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Abstract. In this paper we study some variational models for exemplar-based image inpainting,
namely the patch non-local means and the patch non-local Poisson methods, previously studied by
the authors from the experimental point of view. In both cases, the unknowns are the image u to
be reconstructed and a weight function w expressing the similarity of patches. As a limit case of
the studied framework, the weight function reduces to a correspondence map from the inpainting
domain to the know part of the image. We prove the existence and regularity of minima for both
functionals. In particular, we prove the existence of optimal correspondence maps which are uniform
limits of maps of bounded variation with finitely many values. Then we prove the convergence of an
alternating optimization scheme for the variables (u, w). We also prove the convergence in proba-
bility of the PatchMatch method, a recently introduced and efficient algorithm to compute optimal
correspondence maps. Finally, we display some numerical experiments illustrating the performance
and properties of the methods.
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1. Introduction. The purpose of the present paper is the analysis of some vari-
ational models for non-local image inpainting. Image inpainting, also known as image
completion or disocclusion, aims to obtain a visually plausible image interpolation
in a region of the image in which data are missing due to damage or occlusion. It
has become a standard tool in digital photography for image retouching (e.g. the
removal of scratches in old photographies) and it is the object of intensive research
in order to convert it into a key tool for video post-production. Besides its numerous
applications, the problem is of theoretical interest since its analysis involves an under-
standing of the self-similarity present in natural images, visible in repetitive geometric
and texture patterns that appear in almost any image.

Most inpainting methods found in the literature can be classified into two groups:
geometry- and texture-oriented methods. We now briefly review the developments in
both types of approaches, with emphasis in texture-oriented methods. This review
will be helpful for motivating the proposed formulation.

Geometry-oriented methods. In this class of methods images are usually modeled
as functions with some degree of smoothness, expressed for instance in terms of the
curvature of the level lines or the total variation of the image. They take advantage
of this smoothness assumption and interpolate the inpainting domain by continuing
the geometric structure of the image (its level lines, or its edges), usually as the
solution of a (geometric) variational problem or by means of a partial differential
equation (PDE). Such PDE can be derived from variational principles, as for instance
in [44, 8, 19, 20, 27, 43], or inspired by phenomenological modeling [11, 15, 54]. These
methods show good performance in propagating smooth level lines or gradients, but
fail in the presence of texture. They are often referred to as structure or cartoon
inpainting.

In most cases, geometry-oriented methods are local in the sense that they are
based on PDEs. An implication of this is that among all the data available from the
image, they only use that at the boundary of the inpainting domain.
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Texture-oriented methods. Texture-oriented inpainting was born as an application
of texture synthesis, e.g. [25, 33]. Its recent development was triggered in part by the
works of Efros and Leung [25] and Wei and Levoy [55] using non-parametric sampling
techniques (parametric models have also been considered, e.g. [41]). In these works
texture is modeled as a two dimensional probabilistic graphical model, in which the
value of each pixel is conditioned by its neighborhood. These approaches rely directly
on a sample of the desired texture to perform the synthesis. The value of each target
pixel x is copied from the center of a (square) patch in the sample image, chosen to
match the available portion of the patch centered at x. See [42] for a probabilistic
theoretical justification.

This strategy (with various modifications) has been extensively used for inpainting
[12, 14, 21, 23, 25, 45]. As opposed to geometry-oriented inpainting, these so-called
exemplar-based approaches, are non-local : to determine the value at x, the whole
image may be scanned in the search for a matching patch.

As pointed out in [22] the problem of exemplar-based inpainting can be stated
as that of finding a correspondence map ϕ : O → Oc, which assigns to each point
x in the inpainting domain O (a subset of the image domain Ω, usually a rectangle
in R

2) a corresponding point ϕ(x) ∈ Oc := Ω \ O where the image is known (see
Figure 1.1). The unknown part of the image is then synthesized using the map ϕ.
The filling-in strategy of [25, 55] can be regarded as a greedy procedure (each hole
pixel is visited only once) for computing a correspondence map. The results obtained
are very sensitive to the order in which the pixels are processed [21, 45, 32].

To address this issue, in [22] the authors proposed to model the inpainting problem
as the minimization of an energy functional in which the unknown is the correspon-
dence map itself:

E(ϕ) =

∫

O

∫

Ωp

|û(ϕ(x + h))− û(ϕ(x) + h)|2dhdx, (1.1)

where û : Oc → R is the known part of the image, and Ωp is the patch domain (a
neighborhood of the origin 0 ∈ R

2). The unknown image is computed as u(x) =
û(ϕ(x)), x ∈ O. Thus ϕ should map a pixel x and its neighborhood in such a way
that the resulting patch is close to the one centered at ϕ(x). This model has been the
subject of further analysis by Aujol et al. [6], proposing extensions and proving the
existence of a solution in the set of piecewise roto-translation maps, i.e. maps of the
form

ϕ(x) =
∑

i∈I

Ri(x− ci)11Ai
(x),

where {Ai}i∈I is a Caccioppoli partition of O (i.e. all sets of the partition have finite
perimeter in O and the sum of the perimeters is finite), and for each i ∈ I Ri is a
rotation matrix and ci is a translation vector. 11Ai

(x) = 1 if x ∈ Ai and zero otherwise.

The energy (1.1) is highly non-convex and no effective way to minimize it is known
[6]. Hence, other authors have addressed the determination of a correspondence map
by looking for simpler optimization problems. In [39] the problem is formulated as
probabilistic inference on a graphical model. Using a message passing algorithm the
authors efficiently compute a coarse correspondence map.

