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Abstract Non-local patch based methods were until

recently state-of-the-art for image denoising but are

now outperformed by CNNs. Yet they are still the state

of the art for video denoising, as video redundancy is

a key factor to attain high denoising performance. The

problem is that CNN architectures are hardly compat-

ible with the search for self-similarities. In this work

we propose a new and efficient way to feed video self-

similarities to a CNN. The non-locality is incorporated

into the network via a first non-trainable layer which

finds for each patch in the input image its most similar

patches in a search region. The central values of these

patches are then gathered in a feature vector which is

assigned to each image pixel. This information is pre-

sented to a CNN which is trained to predict the clean

image. We apply the proposed method to image and
video denoising. In the case of video, the patches are

searched for in a 3D spatio-temporal volume. The pro-

posed method achieves state-of-the-art results.
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1 Introduction

Advances in image sensor hardware have steadily im-

proved the acquisition quality of image and video cam-

eras. However, a low signal-to-noise ratio is unavoidable

in low lighting conditions if the exposure time is lim-

ited (for example to avoid motion blur). This results in

high levels of noise, which negatively affects the visual

quality of the video and hinders its use for many appli-

cations. As a consequence, denoising is a crucial compo-

nent of any camera pipeline. Furthermore, by interpret-

ing denoising algorithms as proximal operators, several

inverse problems in image processing can be solved by

iteratively applying a denoising algorithm [48]. Hence

the need for video denoising algorithms with a low run-

ning time.

Literature review on image denoising. Image denoising

has a vast literature where a variety of methods have

been applied: PDEs and variational methods (includ-

ing MRF models) [11, 50, 51], transform domain meth-

ods [21], non-local (or patch-based) methods [7, 18],

multiscale approaches [26], etc. See [35] for a review.

In the last two or three years, CNNs have taken over

the state of the art. In addition to attaining better re-

sults, CNNs are amenable to efficient parallelization on

GPUs potentially enabling real-time performance. We

can distinguish two types of CNN approaches: trainable

inference networks and black box networks.

In the first type, the architecture mimics the op-

erations performed by a few iterations of optimization

algorithms used for MAP inference with MRFs prior

models. Some approaches are based on the Field-of-

Experts model [50], such as [5, 14, 54]. The architecture

of [60] is based on EPLL [66], which models the a pri-

ori distribution of image patches as a Gaussian mixture
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model. Trainable inference networks reflect the opera-

tions of an optimization algorithm, which leads in some

cases to unusual architectures, and to some restrictions

in the network design. For example, in the trainable

reaction diffusion network (TRDN) of [14] even lay-

ers must be an image (i.e. have only one feature). As

pointed out in [33] these architectures have strong sim-

ilarities with the residual networks of [28].

The black-box approaches treat denoising as a stan-

dard regression problem. They do not use much of the

domain knowledge acquired during decades of research

in denoising. In spite of this, these techniques are cur-

rently topping the list of state-of-the-art algorithms.

The first denoising approaches using neural networks

were proposed in the mid and late 2000s. Jain and Se-

ung [31] proposed a five layer CNN with 5 × 5 filters,

with 24 features in the hidden layers and sigmoid activa-

tion functions. Burger et al. [10] reported the first state-

of-the-art results with a multilayer perceptron trained

to denoise 17 × 17 patches, but with a heavy architec-

ture. More recently, DnCNN [64] obtained impressive

results with a far lighter 17 layer deep CNN with 3× 3

convolutions, ReLU activations and batch normaliza-

tion [30]. This work also proposes a blind denoising net-

work that can denoise an image with an unknown noise

level σ ∈ [0, 55], and a multi-noise network trained to

denoise blindly three types of noise. A faster version of

DnCNN, named FFDNet, was proposed in [65], which

also allows handling spatially varying noise by adding

a noise map σ(x) as an additional input. The architec-

tures of DnCNN and FFDnet keep the same image size

throughout the network. Other architectures [12, 41, 53]

use pooling or strided convolutions to downscale the im-

age, and then up-convolutional layers to upscale it back.

Skip connections connect the layers before the pooling

with the output of the up-convolution to avoid loss of

spatial resolution. Skip connections are used extensively

in [57].

Although these architectures produce very good re-

sults, for textures formed by repetitive patterns non-

local patch-based methods still perform better [10, 64].

Some works have therefore attempted to incorporate

the non-local patch similarity into a CNN framework.

