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Abstract—Super-resolution for satellite imagery has gained
significant attention due to its potential to improve analytical
products without requiring high-resolution imagery. In this work,
we aim to study the multi- and single-image super-resolution
problem, focusing on the interplay between multi-date informa-
tion and band-shift characteristics of the imagery. For this study
we propose a simulated dataset based on Landsat-8 imagery,
aimed at replicating the band-shift properties of Sentinel-2 or
their absence, while contemplating 20 multi-date frames for each
scene. Our experiments show that the multi-date information can
yield gains in both scenarios over single-date super-resolution.
Furthermore, we also highlight the diminishing impact of adding
frames in both scenarios and the importance of auxiliary frame
selection strategies, where temporally closer frames tend to yield
better reconstruction results. These findings provide valuable
insights into optimizing super-resolution techniques for remote
sensing, with implications for high-revisit multi-spectral satellites.

Index Terms—Super-resolution, multi-temporal, multi-date,
band-shift, simulated dataset, satellite images

I. INTRODUCTION

Satellite imagery plays a key role in land and resource
monitoring, but high-resolution (HR) data is often expensive
and impractical for frequent analysis of dynamic phenomena.

To address the challenges of acquiring HR data, deep-
learning based Super-Resolution (SR) techniques offer a
cost-effective alternative, with the added benefit of being
applicable to archived data [1–5]. Super-resolution can be
categorized into Single-Image Super-Resolution (SISR) and
Multi-Image Super-Resolution (MISR). By leveraging mul-
tiple aliased frames, MISR techniques have demonstrated
superior reconstruction performance over SISR, particularly
in general photography [6, 7]. In the field of remote sensing,
MISR has been extensively studied, including applications
with push-frame satellites [8–12] and in scenarios involving
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Fig. 1: Multi-Image (5 frames) without band-shift and single-image
with band-shift achieve similar super-resolution results. The results of
MSIR (20) are omitted as they are similar to the ones shown, having
PSNRs 35.63 and 36.52 dB. When available, having both band-shift
and multi-frames further improves the results, despite the changes due
to seasonal variations, snow, clouds, vegetation, and human activities.

significant temporal gaps between image acquisitions [13–17].
Compared to SISR, MISR may offer a compelling advantage
by leveraging the temporal abundance of revisited scenes to
reconstruct finer spatial details, especially for satellites with
high revisit rates.

In contrast to the MISR trend, Nguyen et al. [18] have
demonstrated the importance of the combination of band-shifts
and aliasing characteristics for SISR in satellite images. Their
findings show that the presence of band-shift in Sentinel-
2 imagery provides necessary information to perform super-
resolution from a single frame. In this paper we study the
interaction between this band-shift characteristic and the in-
formation brought by using multi-temporal frames.

To explore these challenges and opportunities, we developed
a simulated dataset based on Landsat-8 imagery that approx-
imates the band-shift and aliasing characteristic of Sentinel-
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2, and provides 20 dates per location. Using this dataset,
we conducted experiments training a convolutional neural
network (with a permutation invariant architecture based on
SBFBurst [19]) in different scenarios, evaluating the potential
contributions of multi-date fusion in comparison to band-shift
characteristics (Figure 1). The contributions of this paper are:

• A simulated dataset1 for 2×SR [9, 18] contemplating
both multi-date acquisitions and band-shift characteristic.

• A comprehensive study that separately evaluates the
contributions of band-shift and multi-date information
in reconstructing super-resolved frames, as well as their
combined effects.

• An evaluation of the impact of frame selection, including
an analysis of the number of frames used during training
and inference, and the effect of selecting frames based
on acquisition dates.

The choice to work with simulated data is justified by the
complexities of real-world datasets. Using cross-sensor im-
agery for high and low-resolution images involves significant
radiometric analysis and careful consideration of the time gap
between acquisitions [20]. Simulated datasets offer controlled
conditions, enabling targeted investigation of specific variables
(e.g., band-shift and multi-date), providing insights into the
benefits and limitations of each for real-world applications.

