impact of abnormal high
values in the SWIR bands. To further improve the background
subtraction we combine this estimation with a band ratio that
exploits the correlation between SWIR bands, similarly to the
multiple-band single-pass (MBSP) from Varon et al. [10].

Since γ is known for each acquisition, this ratio only de-
pends on the methane excess. Therefore, it is possible to esti-
mate the value of lem as the solution of a simple optimization
problem

argmin
lem

∥∥∥∥∥IemIbg −
∫
B12

s(λ)e−γACH4(λ)(lem+latm)dλ∫
B12

s(λ)e−γACH4(λ)latmdλ

∥∥∥∥∥
2

2

.

(5)
This quantification scheme can also be adapted when using
band ratio.

3. EXPERIMENTS

We consider an area of interest of size approximately 5x5 km2

in Kazakhstan located on an oil-and-gas location. The size of
this area is large enough so that the background estimation
is not impacted too much by the presence of methane in the
input images. We collected the L1C Sentinel-2 time series
corresponding to this location and, using a cloud detection al-
gorithm such as the one proposed by Dagobert et al. [11], we
removed all images with a cloud coverage of more than 15%
of the image pixels. We then manually detected the plume
shown in this section.



Projection on 0 images
SNR 1.28

Projection on 1 image
SNR 7.28

Projection on 5 images
SNR 12.49

Projection on 10 images
SNR 17.85

Projection on 20 images
SNR 58.18

Fig. 3. Impact of the number of images used during the background estimation. A longer time series improves the SNR of the
extracted plume in the residual thus helps its quantification. The SNR was estimated using a plume mask that was manually
annotated.

We compared the quality of the reconstruction using a dif-
ferent amount of images for the background estimation. From
Fig. 3, we can see that using a longer time series allows for
a better background reconstruction. Indeed, after subtraction
of the estimated background, the plume becomes much more
visible and therefore its signal-to-noise ratio (SNR) with re-
spect to the background is improved.

In Fig. 4 we also compared the proposed method to dif-
ferent approaches proposed by Varon et al. [10]. Some of
these methods require a manual selection of a reference im-
age. So, in order to have a fair comparison, we selected the
reference image that gave the best SNR out of all available
for each method. Nevertheless, our automatic method still
outperforms all of them.

4. EFFECT OF MODEL SIMPLIFICATIONS IN THE
METHANE QUANTIFICATION.

Atmosphere model. We study how different assumptions on
the atmospheric model (5) affect the methane quantification
with a numerical example. Computations are done without
the logarithm to simplify the notations, this however does not
change the quantification. We also assume that the sun and
viewing angles are zero, i.e. γ = 2 for the numerical applica-
tions. For that we suppose that our observation yields a given
attenuation

δR =
u(x, y, t)

û(x, y, t)
= 0.95, (6)

we then estimate the concentration from the attenuation using
three different models.

For the first model, let us suppose that the atmosphere
doesn’t absorb any light, i.e.

∀f, e−2
∑l

i=0 Ai(f)li = 1. (7)

In this case, the observed attenuation δR is

δR =
u(x, y, t)

û(x, y, t)
=

∫
s(f)e−2ACH4(f)lemdf∫

s(f)df
. (8)

atmosphere model
estimated excess of CH4

from δR = 0.95

no atmosphere 2015ppb

no atmosphere,
only 1600ppb of CH4 2393pbb

realistic atmosphere
with 1600ppb of CH4 2417pbb

Table 1. Estimated excess methane using different atmo-
spheric models with increasing complexity.

For the second model, we consider the atmospheric methane
by assuming an atmosphere purely composed of methane
and excess methane. The atmosphere consists of latm cm of
methane, which leads to

u(x, y, t)

û(x, y, t)
=

∫
s(f)e−2ACH4(f)(latm+lem)df∫

s(f)e−2ACH4(f)latmdf
. (9)

This case can be brought back to the case without atmosphere
by considering a second sensibility s′ such that s′(f) =
s(f)e−2A(f)latm . For the third and last model, we consider
a complete, but fixed, atmospheric model as in (5) that also
includes atmospheric methane (latm = 1.3cm ≈ 1600ppb)
generated using [12]. Table 1 summarizes the estimated con-
centration of methane using the different models. We observe
that modeling the atmospheric methane cannot be neglected
as it induces a notable bias. On the other hand, the simulation
of the rest of the atmospheric gases can be negleted.

Sentinel-2A vs Sentinel-2B. The Sentinel-2 constellation
is comprised of two satellites: Sentinel-2A and Sentinel-2B.
While they both have very similar sensitivities, they are not
perfectly identical. We show here that it is important to take
this difference into consideration during the quantification
step. For that we consider the same attenuation given in
(6). We then estimate the concentration for both configura-
tions of satellites. Using the sensitivity sA of Sentinel-2A
yields an estimated excess of CH4 of 2393ppb. Doing the
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Fig. 4. Comparison between multiple methane excess quanti-
zation methods. Our automatic method provides a much bet-
ter background reconstruction allowing to discriminate and
quantify the methane plume better.

same estimation with the sensitivity sB of Sentinel-2B yields
3194ppb. This show that it is very important to use the correct
sensitivity during the estimation process.

Choosing a fixed methane atmosphere. As men-
tioned previously, we choose a fixed atmospheric quantity
of methane of latm = 1.6 ≈ 1800ppb. However, it has
been shown that the quantity of methane in the atmosphere
is location dependent. We estimated the error due to this
approximation by estimating lem for different values of latm.
We saw that for latm between 1700 and 1900 ppb, the error
on lem was at most of the order of 30ppb. This justify se-
lecting a single fixed value for the quantity of methane in the
atmosphere independently from the location.

5. CONCLUSION

We have presented an automatic method for methane quan-
tification using a multispectral satellite like Sentinel-2. Al-
though in this paper we only presented results using Sentinel-
2, we have had a similar success using Landsat-8 imagery.
The next step is to use controlled releases and a source emis-
sion method like IME [13] to measure the total error of our
quantification process with an actual ground truth. This will
also help us define the precision of the quantification pro-
cess based on the methane excess emitted from the calibrated
source. Having an automatic pipeline paves the way for an au-
tomatic detection and quantification pipeline that could pro-
vide a global automatic monitoring of the Earth with a short

revisit time for methane pollution.
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