Another optimization strategy is followed in [37, 57]. In both works the variable
to be optimized is the unknown image whereas the correspondence map appears as
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an auxiliary variable. The resulting energy functional can be regarded as a relaxation
of (1.1):

E(u, ϕ) =

∫

Õ

∫

Ωp

|u(x+ h)− û(ϕ(x) + h)|2dhdx, (1.2)

where Õ := O+Ωp denotes the set of centers of patches that intersect the inpainting
domain O (see Figure 1.1). The energy is usually optimized using an alternating
scheme with respect to the variables u and ϕ, and the unknown image is determined
as part of the optimization process, and is not constrained to be u(x) = û(ϕ(x)).
Although this relaxation is still non-convex, the alternating minimization scheme
converges to a critical point of the energy. This approach was also used in the context
of texture synthesis [40].

Exemplar-based methods provide impressive results in recovering textures and
repetitive structures. However, their ability to recreate the geometry without any
example is limited and not well understood. Different strategies have been proposed
for combining geometry and texture inpainting. Some rely on human intervention for
constraining the geometry [53]. Others usually decompose the image in structure and
texture components. The structure is reconstructed using some geometry-oriented
scheme, and this is used to guide the texture inpainting [12, 18, 23, 35].

Let us finally note that the works in texture synthesis of [25, 55] have also influ-
enced the development of non-local methods for other applications, such as denoising
[7, 17], superresolution [50] and regularization of inverse problems [30, 48]. As op-
posed to the case of inpainting, in these contexts the denoised pixel value is estimated
from many locations in the image, typically as a (non-local) average. This results
in replacing the correspondence map by a weight function w : Ω × Ω → R, with Ω
being the image domain (usually a rectangle in R

2). For each x, w(x, ·) weights the
contribution of each image location to the estimation of x. Inspired by regularization
techniques used in the context of graphs or discrete data and trying to formulate the
non-local means denoising method [17, 7] as a variational model, Gilboa and Osher
[30, 31] proposed the following functional

Ew(u) =

∫

Ω

∫

Ω

w(x, y)(u(x) − u(y))2dydx (1.3)

which can be considered as a non-local version of the Dirichlet integral. The weights
w are considered as known. The minimum of (1.3) should have a low pixel error
(u(x)− û(y))2 whenever w(x, y) is high. In this way the weights drive the information
transfer from known to unknown pixels. When the weights are Gaussian

w(x, y) ∝ exp

(
−

1

T
‖pu(x)− pû(y)‖

2

)
, (1.4)

the non-local means algorithm results from the first step of Jacobi’s iterative method
for solving the Euler-Lagrange equation of (1.3). Here, ‖ · ‖ is a weighted L2-norm
in the space of patches and T is a parameter that determines the selectivity of the
weights w.

Other variational approaches for non-local denoising have also been proposed in
[38, 16, 48, 49].
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1.1. Our contribution and the organization of the paper. In our previ-
ous work [4, 5] we proposed a variational framework for image inpainting (see Sec-
tion 2), and discussed some of its properties, mainly from a practical point of view.
The present work complements [5] with a theoretical study of some aspects of the
framework. Before enumerating the contributions, let us briefly point out the main
characteristics of the framework proposed in [5].

Our variational formulation is inspired by (1.3). In [31] the weights are considered
as known and remain fixed through all the iterations. While this might be appropriate
in applications where they can be estimated from the degraded image, in the image
inpainting scenario here addressed, they are not available and have to be inferred
together with the image (see also [7, 47, 50]).

As in (1.3) we encode the image redundancy as a non-local weight function w(x, y)

measuring the similarity of the patch around x ∈ Õ with the patch around y ∈ Õc,
where Õc denotes the complement of Õ (we refer to Section 2 for precise definitions).
One of the novelties of the models proposed in [5], is the inclusion of adaptive weights
in a variational setting, considering the weight function w as an additional unknown.
Instead of prescribing explicitly the Gaussian functional dependence of w w.r.t. u, we
do it implicitly, as a component of the optimization process.

On one hand this permits to write a simpler functional which has the form of a
Gibbs free energy with temperature parameter T > 0, or its limit case where T = 0.
On the other, this is in consonance with the alternating optimization algorithm, one
of the algorithms used in practice.

Let us now describe the contributions of this work.
Connections with statistical mechanics and probabilistical inference. In Section 3

we discuss the connections of our model with similar functionals appearing in statis-
tical mechanics. These connections help to understand the formulation by drawing
analogies with existing and well known theories. Let us mention in particular the ap-
proach to quantization and clustering in terms of an statistical mechanics formulation
(see [51] and references therein).

Mathematical analysis of variational models for inpainting. The framework pro-
posed in [5] allows the derivation of different inpainting models. In [5] we discussed
four of them. The present work complements [5] with a theoretical study of two mod-
els contained in the general Gibbs energy formulation: the patch NL-means, based on
a patch-based formulation of (1.3), and the patch NL-Poisson model which replaces
the image in the patch NL-means energy by its gradients. For both of them we prove
in Section 4 the existence of minima and their regularity.

In our formulation, we constrain w(x, ·) to be a probability density function, which
can be seen as a relaxation of the correspondence maps used in [6, 22], providing a
fuzzy correspondence between each x ∈ O and the points in the complement of the
inpainting domain.

Analysis of the correspondence model. In Section 5 we study the Gamma limit
as T → 0 of the patch NL-means energy. This results in a relaxation of the energy
(1.2). We prove the existence of optimal solutions of the limit functional which are
measurable correspondence maps which also minimize (1.2) (a model computationally
studied in [57, 4, 37, 5]).

Heuristically, one can say that the optimal similarity weights w converge to δ(y−

ϕ(x)) where ϕ : Õ → Õc is an optimal correspondence map for (1.2). This case is
the most relevant for the image inpainting application. Of particular interest, is the
regularity of the correspondence map obtained by minimizing (1.2). We prove a mild
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regularity result, namely the existence of optimal correspondence maps ϕ which are
uniform limits of maps of bounded variation with finitely many values. This result
is interesting in connection with the experimental observation that the computed ϕ
copies rigidly parts of the image outside the inpainting domain, behaving locally as a
translation (see Fig. 1.1). This observation is also at the root of the roto-translation
constraint imposed to ϕ in [6].