Qiao et al . [46] proposed inference networks derived

from the non-local FoE MRF model [56]. This can be

seen as a non-local version of the TRDN network of

[14]. A different non-local TRDN was introduced by

[36]. BM3D-net [63] pre-computes for each pixel a stack

of similar patches which are fed into a CNN, which re-

produces the operations done by (the first step of) the

BM3D algorithm: a linear transformation of the group

of patches, a non-linear shrinkage function and a sec-

ond linear transform (the inverse of the first). The au-

thors train the linear transformations and the shrink-

age function. In [16] the authors propose an iterative

approach that can be used to reinforce non-locality to

any denoiser. Each iteration consists of the application

of the denoiser followed by a non-local filtering step

using a fixed image (denoised with BM3D) for comput-

ing the non-local correspondences. An inconvenience is

that the resulting algorithm requires to iterate the de-

noising network. Trainable non-local modules have been

recently proposed by using differentiable relaxations of

the 1 nearest neighbors [37] and k nearest neighbors

[44] selection rules.

Literature review on video denoising. CNNs have been

successfully applied to several video processing tasks

such as deblurring [55], video frame synthesis [38] or

super-resolution [29, 52], but their application to video

denoising has been limited so far. In [13] a recurrent

architecture is proposed, but the results are below the

state of the art. More recently, Tassano et al . [58] pro-

posed DVDnet, a convolutional architecture which pro-

cesses five consecutive frames to predict the central

frame. Each frame is first denoised spatially, and then

warped to frame t via an optical flow. The aligned

frames are stacked together with the central frames and

processed by a “temporal denoising” network. The au-

thors use a non-trainable optical flow, which prevents

the network from being trained end-to-end. Neverthe-

less, this network produces state-of-the-art results. Two

recent works proposed networks without explicit mo-

tion estimation: ViDeNN-G [15] processes three con-

secutive frames, and applies first a spatial denoising

followed by temporal denoising, similar to [58], except

that the frames are stacked without aligning. A different

architecture, named fastDVDnet, was proposed in [59].

Instead of first using a spatial denoising, three consec-

utive noisy frames are stacked together (early fusion).

The stack is processed by a U-net [49] which predicts

the central frame. In order to extend the temporal re-

ceptive field of the network, the authors cascade two

levels of these networks. The overall network takes five

frames as input. Some works have tackled the related

problem of burst denoising. Recently [23, 27, 43] fo-

cused on the related problem of image burst denoising

reporting very good results. There is also recent work

focusing on unknown noise-model denoising in a totally

blind fashion [24] with videos.

In addition to CNNs, patch-based methods also yield

state-of-the-art results [3, 9, 17, 22, 40, 61]. They ex-

ploit extensively the self-similarity of natural images

and videos, namely the fact that most patches have

several similar patches around them (spatially and tem-

porally). Each patch is denoised using these similar
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Fig. 1: Illustration of the proposed Video Non-Local Network (VNLnet). The first module performs a patch-wise

nearest neighbor search across neighboring frames. Then, the current frame, and the feature vectors fnl of each pixel

(the center pixels of the nearest neighbors) are fed into the network. The first four layers of the network perform

1 × 1 convolutions with 32 feature maps. The resulting feature maps are the input of a simplified DnCNN [64]

network with 15 layers (the number of features differs for RGB videos).

patches, which are searched for in a region around it.

The search region generally is a space-time cube, but

more sophisticated search strategies using optical flow

have also been used. Because of the use of such broad

search neighborhoods these methods are called non-

local. While these video denoising algorithms perform

very well, they often are computationally costly. Be-

cause of their complexity they are arguably unfit for

high resolution video processing.

Patch-based methods usually follow three steps that

can be iterated: (1) search for similar patches, (2) de-

noise the group of similar patches, (3) aggregate the de-

noised patches to form the denoised frame. VBM3D [17]

improves the image denoising algorithm BM3D [18] by

searching for similar patches in neighboring frames us-

ing a “predictive search” strategy which speeds up the

search and gives some temporal consistency. VBM4D

[40] generalizes this idea to 3D patches. In VNLB [2],

video extension of [34], spatio-temporal patches that

were not motion compensated are used to improve the

temporal consistency. In [22] a generic search method

extends every patch-based denoising algorithm into a

global video denoising algorithm by extending the patch

search to the entire video. SPTWO [9] and DDVD [8]

use optical flow to warp the neighboring frames to each

target frame. Each patch of the target frame is then

denoised using the similar patches in this volume with

a Bayesian strategy similar to [34]. Recently, [61] pro-

posed to learn an adaptive optimal transform using

batches of frames.