II. RELATED WORK

The PROBA-V super-resolution challenge [21] has be-
come a pivotal benchmark for advancing multi-temporal
super-resolution techniques in remote sensing. Numerous
methods have been proposed, including HighResNet [13],
DeepSUM [14], DeepSUM++ [15], PIUNet [16], and TR-
MISR [17]. However, as highlighted by Nguyen et al. [22],
the absence of a reference frame was a significant limitation
of the challenge, which was addressed in some later stud-
ies [9, 10, 23, 24].

Another limitation of the PROBA-V challenge is that it does
not extend to multi-spectral pushbroom satellites, where band
shifts play a significant role in SISR, as noted by Nguyen et
al. [18]. The DeepSent paper [1] addressed the multi-temporal
aspect jointly with multi-spectral and also proposed a simu-
lation pipeline [25] for training their model; however, since
it used a degraded version of Sentinel-2 imagery, band shifts
may not have been fully accounted for in their experiments. In
contrast, Okabayashi et al. [3] utilized real Sentinel-2 data, but
the absence of a reference frame remains a potential limitation
of their study.

While there have been considerable efforts in multi-
temporal super-resolution [1, 3, 26, 27], most studies lack
a comprehensive evaluation of how multi-date information
contributes relative to other key factors in single-image super-
resolution, such as band shifts, as emphasized by Nguyen et
al. [18].

1Simulated dataset is available at: https://doi.org/10.5281/zenodo.15387917
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Fig. 2: An abstraction of the adapted SBFBurst for 2×SR, with
all alignment-related modules removed. The fusion module was
borrowed from [7], while the upsampling block utilizes pixel shuf-
fling [28]. For more details, please refer to [19].

III. SUPER-RESOLUTION METHOD

For this work, we focus on the architecture of SBFBurst [19]
(Figure 2), as it is permutation-invariant, reference-aware [22],
and offers flexibility in controlling the number of frames
during both training and inference. This design allows us to
use different number of frames at inference for a given trained
network.

To simplify the analysis, we did not employ optical flow
alignment as originally implemented in SBFBurst [19]. Given
the registration accuracy of Landsat-8 and the proposed simu-
lation pipeline we ensured that frame misalignment is bounded
to the subpixel level. Empirical tests further confirmed that
embedding alignment provided no measurable improvement
in our specific scenario. For the single-image setting, the
architecture is adapted by removing the fusion block.

For the multi-date setting, at inference, the inputs of the
network are the images closest in time to the reference. In
Section V we perform an ablation to study the impact of this
strategy against randomly sampling the time series.

IV. SIMULATED DATASET

Source imagery. To study the effect of band shift, the number
of dates, and the temporal sampling strategy, we have built
a synthetic dataset. This dataset is based on the Landsat-8
level 2 collection, with a global world coverage, sampled over
548 locations. For each sampled location, we extracted a time
series of the B2, B3, B4 and B5 channels (at 30m/px), for 20
dates with less than 5% cloud coverage on the entire scenes.
This leads to a total of 10960 images. Figure 3 shows the
cumulative distribution of the number of days between two
images, 60% of the data have a gap of less than 32 days (two
repeat cycles).

To simulate our ideal images, we start by filtering the
Landsat images with a small Gaussian low-pass filter of σ =
0.5. This shall prevent aliasing in the simulation, which we
will re-introduce ourselves from the simulation. Furthermore,
we introduce a random subpixel shift (±0.5px) at each date
to simulate small georeferencing errors [29]. The resulting
images are considered as ideal, and the simulator is used to
derive the ground-truth high-resolution and the low-resolution
images used for the study.

https://doi.org/10.5281/zenodo.15387917
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Fig. 3: Cumulative distribution of the difference between the dates
(in days) of the simulated dataset.

Simulation. The main characteristic of this dataset resides
in the downsampling simulation to provide band-shift and
no band-shift low-resolution (LR) inputs, alongside the high-
resolution targets. Let u be the ideal Landsat-8 imagery as
described above. The simulation emulates the observation of
an image from an inclined orbit, its sampling by a sensor,
and the resampling that is typically performed in the ground
segment to align the images. This captured by the formula

vs = RECTIFY(SAMPLEs(OBSERVEs(u))) + ns, (1)

where s specifies the scenario (HR, no band-shift LR, band-
shift LR), and n is white Gaussian noise of standard deviation
σ = 5 (only for LR scenarios).