Convergence of the alternating optimization scheme. In Section 6 we prove the
convergence to critical points of the alternating optimization scheme with respect
to the variables u and w (which coincides with the Expectation-Maximization (EM)
algorithm) for both models, patch NL-means and -Poisson.

Discretization: mathematical analysis of PatchMatch [9] algorithm. In Section 7
we study an efficient algorithm to minimize (1.2), called the PatchMatch [9]. The
most time consuming step in the minimization of (1.2) is the computation of the op-
timal matching between patches in the inpainting domain and patches in the region
of available data. Recently Barnes et al. [9] introduced the PatchMatch, an efficient
algorithm based on heuristics to solve the problem of matching patches between im-
ages. In this paper we prove its convergence in probability and we compute a bound
on its convergence rate.

Finally, in Section 8 we display some experiments to illustrate the main features
of the algorithms and the results obtained with the proposed models.

Figure 1.1: Inpainting problem. Left: on a rectangular image domain Ω, missing
data u in a region O has to be reconstructed using the available image û over Oc :=
Ω \ O. A patch centered at x ∈ O is denoted by pu(x). The set of centers of

incomplete patches is Õ := O+Ωp, where Ωp denotes the patch domain. Middle: the
image shows a completion obtained using the patch NL-medians, a scheme derived
from the general formulation presented in this work. Right: the resulting completion
shows a correspondence map which is a piece-wise translation. The red curves show
the boundaries between the regions of constant translation. In each of these regions,
the image is copied rigidly from a corresponding region in Oc.

2. A variational framework. In this Section we review the variational frame-
work for non-local image inpainting proposed in [5], which is inspired by recent de-
velopments on image regularization and denoising [17, 38, 31].

Let us introduce some notation. Images are denoted as functions u : Ω → R,
where Ω denotes the image domain, usually a rectangle in R

N . We will commonly
refer to points in Ω as pixels. These will be denoted by x, y or h, the latter for positions
inside the patch. A patch of u centered at x is denoted by pu(x) = pu(x, ·) : Ωp → R
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where Ωp is a rectangle centered at 0. The patch is defined by pu(x, h) = u(x + h),
with h ∈ Ωp. Let O ⊂ Ω be the hole or inpainting domain, and Oc = Ω \ O. We
assume that O is an open set with Lipschitz boundary. We still denote by u the part
of the image u inside the hole, while û is the part of u in Oc: û = u|Oc .

Let us define some domains in Ω that are useful to work with patches. We denote
by Ω̃ the set of centers of patches contained in the image domain, i.e. Ω̃ = {x ∈ Ω :

x + Ωp ⊆ Ω}. As was defined in the Introduction, we take Õ as the set of centers of

patches that intersect the hole, i.e. Õ = O +Ωp = {x ∈ Ω : (x+Ωp) ∩O 6= ∅}. For a

simplified presentation, we assume that Õ ⊆ Ω̃, i.e. every pixel in Õ is the center of a
patch contained in Ω. We denote Õc = Ω̃ \ Õ. Thus, patches pû(y) centered at points

y ∈ Õc are contained in Oc (see Figure 1.1). Further notation will be introduced in
the text.

2.1. Review of the formulation. In this setting, we consider an energy which
contains two terms, one of them is inspired by (1.3) and measures the coherence

between patches in Õ and those in Õc, given a similarity weight function w : Õ×Õc →
R. This permits the estimation of the image u when the weights w are known. The
second term allows us to compute the weights given the image. Thus, the complete
functional is

Eε,T (u,w) = Uε(u,w) − T

∫

Õ

H(w(x, ·))dx,

subject to

∫

Õc

w(x, y)dy = 1,
(2.1)

where

Uε(u,w) =

∫

Õ

∫

Õc

w(x, y)ε(pu(x) − pû(y))dydx, (2.2)

ε(·) is an error function for image patches (such as the squared L2-norm), and

H(w(x, ·)) = −

∫

Õc

w(x, y) logw(x, y)dy

is the entropy of the probability w(x, ·), x ∈ Õ.
Let us now make some additional comments on the functional. We observe that

the term (u(x) − û(y))2 in (1.3), that penalizes differences between pixels, is substi-
tuted in (2.2) by the patch error function ε(pu(x) − pû(y)). This has several impli-
cations. First, observe that minimizing (2.2) with respect to the image u will force
the patch pu(x) to be similar to pu(y) whenever w(x, y) is high. Second, we observe

that for a given completion u, and for each x ∈ Õ, the optimum weights minimize the
mean patch error for pu(x), given by

∫

Õc

w(x, y)ε(pu(x) − pû(y))dy,

while maximizing the entropy. This can be related to the principle of maximum
entropy [34], widely used for inference of probability distributions. According to
it, the best representation for a distribution given a set of samples is the one that
maximizes the entropy, i.e. the distribution which makes less assumptions about the
process. Taking ε as the squared L2-norm of the patch, then the resulting weights
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are given by formula (1.4). The parameter T in (2.1) controls the trade-off between
both terms and is also the selectivity parameter of the Gaussian weights. Note also
that by restricting w(x, ·) to be a probability, trivial minima of E with w(x, y) = 0
everywhere are discarded.

Let us describe in detail the main ingredients of the model and give examples of
patch error functions of interest in practice.

2.1.1. The patch error function ε. Patches are functions defined on Ωp, and
if P denotes a suitable space of patches, we consider error functions ε : P → R

+

defined either as the weighted sum of pixel-wise errors

ε(pu(x)− pû(y)) = g ∗ e(u(x+ ·)− û(y + ·)).

where e : R → R
+, or gradient errors

ε(pu(x)− pû(y)) = g ∗ e(∇u(x+ ·)−∇û(y + ·)).

where e : R
2 → R

+. Here, g : R
N → R

+ denotes a suitable intra-patch kernel
function. As an example, one could take g(h) = N (h|0, aI), the bivariate Gaussian
probability density function with 0 mean and isotropic standard deviation a. In our
mathematical statements we will consider a function g with compact support in R

N .
Let us give some examples of patch error functions.