Patch-based approaches also achieve the state of the

art among frame-recursive methods [4, 25]. These meth-

ods compute the current frame using only the current

noisy frame and the previous denoised frame.

Contributions. In this work we propose a strategy to

exploit non-local information with a CNN in the con-

text of image and video denoising. It works particularly

well in the case of video denoising, where it achieves

state-of-the-art results.

The method first computes for each image patch

the n most similar neighbors in a rectangular spatio-

temporal search window and gathers the center pixel of

each similar patch forming a feature vector which is as-

signed to each image location. This results in an image

with n channels, which is fed to a CNN trained to pre-

dict the clean image from this high dimensional vector.

We trained our network for grayscale and color video

denoising. Practically training this architecture is made

possible by a GPU implementation of the patch search

that allows computing the nearest neighbors efficiently.

The temporal self-similarity present in videos enables
strong denoising results with our proposal.

To train our network we created a dataset of 17k

video segments. In the two testing datasets, our net-

work obtains state-of-the-art results on both color and

grayscale video denoising. The code to generate the

datasets and reproduce our results is available online1.

A preliminary version of this work was presented in [20].

The present version includes an extension to color videos,

a detailed comparison with recent state-of-the-art works,

extended discussions comparing these methods, and new

experiments.

2 Proposed method

Let u be a video and u(x, t) denote its value at pixel

position x in frame t. We observe v, a noisy version of

1 The code to reproduce our results, the training and test-
ing datasets can be found at https://github.com/axeldavy/
vnlnet.
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u contaminated by additive white Gaussian noise:

v = u+ r, where, r(x, t) ∼ N (0, σ2). (1)

Our video denoising network processes the video

frame by frame. Before it is fed to the network, each

frame is pre-processed by a non-local patch search mod-

ule which computes a non-local feature vector at each

image position. The resulting non-local feature vector

is then fed to the network. A diagram of the proposed

method is shown in Figure 1. We call our method VNL-

net for Video Non-Local Network.

2.1 Non-local features

Each frame is pre-processed by the non-local patch search

module to produce a 3D tensor fnl of n channels. This

is the input to the network. The parameter n is the

number of nearest neighbor patches searched for each

pixel by this pre-processing module.

Let P be a patch centered at pixel x in frame t. The

patch search module computes the distances between

the patch P and the patches in a 3D rectangular search

region of size ws ×ws ×wt centered at (x, t), where ws
and wt are the spatial and temporal sizes. The positions

of the n most similar patches are (xi, ti), ordered either

by increasing distance or by increasing frame index ti
(see Section 4.2).

The pixel values at those positions are gathered to

produce the n-dimensional non-local feature vector as-

sociated to pixel (x, t):

fnl(x, t) = [v(x1, t1), ..., v(xn, tn)]. (2)

Note that one of the channels of the feature images
corresponds to the noisy image v, as the reference patch

P is always among the n nearest neighbors.

2.2 Network architecture

For processing the non-local features, we use a network

that is conceptually divided in two stages: a non-local

stage and a local stage. The non-local stage consists of

four 1×1 convolution layers with 32 kernels. The ratio-

nale for these layers is to allow the network to compute

pixel-wise features out of the raw non-local features fnl

at the input.

The second stage receives the features computed by

the first stage. It consists of 14 layers with 64 3×3 con-

volution kernels, each one followed by batch normaliza-

tion and ReLU activations. The output layer is a 3× 3

convolution. Its architecture is similar to the DnCNN

network introduced in [64], although with 15 layers in-

stead of 17 (as in [65]). As for DnCNN, the network

outputs a residual image, which has to be subtracted

to the noisy image to get the denoised one. For RGB

videos, we use the same number of layers, but triple the

number of features for each layer.

The training loss is the mean square error (MSE)

between the reconstructed frame and the ground truth.

We denote by Fθ the application of the network. The

input to Fθ at time t is fnlt = fnl(·, t), the n-channel

image with non-local features gathered from a window

of frames around t. The denoised frame is obtained by

subtracting the noise predicted by the network from the

noisy frame vt = v(·, t), i.e. ût = vt−Fθ(fnlt ). Then the

training loss l is

l(Fθ(fnlt ), ut) = ||vt −Fθ(fnlt )− ut||22. (3)

Equivalently, this loss can be seen as the MSE between

the predicted residual Fθ(fnlt ) and the added noise vt−
ut.

The proposed non-local features could be used in

conjunction with other network architectures proposed

for image denoising. This would require of course chang-

ing the input layer, and retraining the network for the

new input.