The OBSERVE step consists in viewing the scene from a
given orbit. Here, we approximate this step by rotating the
ideal scene u by an angle of 12 ± 0.5 degrees. The center
of rotation is randomly selected from the central part of the
image. For band-shift LR, each band is affected by slightly
different rotation parameters (angle and center). This rotation
corresponds to a change of viewpoint, as if the scene was
acquired from an orbit that is slightly different at each date
and band. While not accurate compared to a real Sentinel-
2 acquisition simulator, we found that this simple step was
sufficient to replicate some of the per-band aliasing patterns
that we can seen on Sentinel-2 imagery, and less limited than
the simulation based on translation [18].

The SAMPLE step realizes the sampling of the ideal scene
to a fixed resolution grid. If the scenario is HR, then this step
is the identity. Otherwise, a 2×2 binning operation is used to
reduce the resolution to 60m/px, thus introducing alias in the
LR frames. This operation corresponds to the integration of the
photons on the sensor. No low-pass filter is applied since we
require the optical system of the HR and LR to be identical,
as the goal of super-resolution is to go from an aliased image
to a well-sampled image.

The RECTIFY step is the inverse of OBSERVE. It undoes
the exact rotation that was applied on each band, similar to
the orthorectification process that is performed to go from a
sensor geometry to a ground geometry. Note that the SAMPLE
step is non-invertible when considering an LR scenario, thus
the composition of all steps is not equivalent to just applying
the SAMPLE operation on the original ideal image.

After simulation, the central part of each image is cropped
to 100× 100 for the LR sets, and 200× 200 for the HR set.

SISR MISR

Number of Frames 1 4 10 20

No band-shift 42.42 45.02 46.00 46.36
Band-shift 45.31 46.73 46.86 46.85
Band-shift gain +2.89 +1.71 +0.86 +0.49

Table 1: PSNR (dB) results on test set for each trained model tested
on according input number of frames. For MISR, we adopted the
selection strategy of closest dates.

V. EXPERIMENTS

A. Experiments Settings

We divided the our dataset into training, validation, and
test sets using a 60-20-20 split, ensuring that samples in
each set are geographically distinct. We trained our model in
different settings depending on the number of frames used at
training time and the presence or absence of band-shift in the
simulation:

• Input characteristic: band-shift and no band-shift.
• Training frames: 1 (SISR), 4, 10 and 20.

In all trainings we used L1 loss as the cost function and
optimized until convergence on the validation set. In multi-
frame scenarios, auxiliary frames were randomly selected
during the training phase. As mentioned earlier, at inference
time the inputs of the network are the images closest in time
to the reference. For evaluation, we employed the PSNR (dB)
metric with a peak reference of 16384.

B. Results and Discussion

Table 1 summarizes the PSNR results over the test set for
all the SISR and MISR configurations (with and without band-
shift), while using the same number of frames at training and
at inference. Additionally, Figure 4 extends the evaluation con-
sidering more frames at the inference, and randomly selecting
the time series.

The gain of MISR over SISR is significant. From Table 1,
we see that the gain of using multiple date images over
SISR is significant, when using 20 dates we have a gain of
3.94 dB and 1.54 dB in the no band-shift and band-shift
scenarios respectively. This range of gain is coherent with
the literature [1, 26, 27]. From Figure 4, we can see that
compared to what band shift information can brings to SISR,
MISR no band-shift can achieve similar effectiveness, using
8 frames (random strategy) and with approximately 5 frames
when using the strategy of selecting the frames with closest
dates to the reference frame.

The gain of band-shift. From Table 1, we can see that the
impact of band-shift is particularly significant in the SISR
configuration [18], yielding a notable gain of 2.89 dB. For
MISR, the band-shift gain diminishes as the number of input
frames increases, dropping from 1.71 dB (4 frame) to 0.49
dB (20 frames). This can be attributed to the fact that in the
band-shift setting, a single frame already contains a substantial
amount of information for super-resolution. As a result, adding
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more frames does not improve the results as significantly as
in the no band-shift case.