Patch NL-means. In this case we use e(r) = |r|2 and the patch error function
ε(pu(x) − pû(y)) is a weighted squared L2-norm that we denote by

‖pu(x)− pû(y)‖
2
g,2 = g ∗ |u(x+ ·)− û(y + ·)|2.

P can be taken as the set of L2 functions in Ωp.

Patch NL-medians. In this case we set e(r) = |r| and we define the patch error
function as a weighted L1-norm. P can be taken as the set of L1 functions in Ωp.

Patch NL-Poisson. Let us take P as the space W 1,2(Ωp). We consider the patch
error function

‖pu(x)− pû(y)‖
2
g,∇ = g ∗ |∇u(x+ ·)−∇û(y + ·)|2.

Patch NL-gradient medians. We take P as the space of bounded variation func-
tions in Ωp [3] and consider the patch error function g ∗ |∇u(x+ ·)−∇û(y+ ·)|, where
in an abuse of notation we have used ∇ to denote the distributional derivative.

The last two patch error functions are based on the gradient of the image. As it
will be discussed below, the patch error function determines not only the similarity
criterion but also the image synthesis, and thus is a key element in the framework.
Let us mention that the use of nonlocal energies with gradient terms for deblurring
and denoising problems has been proposed in [38].

In the present work we will focus on the energies corresponding to the patch
NL-means and -Poisson error functions (and their combination). The models based
on the patch NL-medians and -gradient medians are discussed in [5], mainly from a
practical point of view.

2.1.2. The Euler-Lagrange equations. Let us compute the Euler-Lagrange
equations of Eε,T with respect to both the weights and the image.
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If we keep u fixed and we minimize (2.1) with respect to w, writing the Euler-
Lagrange equation δwEε,T (u,w) = 0 we obtain

wε,T (u;x, y) :=
1

Zε,T (u;x)
exp

(
−

1

T
ε(pu(x) − pû(y))

)
,

where the normalizing factor Zε,T (u;x) is given by

Zε,T (u;x) :=

∫

Õc

exp

(
−

1

T
ε(pu(x) − pû(y))

)
dy. (2.3)

The weight function wε,T (x, y) measures the similarity between the patches cen-

tered at x ∈ Õ and y ∈ Õc. It can be interpreted as a relaxation of an one-to-one
correspondence map, establishing a fuzzy correspondence between each x ∈ O and
the complement of the inpainting domain.

For computing the Euler-Lagrange equation with respect to the image, we will
consider the energies corresponding to the patch NL-means and -Poisson patch error
functions. Although at this moment, these computations are formal, they help in
understanding the model. Their justification follows by the results in Section 4.

Patch NL-means. The resulting Euler-Lagrange equation is the following:

u(z) =
1

k(w; z)

∫

RN

g ∗ (w
Õ,Õc(z − ·, z′ − ·))û(z′)dz′, z ∈ O,

where

w
Õ,Õc(z, z

′) =

{
w(z, z′) if (z, z′) ∈ Õ × Õc,
0 if not,

g ∗ (w
Õ,Õc(z − ·, z′ − ·)) :=

∫

RN

g(h)χ
Õc(z

′ − h)χ
Õ
(z − h)w(z − h, z′ − h) dh, (2.4)

and

k(w; z) :=

∫

RN

g ∗ (w
Õ,Õc(z − ·, z′ − ·))dz′ = 1, (2.5)

assuming that both the weights and g are normalized. Thus, optimal u are given by
a non-local average of the known pixels. The weights in the average are obtained by
convolving the Gaussian similarity weights with the patch kernel g (as in [38, 49]).

Patch NL-Poisson. In this case we have that u is a solution of the Poisson equa-
tion:

{
∆u(z) = div v(w; z), z ∈ O,
u = û in ∂O,

(2.6)

where

v(w; z) =

∫

RN

g ∗ (w
Õ,Õc(z − ·, z′ − ·))∇û(z′)dz′. (2.7)

We used again the notation (2.4) and the fact that k(w; z) =
∫
RN g ∗ (wÕ,Õc(z−·, z′−

·))dz′ = 1 for all z ∈ O.
We observe that the solutions this Poisson equation are minimizers of the func-

tional
∫
Õ
‖∇u(z)− v(w; z)‖22 dz. Therefore, u is computed as the image with the clos-

est gradient (in the L2 sense) to a guiding vector field v(w; z) computed as a non-local
average of the image gradients in the known portion of the image.
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Figure 2.1: Patch-wise non-local means inpainting. The value at z ∈ O is computed
using all the patches that overlap z. The patch centered at z − h, contributes with
the terms w(z − h, z′ − h)û(z′) to the average.

2.1.3. Getting a correspondence. Finally, let us note that we can get formally
a correspondence map by taking the limit T → 0. The resulting energy is dominated
by the image term and can be written as

E(u,w) ≃

∫

Õ

∫

Õc

w(x, y)ε(pu(x)− pû(y))dydx. (2.8)

We will describe more precisely this limit process in Section 5 and show that the
map x → w(x, ·) has to be replaced by a Young measure (a general measurable
probability valued map). In that context there are minima of (2.8) w.r.t. the weights
w(x, ·) which can be written as Dirac’s delta function on a point ϕ(x) which is a
nearest neighbor of the patch pu(x) with respect to the patch error function in (5),
i.e. w(x, y) = δ(y − ϕ(x)). We notice that the set argmin

y∈Õc ε(pu(x) − pû(y)) is
not necessary made of a single point. In case that is a singleton, the problem of
minimizing the energy (2.8) can be rewritten in terms of the correspondence map

E(u, ϕ) ≃

∫

Õ

ε(pu(x)− pû(ϕ(x)))dx. (2.9)

The model of [37, 57] (equation (1.2)) is obtained as a particular case when ε is
the squared L2-norm. An equivalent formulation has been proposed by Peyré [46],
where the energy is interpreted as a regularization model based on the distance to the
manifold of known patches.