3 Datasets and training

3.1 Datasets

For the training and validation sets we used a database

of short segments of 16 frames extracted from YouTube

videos. Only HD videos with Creative Commons license

were used. From each video we extracted several seg-

ments, separated by at least 10s. In total the database

consists of 16950 segments extracted from 1068 videos,

organized in 64 categories (such as antelope, cars, fac-

tory, etc.). As the original videos might contain com-

pression artifacts, noise, etc, we downscaled the video

(to a height of 540 pixels). This removes the minor ar-

tifacts of the videos and better represents clean targets.

In addition, we randomized the anti-aliasing filter width

(Gaussian blur) of the downscaling. This results in a va-

riety of sharpness/blur in the training dataset, and thus

helps reducing dataset bias. We separated 6% of the

videos of the database for the validation (one video for

each category). For grayscale networks, grayscale data

is obtained by converting the previous color datasets.

For training we ignored the first and last frames of

each segment for which the 3D patch search window did

not fit in the video. During validation we only consid-

ered the central frame of each sequence. The resulting

validation score is thus computed on 503 sequences (1

frame each).
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For testing, we used two distinct datasets. The first

one is the dataset of [1], which was extracted from the

Derf’s Test Media collection.2 It is composed of seven

sequences of 100 frames of size 960×540. In this dataset,

the camera is either still or has a smooth motion. The

second one is the test-dev split of the DAVIS video

segmentation challenge [45]. It consists of 30 videos hav-

ing between 25 and 90 frames. In this dataset, the mo-

tion is more challenging. In order to remove compres-

sion artifacts and noise present in the original images,

both datasets were obtained with a similar downscaling

as for the training set (the original images ranged be-

tween HD and 4K). Each dataset was processed using

a different anti-aliasing filter width.

3.2 Training

At each training epoch, first a subset of the videos of the

dataset is selected and noise is added to generate noisy

samples. Second the non-local patch search module is

run on every video selected. This results in videos of

non-local features where each frame has n channels con-

taining the output of the patch search module. Third

the network is trained on mini-batches built from small

crops extracted at random positions on the videos of

non-local features.

During training, we ignore spatio-temporal border

effects by excluding the first and last wt/2 frames and

ignoring crops at borders. At testing time, we simply

extended the video by mirroring it at the start and the

end of the sequence and adding black borders for the

patch-search module.

An epoch comprised 14000 batches of size 128, com-

posed of square crops of 44 pixels width. We trained

for 20 epochs with Adam [32] and reduced the learning

rate at epochs 12 and 17 (from 1e−3 to 1e−4 and 1e−6

respectively). Training a network took 16 hours on a

NVIDIA TITAN V for grayscale videos, and 72 hours

for color videos.

4 Experiments and parameter tuning

In this section we evaluate the effect of the non-local

features first in still image denoising, and then, after

studying the impact of the parameters, in video denois-

ing.

2 https://media.xiph.org/video/derf

Fig. 2: Results on still image denoising (AGWN with

σ = 25). Original clean image, noisy image, result ob-

tained with the baseline CNN, result of incorporating

the non-local features by finding the nearest neighbors

on the noisy image or the oracle noise-less image. Con-

trast has been linearly scaled for better visualization.

4.1 The potential of non-locality

Although the focus of this work is in video denoising,

it is still interesting to study the performance of the

proposed non-local CNN on images. Figure 2 shows a

comparison of a baseline CNN (a 15 layer version of

DnCNN [64], as in our network) and a version of our

method trained for still image denoising (it collects 9

neighbors by comparing 9 × 9 patches). The non-local

features are sorted by patch distance. The results with

and without non-local information are very similar. The

only differences are visible on very self-similar parts like

the shutters in Figure 2. This is confirmed by quantita-

tive results. The average PSNR on the CBSD68 dataset

[42, 64] (noise with σ = 25) obtained for the baseline

CNN is of 31.24dB. The non-local CNN only leads to a

0.04dB improvement (31.28dB). The figure also shows

the result of an oracular method: the nearest neigh-

bor search is performed on the noise-free image, though

the pixel values are taken from the noisy image. The

method obtains an average PSNR of 31.85dB, 0.6dB

over the baseline. The oracular results show that non-

locality has a great potential to improve the results of

CNNs. However, this improvement is hindered by the

difficulty of finding accurate matches in the presence

of noise. A way to reduce the matching errors is to use

larger patches. But on images, larger patches have fewer

similar patches. In contrast, as we will see below, the

temporal redundancy of videos allows using very large

patches.