The MISR gain depends on the scene stability. A challenge
in using MISR is the temporal changes in the scene, which
are naturally caused by seasonal variations, snow, clouds,
vegetation, and human activities. Figure 1 shows examples
of reconstructions using 5 frames. Although not displayed,
the PSNR results for 20 frames indicate no improvement over
those shown. This limited gain may be due to scene changes.
Conversely, in Figure 5, we present a more extreme case where
the scene is less prone to changes. In this case, a higher MISR
gain of up to 7 dB can be observed.

Effect of the number of frames used in training. The
number of frames seen during training can influence how the
fusion module suppress or prioritizes frames for reconstructing
the desired outcome. This can be observed in Figure 4.

In the no band-shift scenario, all models exhibit similar
performance up to six frames. However, the model trained
with four frames shows reduced effectiveness beyond this
point, compared to those trained with 10 or 20 frames. Models

trained with 10 and 20 frames show comparable performances,
with the model trained on 10 frames consistently yielding
slightly stronger results.

In band-shift scenario, we observe a more pronounced
trend where the model trained with 4 frames performs better
than the other models in the region below 10 frames. This
contrasts with the no band-shift experiments, where the model
trained with 4 frames under-performs for 6 frames or more.
A possible explanation for this could be that since band-
shift provides useful information for frame reconstruction,
as demonstrated by Nguyen et al. [18], training with more
frames might prevent the network from extracting information
from this crucial characteristic, which is inherently present in
each frame. Indeed, in all cases, the band-shift MISR model
taking a single frame performs considerably worse than band-
shift SISR, a trend that is not observed or is relatively weak
in the no band-shift scenario when comparing MISR with
the equivalent SISR model. This observation highlights the
need for better learning mechanisms to capture the interplay
between band-shift and temporal information effectively.

Closest date strategy improves the results. In both cases
(band-shift and no band-shift), we observe a significant im-
provement when selecting frames with the closest dates to
the reference image for inference (Figure 4). This suggests
that the smaller the temporal gap between frames, the more
information can be leveraged to reconstruct the selected frame,
indicating that MISR can benefit even more when satellites
have a higher revisit rate. Furthermore, since in this study the
LR frames have a resolution of 60m/pixel, this effect could be
even more pronounced at higher resolutions.

VI. CONCLUSIONS

In this study, we have shown that multi-date SR can lead
to significant gains over SISR in both no band-shift and
band-shift scenarios, through a new proposed dataset. Our
results emphasize the importance of scene stability and frame
selection strategies, with closer temporal proximity enhancing
reconstruction quality. Future work will focus on transposing
these results to real-world data and on improving the integra-
tion of band-shift and temporal data.



REFERENCES

[1] T. Tarasiewicz, J. Nalepa, R. A. Farrugia, G. Valentino,
M. Chen, J. A. Briffa, and M. Kawulok, “Multitemporal and
Multispectral Data Fusion for Super-Resolution of Sentinel-
2 Images,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 61, pp. 1–19, 2023.

[2] M. Yang, D. Mao, Y. Zhang, Y. Huang, and J. Yang, “Super-
Resolution Method for Synthetic Aperture Radar Image Based
on Multi-Scale Feature Extraction,” in International Geoscience
and Remote Sensing Symposium (IGARSS). IEEE, 2024, pp.
3388–3391.

[3] A. Okabayashi, N. Audebert, S. Donike, and C. Pel-
letier, “Cross-Sensor Super-Resolution of Irregularly Sampled
Sentinel-2 Time Series,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW). Los
Alamitos, CA, USA: IEEE Computer Society, Jun. 2024, pp.
502–511.

[4] N. L. Nguyen, J. Anger, A. Davy, P. Arias, and G. Facci-
olo, “L1BSR: Exploiting Detector Overlap for Self-Supervised
Single-Image Super-Resolution of Sentinel-2 L1B Imagery,”
in IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 2012–2022.