Although the case T = 0 is the most relevant for the image inpainting application
[4, 5] and most of the experiments shown correspond to T = 0, we will present the
general framework with T ≥ 0. This will give us a broader view of the model and the
main ideas underlying it, allowing us to relate it with other models recently proposed
for non-local image regularization. In this way, many of the arguments and ideas
exposed next for the context of image inpainting, may be applied as well to other
contexts (see in particular [28] where a variant of the formalism is applied to the
interpolation of sparsely sampled images). The general context permits also to make
explicit the connections with the Gibbs energy functional in statistical mechanics [26]
and points towards the literature on clustering and classification formulated in that
context [51]. Let us describe this in next Section.

3. Connections with statistical mechanics. Statistical mechanics has also
been the framework for a variational approach to many problems like clustering, pat-
tern recognition and classification, regression, or coding theory (see [51] and references
therein). Although we will not give a detailed review of it, let us mention the basic
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framework. For simplicity, we restrict ourselves to the discrete case where O is a
subset of a domain Ω in Z

2.
In the context of statistical mechanics we consider that for each x ∈ Õ there is

a set of possible configurations indexed by the parameter y ∈ Õc with a probability
density w(x, y). We follow the tradition in statistical mechanics and use the notation
β = 1

T
. If we consider that each configuration has an energy

Uε(u;x, y) := ε(pu(x)− pû(y)),

then the Boltzmann distribution gives the probability that the “particle” x is in the
state y. This distribution is given by

pε,β(u;x, y) =
e−βUε(u;x,y)

Zε,β(u;x)
, (3.1)

where Zε,β(u;x) is the normalization factor (also referred to as partition function).
The energy Eε,β(u,w) can be written as

Eε,β(u,w) = β−1
∑

x∈Õ

KL(w(x ·), pε,β(u;x, ·)) +
∑

x∈Õ

Fε,β(u;x), (3.2)

where KL(P,Q) denotes the Kullback-Leibler divergence between two probability dis-

tributions P and Q in Õc: KL(P,Q) =
∑

y∈Õc P (y) log
(

P (y)
Q(y)

)
, and Fε,β(u;x) denotes

the Helmholtz free energy Fε,β(u;x) := − 1
β
log Zε,β(u;x). The expression

Gε,β(u,w;x) :=
1

β
KL(w(x ·), pε,β(u;x, ·)) + Fε,β(u;x)

is called in statistical mechanics the Gibbs free energy and we may write our energy
as

Eε,β(u,w) =
∑

x∈Õ

Gε,β(u,w;x).

With u fixed, the minimum of Eε(u,w) with respect to w is attained when
w(x, ·) = pε,β(u;x, ·), i.e., w(x, ·) coincides with the Boltzmann distribution for all
x. Then

Eε,β(u, pβ) =
∑

x∈Õ

Gε,β(u, pε,β(u);x) =
∑

x∈Õ

Fε,β(u;x),

which is the sum of the free energies for all x. We will come back to this point of
view later on in Section 6 when we look at the optimization algorithm in terms of the
Expectation-Maximization (EM) algorithm.

4. Existence of minima. We shall consider here two cases: the patch NL-
means and the patch NL-Poisson models. Since the existence of solutions for the
patch NL-means model was already considered in [5] we only give a sketch of it here.
The case of the patch NL-Poisson model will be considered in detail.

Let us introduce some notation. Let Cc(R
N ) be the set of continuous functions

with compact support in R
N . By Cc(R

N )+ we denote the set of nonnegative functions
in Cc(R

N ). As usual, if Q is an open set we denote by W 1,p(Q), 1 ≤ p ≤ ∞, the



VARIATIONAL EXEMPLAR-BASED INPAINTING 11

space of functions v ∈ Lp(Q) such that ∇v ∈ Lp(Q)N . By W 1,p(Q)+ we denote the
set of nonnegative functions in W 1,p(Q). We denote by W 2,p(Q) (resp. by W 2,p

loc (Q)),
1 ≤ p ≤ ∞, the space of functions v ∈ Lp(Q) such that ∇v ∈ Lp(Q)N and D2v ∈
Lp(Q)N×N (resp. the functions v ∈ W 2,p(Q′) for any subdomain Q′ included in a
compact set of Q).

Let us assume for the rest of the paper that g ∈ L1(RN )+ and
∫
RN g(h) dh = 1.

4.1. Existence of minima for the patch NL-means model. We assume
here that Ω is a rectangle in R

N and û : Oc → R with û ∈ L∞(Oc). We assume that
u : Ω → R is such that u|Oc = û. We also assume that u is extended by symmetry
and then by periodicity to R

N .
In this Section we consider the patch NL-means model

E2,T (u,w) =

∫

Õ

∫

Õc

w(x, y)‖pu(x)−pû(y)‖
2
g,2dydx+T

∫

Õ

∫

Õc

w(x, y) logw(x, y)dydx.

(4.1)
We implicitly understand that E2,T (u,w) = +∞ in case that the second integral is
not defined.

Let

W := {w ∈ L1(Õ × Õc) :

∫

Õc

w(x, y) dy = 1 a.e. x ∈ Õ}.

Let us consider the admissible class of functions

A2 := {(u,w) : u ∈ L∞(Ω), u = û in Oc, w ∈ W}.

Our purpose is to state the existence and regularity of minima of

min
(u,w)∈A2

E2,T (u,w) (4.2)

and give a sketch of the proof. The existence was already proved in [5] and we refer
to it for additional details.