4.2 Parameter tuning for video denoising

The non-local search has three main parameters: The

patch size, the number of retained matches and the

number of frames in the search region. We expect the

best matches to be past or future versions of the current

patch, so we set the number of matches as the number

of frames on which we search. The non-local features

are ordered based on patch distance.
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Input Noisy No patch Patch width 9 Patch width 15 Patch width 21 Patch width 31 Patch width 41

Fig. 3: Example of denoised results with our method when changing the patch size, respectively no patch search,

9× 9, 15× 15, 21× 21, 31× 31 and 41× 41 patches. The 3D search window has 15 frames for these experiments.

Input Noisy No Patch 3 Neighbors 7 Neighbors 11 Neighbors 15 Neighbors

Fig. 4: Example of denoised results with our method when changing the number of frames considered in the 3D

search window (respectively no patch search, 3, 7, 11 and 15). 41× 41 patches were used for these experiments.

Patch
size

no patch 9×9 15×15 21×21 31×31 41×41

PSNR 33.75 35.62 36.40 36.84 37.11 37.22

(a) Impact of the patch size (with 15 frames)

# search frames no patch 3 7 11 15

PSNR 33.75 35.35 36.50 36.97 37.22

(b) Impact of number of frames (patch size is 41 × 41)

Patch search no restriction one neighbor per frame

PSNR 37.22 37.46

(c) Enforcing one neighbor per-frame

Table 1: Effect of patch size and number of frames (the

number of neighbors is kept equal to the number of

frames). In Table 1c we use 15 neighbors (and frames)

and a patch size 41× 41. PSNR computed on the vali-

dation set for noise with σ = 20.

4.2.1 Patch size

In Table 1a, we explore the impact of the patch size used

for the matching. Figure 3 shows corresponding visual

# stacked frames 1 3 7 11 15
PSNR 33.75 35.54 36.30 36.54 36.56

Table 2: Impact of the number of frames considered

for the video-DnCNN network (the network input is a

3D crop rather than the result of the non-local search).

PSNR on the validation set AWGN with σ = 20.

results. Surprisingly, we obtain better and better results

by increasing the size of the patches. The main reason

for this is that the match precision is improved, as the

impact of noise on the patch distance shrinks. However,

the disadvantage of using big patches is that the patch

search can be affected by the motion of surrounding

regions and pick a different motion to the one of the

center pixel. Fortunately, the network seems to learn to

identifying when the patch search fails and revert to a

single-frame denoising like DnCNN.

This phenomenon can be observed in Figure 5, where

we compare the results of the proposed VNLnet against

the single frame DnCNN from [64] and two other meth-
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ods: The Non-Local Pixel Mean, which simply averages

the values of the non-local features given by the patch-

matching, and video-DnCNN, an extension to video of

DnCNN that will be described in 4.3. On the first two

rows, the motion is consistent on the whole crop, and

thus the Non-Local Pixel Mean output is sharp, indicat-

ing good matches. As a result, VNLnet’s output shows

more details than the corresponding DnCNN output.

However the Non-Local Pixel Mean output is blurry for

the person in the third row and the background of the

fourth row. For these regions, VNLnet’s output has a

similar quality over DnCNN. Meanwhile, for the regions

of these two crops with good matches (the background

of the third row, and the person of the fourth row), the

quality is improved. Using bigger patches will increase

the number of patches covering regions of conflicting

motion. As a result, we see that the performance gain

from 31× 31 to 41× 41 is rather small.

4.2.2 One neighbor per frame

With such large patches, only matches of the same

objects from different frames are likely to be taken

as neighbors. Thus we go a step further by enforcing

matches to come from different frames. In this variant,

neighbors are sorted by frame index instead of the patch

distance. Note the network is retrained as the patch dis-

tribution is impacted. The resulting network produces

a slight performance improvement, shown in Table 1c.

With this configuration, the ith non-local feature

map corresponds to a warped version of the ith neigh-

boring frame, aligned to the reference frame t. This can

be related to [58, 62], which align the input frames

using an optical flow. Indeed patch matching can be

seen as a rough optical flow with integer displacements.

A natural question would be if better results could

be obtained using a standard optical flow. The results

of Table 1a highlight the importance of very reliable

matches, and thus the optical flow would have to be

chosen with care. In [59], the authors of DVDnet [58]

stressed the difficulty of finding a fast and reliable op-

tical flow, and moved away from it for FastDVDnet [59].