[5] A. Ramirez-Jaime, N. Porras-Diaz, G. Arce, D. Harding,
M. Stephen, and J. MacKinnon, “Super-Resolution of Satellite
LIDARS for Forest Studies Via Generative Adversarial Net-
works,” in IEEE International Geoscience and Remote Sensing
Symposium (IGARSS). IEEE, 2024, pp. 2271–2274.

[6] B. Wronski, I. Garcia-Dorado, M. Ernst, D. Kelly, M. Krainin,
C.-K. Liang, M. Levoy, and P. Milanfar, “Handheld Multi-Frame
Super-Resolution,” ACM Transactions on Graphics, vol. 38,
no. 4, Jul. 2019.

[7] G. Bhat, M. Danelljan, L. Van Gool, and R. Timofte, “Deep
Burst Super-Resolution,” in IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, Jun. 2021, pp. 9209–
9218.

[8] J. Anger, T. Ehret, C. de Franchis, and G. Facciolo, “Fast and
Accurate Multi-Frame Super-Resolution of Satellite Images,”
ISPRS Annals of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. V-1–2020, p. 57–64, Aug.
2020.

[9] N. L. Nguyen, J. Anger, A. Davy, P. Arias, and G. Facci-
olo, “Self-Supervised Multi-Image Super-Resolution for Push-
Frame Satellite Images,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW). IEEE,
Jun. 2021, p. 1121–1131.

[10] ——, “Self-Supervised Super-Resolution for Multi-Exposure
Push-Frame Satellites,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, Jun. 2022, p.
1848–1858.

[11] ——, “Self-Supervised Push-Frame Super-Resolution With
Detail-Preserving Control And Outlier Detection,” in IEEE
International Geoscience and Remote Sensing Symposium
(IGARSS), 2022, pp. 131–134.

[12] J. Lafenetre, N. L. Nguyen, G. Facciolo, and T. Eboli, “Hand-
held Burst Super-Resolution Meets Multi-Exposure Satellite
Imagery,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2023, pp. 2056–
2064.

[13] M. Deudon, A. Kalaitzis, I. Goytom, M. R. Arefin, Z. Lin,
K. Sankaran, V. Michalski, S. E. Kahou, J. Cornebise, and
Y. Bengio, “HighRes-Net: Recursive Fusion for Multi-Frame
Super-Resolution of Satellite Imagery,” pp. 1–15, 2020.

[14] A. B. Molini, D. Valsesia, G. Fracastoro, and E. Magli, “Deep-
SUM: Deep Neural Network for Super-Resolution of Unregis-
tered Multitemporal Images,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 58, no. 5, pp. 3644–3656, 2020.

[15] ——, “DeepSUM++: Non-Local Deep Neural Network for
Super-Resolution of Unregistered Multitemporal Images,” in
IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), 2020, pp. 609–612.

[16] D. Valsesia and E. Magli, “Permutation Invariance and Uncer-
tainty in Multitemporal Image Super-Resolution,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 60, p. 1–12,
2022.

[17] T. An, X. Zhang, C. Huo, B. Xue, L. Wang, and C. Pan, “TR-
MISR: Multiimage Super-Resolution Based on Feature Fusion
With Transformers,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 15, pp. 1373–
1388, 2022.

[18] N. L. Nguyen, J. Anger, L. Raad, B. Galerne, and G. Facciolo,
“On The Role of Alias and Band-Shift for Sentinel-2 Super-
Resolution,” in IEEE International Geoscience and Remote
Sensing Symposium (IGARSS). IEEE, Jul. 2023, p. 4294–4297.

[19] A. Cotrim, G. Barbosa, C. Santos, and H. Pedrini, “Simple
Base Frame Guided Residual Network for RAW Burst Image
Super-Resolution,” in 19th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and
Applications, vol. 3, INSTICC. SciTePress, 2024, pp. 77–87.

[20] J. Michel, E. Kalinicheva, and J. Inglada, “Revisiting Remote
Sensing Cross-Sensor Single Image Super-Resolution: The
Overlooked Impact of Geometric and Radiometric Distortion,”
Oct. 2024. [Online]. Available: https://hal.science/hal-04723225
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