Proposition 4.1. Assume that g ∈ Cc(R
N )+ has support contained in Ωp,

∇g ∈ L1(RN ) and û ∈ BV (Oc)∩L∞(Oc). Then there exists a minimum (u,w) ∈ A2

of E2,T . Moreover, for any minimum (u,w) ∈ A2 we have that u ∈ W 1,∞(O) and

w ∈W 1,∞(Õ × Õc).
In other words, there are smooth minima and smooth probability distributions

representing the fuzzy correspondences between Õ and Õc. The proof of Proposition
4.1 is based on the following Lemmas whose proof can be found in [5].

Lemma 4.2. Assume that g ∈ Cc(R
N )+ has support contained in Ωp, ∇g ∈

L1(RN ) and û ∈ BV (Oc) ∩ L∞(Oc). Assume that u ∈ L∞(Õ + Ωp). Then the
functions

∇xg ∗ (u(x+ ·)− û(y + ·))2 and ∇yg ∗ (u(x+ ·)− û(y + ·))2 (4.3)

are uniformly bounded in Õ×Õc by a constant that depends on ‖∇g‖L1, ‖u‖∞, ‖û‖∞.
Lemma 4.3. Under the assumptions of Proposition 4.1, if (un, wn) ∈ A2 is a

minimizing sequence for E2,T such that un is uniformly bounded, then we may extract
a subsequence converging to a minimum of E2,T .

This Lemma was proved in [5]. On the other hand, since a similar proof will be
given in detail in next Section for the NL-Poisson model we omit the details here.
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Proof of Proposition 4.1. The proof of existence follows from Lemma 4.3 once we
observe that there are minimizing sequences (un, wn) ∈ A2 for E2,T such that un
is uniformly bounded. For that, let (u,w) ∈ A2 and let us compute the equation
satisfied by u if it is a minimum of E2,T (·, w). Indeed, since
∫

Õ

∫

Õc

w(x, y)‖pu(x)−pû(y)‖
2
g,2dydx =

∫

RN

∫

RN

g∗(w
Õ,Õc(z−·, z′−·))(u(z)−û(z′))2dz′dz,

we have

u(z) =

∫

RN

g ∗ (w
Õ,Õc(z − ·, z′ − ·))û(z′)dz′, z ∈ O, (4.4)

where we use the notation in (2.4), (2.5) and the fact that k(w′; z) = 1 for any z ∈ O
and any w′ ∈ W .

Similarly, if w is a minimum of E2,T (u, ·) we have that

w(x, y) = w2,T (u)(x, y) =
1

Z2,T (u;x)
exp

(
−

1

T
g ∗ (u(x+ ·)− û(y + ·))2

)
. (4.5)

Notice that both equations (4.4) and (4.5) hold if (u,w) ∈ A2 is a minimum of E2,T .
To prove the existence of minima of of E2,T , let (u′n, w

′
n) ∈ A2 be a minimizing

sequence for this energy. Let

un = argmin
u

E2,T (u,w
′
n), (4.6)

wn = argmin
w

E2,T (un, w). (4.7)

Since

E2,T (un, wn) ≤ E2,T (un, w
′
n) ≤ E2,T (u

′
n, w

′
n),

(un, wn) ∈ A2 is also a minimizing sequence of (4.2). By (4.4) we have

un(z) =

∫

RN

g ∗ ((w′
n)Õ,Õc(z − ·, z′ − ·))û(z′)dz′, z ∈ O, (4.8)

and we deduce that ‖un‖L∞(O) ≤ ‖û‖∞. Then, using Lemma 4.3 we may extract a
subsequence of (un, wn) converging to a minimum of E2,T .

Let us prove the regularity assertion. Let (u,w) ∈ A2 be a minimum of E2,T .
Let us first prove that ∇xw(x, y) and ∇yw(x, y) are bounded. By (4.4) we have that
‖u‖L∞(O) ≤ ‖û‖∞ and

a ≤ Z2,T (u)(x) ≤ b, (4.9)

for some constants b > a > 0 which only depend on ‖û‖∞. Thus w is bounded and
bounded away from zero. To abbreviate our expressions, let U(x, y) := g ∗ (u(x+ ·)−
û(y + ·))2. Since

∇xw(x, y) = −
exp

(
− 1

T
U(x, y)

)

Z2,T (u)(x)

(
1

T
∇xU(x, y) +

∇xZ2,T (u)(x)

Z2,T (u)(x)

)
,

∇yw(x, y) = −
exp

(
− 1

T
U(x, y)

)

TZ2,T (u)(x)
∇yU(x, y),



VARIATIONAL EXEMPLAR-BASED INPAINTING 13

where

∇xZ2,T (u)(x) = −
1

T

∫

Õc

exp

(
−
1

T
U(x, y)

)
∇xU(x, y)dy,

by Lemma 4.2 and (4.9) we conclude that ∇xw(x, y) and ∇yw(x, y) are bounded.
Now, by (4.4), for any x ∈ O we have

∇xu(x) =

∫

RN

∇xg ∗ (wÕ,Õc(x − ·, z′ − ·))û(z′)dz′.

Since

∇xg ∗ (wÕ,Õc(x− ·, z′ − ·)) =

∫

RN

g(h)∇xw(x + h, z′ + h)χ
Õ
(x+ h)χ

Õc(z
′ + h)dh

+

∫

RN

g(h)w(x + h, z′ + h)∇xχÕ
(x+ h)χ

Õc(z
′ + h)dh

and χ
Õ

∈ BV (RN ) we conclude that ∇xg ∗ (w
Õ,Õc(x − ·, z′ − ·)) is bounded. We

deduce that ∇xu(x) is bounded. Hence u ∈ W 1,∞(O) and w ∈W 1,∞(Õ× Õc).