In [62], the optical flow is computed with a reduced

version of SpyNet [47], which is trained together with

the rest of the network. In our case, the patch search

module is not trainable, and the network is trained

to process its output. The main challenge here is the

convergence of the training to a good local minimum

in the presence of noise and when considering a large

number of neighboring frames. These questions will be

addressed in future works.

4.2.3 Number of frames

In Table 1b and Figure 4, we see the impact of the

number of frames used in the search window (and thus

the number of nearest neighbors). One can see that

the more frames, the better. Increasing the number

of frames beyond 15 (7 past, current, and 7 future)

does not justify the small increase of performance. Fore-

ground moving objects are unlikely to get good neigh-

bors for the selected patch size, unlike background ob-

jects, thus it comes to no surprise that the visual quality

of the background improves with the number of patches,

while foreground moving objects (for example the legs

in Figure 4) do not improve much.

In the following experiments, we shall use 41 × 41

patches and 15 frames. Another parameter for non-local

search is the spatial width of the search window, which

we set to 41 pixels (the center pixel of the tested patches

must reside inside this region). We trained grayscale

and color networks for AGWN of σ 10, 20 and 40. To

highlight the fact that a CNN method can adapt to

many noise types, unlike traditional methods, we also

trained a grayscale network for Gaussian noise corre-

lated by a 3× 3 box kernel such that the final standard

deviation is σ = 20, and 25% uniform Salt and Pepper

noise (removed pixels are replaced by random uniform

noise).

4.3 A note on motion handling

To evaluate the effectiveness of the non-local features

we also train a network with the same architecture, but

instead of feeding it with the n non-local features we

feed it with the stack of the n neighboring frames. We

call this network video-DnCNN. We do this for different

values of n, and show the results obtained on Table 2.

The performance of the video-DnCNN network in-

creases with the number of frames, although less than

the proposed VNLnet (see Table 1b). In particular, for

video-DnCNN the average PSNR on the validation set

stagnates at 11 frames. The reason for this stagnation

is that while the denoising performance increases on se-

quences with majority of small and smooth motions, it

drops significantly when there are many large or irreg-

ular motions.

Without the non-local patch-search module, the net-

work has to learn to handle motion implicitly, which

makes the task significantly harder. As the number of

input frames increases, so does the complexity of the

internal motion compensation the network has to learn

to denoise accurately. The video-DnCNN network then

overfits to the most frequent motion patterns in the
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Input Noisy Non-Local Pixel Mean DnCNN video-DnCNN VNLnet (Ours)

Fig. 5: Example of denoised result for Non-Local Pixel Mean, DnCNN, video-DnCNN (see Section 4.3) and VNLnet,

for AGWN with σ = 20. The four crops highlight the results on frames feature various kinds of motion. The videos

are part of the DAVIS dataset. Non-Local Pixel Mean corresponds to the average of the output of the non-local

patch search.

training set, and fails when it encounters a different

motion.

This can be seen in Figure 5, by comparing the re-

sults of video-DnCNN and VNLnet, for objects with

fast/irregular motion patterns. VNLnet is able to re-

cover much more details, thanks to the patch search.

Figure 6 shows the PSNR gain of VNLnet over video-

DnCNN for each sequence on the grayscale DAVIS test

set. The gain given by the non-local patch-search mod-

ule is significant, except only for two sequences. These

feature fixed cameras and static backgrounds covering

most of the frame. The sequences with larger gains have

complex motion. By factoring out the motion, the non-

local patch search module removes the need for the net-

work to learn to adapt to various types of motion, en-

abling a better generalization on various moving scenes.

0 5 10 15 20 25 30
Sorted Video Index

0

1

2

3

PS
NR

 g
ai

n

Fig. 6: PSNR gain of VNLnet versus the network with-

out patch search of Table 2 (15 input frames) on

grayscale DAVIS (σ = 20) (35.46db versus 34.58db).

5 Comparison with the state of the art

In this section, we compare the proposed method VNL-

net to VBM3D [17], VNLB [2], and DnCNN [64] for
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Input Noisy DVDnetViDeNN-G VNLB VNLnet (Ours)FastDVDnet

Fig. 7: Example of denoised result for several algorithms (AGWN with σ = 20) on a sequence of the color DAVIS

dataset [45]. The crops highlight the results on non-moving and moving parts of the video.