4.2. Existence of minima for the patch NL-Poisson model. In this Section
we consider the model

E∇,T (u,w) :=

∫

Õ

∫

Õc

w(x, y)‖pu(x)− pû(y)‖
2
g,∇dydx+T

∫

Õ

∫

Õc

w(x, y) logw(x, y)dydx,

(4.10)
where we denote ‖p‖2g,∇ =

∫
RN g(h)‖∇p(h)‖

2
2dh for any p ∈ W 1,2(Ωp). Recall that

we assume that u|Oc = û.
Let

A∇ := {(u,w) ∈ A2 : u ∈W 1,2(O), u|∂O = û|∂Oc}.

Our purpose is to prove the following result stating the existence of minima of

min
(u,w)∈A∇

E∇,T (u,w). (4.11)

Proposition 4.4. Assume that û ∈ W 2,2(Oc) ∩ L∞(Oc) and g ∈ W 1,∞(RN )+

has compact support in Ωp. There exists a solution of the variational problem (4.11).

Moreover for any solution (u,w) ∈ A∇ we have u ∈W 1,2(O) ∩W 2,p
loc (O) ∩L

∞(O) for

all p ∈ [1,∞) and w ∈W 1,∞(Õ × Õc).
Lemma 4.5. Assume that û ∈ W 1,2(Oc) and g ∈ L∞(RN )+ has compact support

on Ωp. Let (u,w) ∈ A∇. Assume that E∇,T (u,w) ≤ C. Then

‖u‖W 1,2(O) ≤ C′(C, ‖∇û‖L2(Oc)), (4.12)

where C′ = C′(C, ‖∇û‖L2(Oc)) denotes a constant that depends on its arguments.
Proof. Since the left hand side of

∫

Õ

∫

Õc

w(x, y)g ∗ |∇xu(x+ ·)−∇yû(y + ·)|2 dxdy

=

∫

Õ

∫

Õc

w(x, y)
(
g ∗ |∇xu(x+ ·)|2+

+ g ∗ |∇yû(y + ·)|2 − 2g ∗ (∇xu(x+ ·) · ∇yû(y + ·))
)
dxdy
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is upper bounded,

|g ∗ (∇xu(x+ ·) · ∇yû(y + ·))| ≤
ǫ

2
g ∗ |∇xu(x+ ·)|2 +

1

2ǫ
g ∗ |∇yû(y + ·)|2,

for any ǫ > 0, and
∫

Õ

∫

Õc

w(x, y)g ∗ |∇xû(y + ·)|2 dxdy ≤ C′(C, ‖∇û‖L2(Oc)),

taking ǫ = 1
2 , the result follows from

∫

Õ

∫

Õc

w(x, y)g ∗ |∇xu(x+ ·)|2 dxdy

=

∫

Õ

∫

Õc

w(x, y)

∫

RN

g(h)|∇xu(x+ h)|2 dxdydh

=

∫

Õ

∫

RN

g(h)|∇xu(x+ h)|2 dxdh =

∫

RN

∫

RN

χ
Õ
(x)g(h)|∇xu(x+ h)|2 dx

=

∫

RN

∫

RN

χ
Õ
(y − h)g(h)|∇xu(y)|

2 dhdy ≥

∫

O

∫

RN

χ
Õ
(y − h)g(h)|∇xu(y)|

2 dhdy

≥

∫

O

∫

RN

g(h)|∇xu(y)|
2 dhdy =

∫

O

|∇xu(y)|
2 dy.

Lemma 4.6. Assume that û ∈ W 2,2(Oc), u ∈ W 1,2(O), u|∂O = û|∂Oc and
g ∈W 1,∞(RN )+ has compact support on Ωp. Then

∇x

∫

RN

g(h)|∇xu(x+ h)−∇yû(y + h)|2 dh and

∇y

∫

RN

g(h)|∇xu(x+ h)−∇yû(y + h)|2 dh

(4.13)

are bounded in L∞(Õ × Õc) with a bound depending on ‖û‖W 2,2(Oc), ‖g‖W 1,∞ and
‖∇u‖L2(O).

Proof. The bounds in (4.13) follow if we prove that

∇x+y

∫

RN

g(h)|∇xu(x+ h)−∇y û(y + h)|)2 dh and

∇x−y

∫

RN

g(h)|∇xu(x+ h)−∇yû(y + h)|2 dh

are bounded in L∞ with a bound depending on ‖û‖W 2,2(Oc), ‖g‖W 1,∞ and ‖∇u‖L2(Õ).

Let us write ui(x) = ∂xi
u(x), ûi(x) = ∂xi

û(x), i = 1, . . . , N . Let x ∈ Õ, y ∈ Õc,
i ∈ {1, . . . , N}. As in the proof of Lemma 4.2 we have

∇x+y

∫

RN

g(h)(ui(x + h)− ûi(y + h))2 dh

= 2

∫

RN

g(h)(ui(x+ h)− ûi(y + h))(∇xui(x+ h)−∇yûi(y + h)) dh

= 2

∫

RN

g(h)(ui(x+ h)− ûi(y + h))(∇hui(x+ h)−∇hûi(y + h))2 dh

= −

∫

RN

∇hg(h)(ui(x+ h)− ûi(y + h))2 dh.
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Then
∣∣∣∣∇x+y

∫

RN

g(h)(ui(x+ h)− ûi(y + h))2 dh

∣∣∣∣

≤ 2‖∇hg‖∞

(∫

Õ+Ωp

|∇u(y)|2dy +

∫

Õc+Ωp

|∇û(y)|2dy

)
.

Notice that since u ∈ W 1,2(O), u|∂O = û|∂Oc and u = û on Oc we have that u ∈
W 1,2(Õ +Ωp).

As above, by direct computation and after integration by parts, we have

∇x−y

∫

RN

g(h)(ui(x+ h)− ûi(y + h))2 dh

= −

∫

RN

∇hg(h)(ui(x+ h)2 − ûi(y + h)2) dh

+ 2

∫

RN

g(h)ui(x+ h)∇hûi(y + h) dh+ 2

∫

RN

∇h(g(h)ûi(y + h))ui(x+ h) dh.