G
R

A
Y

S
C

A
L

E

Method σ = 10 σ = 20 σ = 40

D
E

R
F

SPTWO 39.56 / .9675 35.99 / .9368 30.93 / .7901

VBM3D 38.24 / .9599 34.68 / .9100 31.11 / .8360

VBM4D 38.88 / .9534 35.10 / .9169 31.40 / .8432

VNLB 40.57 / .9731 36.81 / .9428 32.95 / .8856

DnCNN 37.28 / .9482 33.60 / .8973 30.09 / .8156

VNLnet 40.21 / .9732 36.47 / .9414 32.51 / .8752

Corr. Gaussian noise Uniform S&P 25%

VNLB 25.39 / .5922 23.49 / .7264

VNLnet 30.94 / .9452 48.12 / .9951

σ = 10 σ = 20 σ = 40

D
A

V
IS VBM3D 37.43 / .9425 33.75 / .8870 30.12 / .8068

VNLB 38.84 / .9634 35.26 / .9240 31.88 / .8622

DnCNN 36.80 / .9451 32.94 / .8878 28.69 / .7940

VNLnet 39.07 / .9663 35.46 / .9299 31.90 / .8659

C
O

L
O

R

D
E

R
F

VBM3D 38.19 / .9560 34.80 / .9165 31.65 / .8568

VNLB 40.93 / .9760 37.62 / .9528 33.97 / .9042

DnCNN 38.00 / .9588 34.44 / .9171 31.14 / .8520

ViDeNN-G 38.16 / .9588 35.34 / .9291 32.25 / .8757

DVDnet 39.08 / .9689 36.48 / .9474 33.43 / .9051

FastDVDnet 39.01 / .9669 36.16 / .9427 33.21 / .9010

VNLnet 40.49 / .9749 37.46 / .9549 34.02 / .9117

D
A

V
IS

VBM3D 38.43 / .9591 34.74 / .9157 31.38 / .8473

VNLB 40.31 / .9725 36.79 / .9420 33.34 / .8896

DnCNN 38.91 / .9655 35.24 / .9278 31.81 / .8637

ViDeNN-G 38.46 / .9619 35.47 / .9314 32.32 / .8756

DVDnet 39.31 / .9702 36.66 / .9488 33.61 / .9059

FastDVDnet 39.74 / .9714 36.50 / .9457 33.35 / .9013

VNLnet 40.71 / .9760 37.39 / .9534 33.96 / .9091

Table 3: Quantitative comparison (PSNR and SSIM) of

state-of-the-art methods versus the proposed VNLnet

on two test sets, both in grayscale and in color. We

highlighted the best performance in bold and the second

best in bold italics.

grayscale videos, and VBM3D [17], VNLB [2], DnCNN

[64], ViDeNN-G [15], DVDnet [58], and FastDVDnet

[59] for color videos. DnCNN was applied frame-by-

frame.

Table 3 shows the denoising results obtained on the

two compared datasets. For grayscale videos, we also

include results for SPTWO [9] and VBM4D [39], com-

puted in [1] for the DERF dataset. Figures 7 and 8

show results for the most relevant color methods. VNLB

(Video Non-Local Bayes) outperformed on average all

other methods on the DERF dataset, except at noise

σ = 40 in color where VNLnet performed better. Mean-

while on the DAVIS dataset, our method performed the

best both in grayscale and color, for all the three tested

noise levels. VNLB ranked second, except in color for

high noise levels, where it was surpassed by DVDnet

and FastDVDnet.

A comparison of grayscale and color results in Ta-

ble 3 reveals that CNN-based methods exploit better

the correlations between color channels: while for grayscale,

VBM3D significantly outperforms DnCNN in PSNR on

the DAVIS dataset, the reverse occurs for color. More-

over, VNLnet performed proportionally better in color

than in grayscale. This should not come as a surprise,

since the way in which VBM3D and VNLB treat color

is rather heuristic: an orthogonal color transform is ap-

plied to the video which is supposed to decorrelate color

information. Then the processing of each color channel

of a group of patches is done independently.

In order to better compare qualitative aspects of

the results we show some details in Figures 7 and 8. For

some scenes, VNLnet recovers significantly more details

in the background, as shown in Figure 7. In general, we

observe that VNLnet, and the other video CNN meth-

ods (ViDeNN-G, DVDnet, and FastDVDnet) have bet-

ter background reconstruction than VNLB. This can be

seen in Figure 7 and Figure 8. Some details however are

better recovered by VNLB and VNLnet. For example

in Figure 8 both methods recover the red lights in the
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Fig. 8: Examples of areas where the level of restored detail of the methods differs significantly (AGWN with

σ = 40) in videos of DERF.
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top left corner of the image in the first column, while

for the three other methods the lights do not appear.

In the second column, VNLB does not reconstruct the

trees as well as the CNN-based methods, but manages

to recover the color of the clothes of the person in the

bottom left. VNLnet not only recovers better the tree

structure, but also recovers the clothes correctly. None

of the methods restore satisfyingly the grass texture in

the third column of Figure 8 for the tested noise level.

This highlights that there is room for improvement. All

five methods achieve reasonable temporal consistency,

which is an important quality requirement for video de-

noising.

One of the benefits of CNNs over traditional model-

based approaches is that they can be easily retargeted

to handle other noise models. To illustrate this we com-

pare VNLB and our method on non-standard noises in

Table 3. As expected, VNLnet significantly outperforms

VNLB for these non-Gaussian noise distributions.

In summary, the proposed approach for video de-

noising obtains state-of-the-art results on both test sets.

In particular, it outperforms previous CNN approaches.

In light of this, we can conclude that effectively exploit-

ing a large number of surrounding frames is key. Indeed,

the proposed VNLnet uses 15 frames, in comparison to

the 3 frames used by ViDeNN-G and 5 frames of DVD-

net and FastDVDnet. Most of these methods avoid re-

lying on an explicit optical flow computation, which

can be unreliable given that the input frames are noisy.

FastDVDnet and ViDeNN-G do so by performing an

early fusion of triplets of consecutive frames without

alignment. The non-local features computed via patch

correspondences result in an effective way to present

the information of large frame neighborhoods to a net-

work that merges them. Training the merging network

is then straightforward.

5.1 Running times

In Tables 4 and 5, we compare the running time in

grayscale and color of several methods when denoising

a video frame. In Table 4, the compared methods are

run on a single CPU core, while in Table 5, a system

with an Intel Xeon W-2145 and a NVIDIA TITAN V is

used. For both tables, the loading and writing time of

the videos were subtracted. In addition, while we do not

a have a CPU implementation of the patch search layer,

from the GPU runtimes of Table 6 we can expect that

on CPU our method should be 10 times slower than

DnCNN. The non-local search is particularly costly be-

cause matches are searched in 15 frames for patches

centered at every pixel of our image. The patch search

implemented is similar to the convolution-based patch

VBM3D DnCNN VBM4D VNLB SPTWO
1.3s 13s 52s 140s 210s

Table 4: Running time per frame on a grayscale 960×
540 video for VBM3D, DnCNN, VBM4D, VNLB and

SPTWO on a single CPU core.

VNLB ViDeNN-G DVDnet FastDVDnet VNLnet
26.94s 0.186s 2.67s 0.074s 1.42s

Table 5: Running time per frame on a color 960 ×
540 video for VNLB, ViDeNN, DVDnet, FastDVDnet,

VNLnet on a system with a 16-cores CPU (Intel Xeon

W-2145) and a NVIDIA TITAN V.

Non-local search Rest of the network DnCNN
850 ms 80 ms 95 ms

Table 6: Running time per frame on a grayscale 960×
540 video on a NVIDIA TITAN V (41× 41 patches at

every position, 41 × 41 × 15 3D windows, the default

parameters).

search described in [19]. The implementation could be

accelerated by reducing the size of the 3D window us-

ing tricks explored in other papers. VBM3D for exam-

ple centers the search on each frame on small windows

around the best matches found in the previous frame.

A related acceleration is to use a search strategy based

on PatchMatch [6].

6 Conclusions

We described an effective way of incorporating tem-

poral non-local information into a CNN for video de-

noising. The proposed method computes for each im-

age patch the n most similar neighbors on a spatio-

temporal window and gathers the value of the central

pixel of each similar patch to form a non-local feature

vector which is given to a CNN. Our method yields a

significant gain compared to other CNN approaches. It

has similar performance to the best non-CNN method

evaluated, VNLB, outperforming it on the largest of

our test datasets. In addition, we noted that CNN ap-

proaches tend to better reconstruct backgrounds than

VNLB, which are perceptually relevant areas. To pre-

vent dataset bias we also proposed a public training set

comprising 17k videos from 64 different categories and

a simulation strategy that emulates different levels of

sharpness.

Our contribution places neural networks among the

best video denoising methods and opens the way for
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new works in this area. In particular we have seen the

importance of having reliable matches: On the valida-

tion set, the best performing method used patches of

size 41× 41 for the patch search. We have also noticed

that on regions with non-reliable matches (complex mo-

tion), the network seems to revert to a result similar to

single image denoising. Thus we believe future works

should focus on improving this area.
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