The three terms are bounded by a constant depending on ‖û‖W 2,2(Oc), ‖g‖W 1,∞ and
‖∇u‖

L2(Õ).

Proof of Proposition 4.4. Existence. Let (un, wn) be a minimizing sequence of (4.11).
Since Ω is a bounded domain we have that

∫

Õ

∫

Õc

χ{wn>1}wn(x, y) logwn(x, y)dydx

is bounded. Hence wn(1+ log+ wn) is bounded in L1(Õ× Õc). Then the sequence wn

is relatively weakly compact in L1 and modulo a subsequence we may assume that
wn weakly converges in L1(Õ × Õc) to some w ∈ W .

By Lemma 4.5, we have that un is uniformly bounded in W 1,2(Õ). By Lemma
4.6, we have that

∇x

∫

RN

g(h)|∇u(x+h)−∇u(y+h)|2 dh and ∇y

∫

RN

g(h)|∇u(x+h)−∇u(y+h)|2 dh

(4.14)

are uniformly bounded in L∞(Õ×Õc). Thus, modulo the extraction of a subsequence,

we may assume that un → u a.e. and in L2(Õ), ∇un → ∇u weakly in L2(Õ + Ωp),
and g ∗ (∇xun(x+ ·)−∇yûn(y+ ·))2 converges strongly in all Lp spaces, 1 ≤ p <∞,
and also in the dual of LLog+L to some function W . Then by passing to the limit
as n→ ∞ we have
∫

Õ

∫

Õc

w(x, y)W (x, y)dydx+T

∫

Õ

∫

Õc

w(x, y) logw(x, y)dydx ≤ lim inf
n

E∇,T (un, wn).

Taking test functions ψ(x, y), integrating in Õ × Õc and using the convexity of the
square function, we have

∫
g(h)(∇xu(x+ h)−∇yû(y + h))2 dh ≤W (x, y).

Thus

E∇,T (u,w) ≤ lim inf
n

E∇,T (un, wn).
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Regularity. Observe that if (u,w) ∈ A∇ is a minimum of (4.11), then u ∈ W 1,2(O)
(by Lemma 4.5) and it satisfies the Euler-Lagrange equations. By fixing w and com-
puting the first variation of E∇,T with respect to its first variable, we have that u
is a solution of the Poisson equation (2.6). On the other hand, if u is fixed and we
compute the first variation of E∇,T with respect to its second variable, then

w(x, y) = w∇,T (u;x, y) =
1

Z∇,T (u;x)
exp

(
−
1

T
‖pu(x)− pû(y)‖

2
g,∇

)
, (4.15)

where the normalizing factor Z∇,T (u) is given by

Z∇,T (u;x) =

∫

Õc

exp

(
−

1

T
‖pu(x) − pû(y)‖

2
g,∇

)
dy. (4.16)

As in the proof of Proposition 4.1 we observe that Z∇,T (u;x) is bounded and
bounded away from zero (thanks to Lemmas 4.5 and 4.6). Then, it follows that

w ∈ W 1,∞(Õ × Õc). Using this and (2.7) we have that v(w) ∈ W 1,∞(O)2. Then the
solution u of (2.6) is in W 1,2(O) ∩W 2,p

loc (O) ∩ L
∞(O) for any p ∈ [1,∞) [29].

Remark 1. Notice that the regularity result holds for any (u∗, w∗) ∈ A∇ satis-
fying (2.6) and (4.15).

5. Optimal correspondence maps. In this Section we consider a relaxation
of the correspondence map approach that appears as the Gamma limit of (1.2). In
turn, the energy (1.2) can be considered as a relaxation of the energy considered
in [22] (see also [6]). We prove existence of solutions of the relaxed problem and
the existence of optimal correspondence maps. Then in Subsection 5.2 we prove
the existence of correspondence maps which are uniform limits of bounded variation
functions with finitely many values. We give the details corresponding to the patch
NL-means model. Analogous results with similar proofs hold for the patch NL-Poisson
model (see Remark 3).

5.1. Existence of optimal correspondence maps. Let us first recall the
notion of measurable measure-valued map.

Definition 5.1 (Measurable measure-valued map). Let X ⊆ R
N , Y ⊆ R

M be
open sets, µ be a positive Radon measure in X and x→ νx be a function that assigns
to each x in X a Radon measure νx on Y. We say that the map is µ-measurable if
x→ νx(B) is µ-measurable for any Borel set B in Y.

By the disintegration theorem, if ν is a positive Radon measure in X × Y such
that ν(K × Y) < ∞ for any compact set K ⊆ X and µ = π♯ν where π : X × Y → X
is the projection on the first factor (i.e. µ(B) = ν(B × Y ) for any Borel set B ⊆ X),
then there exist a measurable measure-valued map x→ νx such that νx(Y) = 1 µ-a.e.
in X and for any ψ ∈ L1(X × Y, ν) we have

ψ(x, ·) ∈ L1(Y, νx) for µ-a.e. x ∈ X ,

x→

∫

Y

ψ(x, y) dνx(y) ∈ L1(X , µ),

∫

X×Y

ψ(x, y) dν(x.y) =

∫

X

∫

Y

ψ(x, y) dνx(y) dµ(x).

Let us consider MP the set of measurable measure valued maps ν ≥ 0 in Õ ×
cl(Õc) such that π♯ν = LN |

Õ
, where LN |

Õ
denotes the Lebesgue measure restricted
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to Õ. We assume that g ∈ Cc(R
N ) has support contained in Ωp, ∇g ∈ L1(RN ) and

û ∈ BV (Oc) ∩ L∞(Oc). Let

A2,0 := {(u, ν) : u ∈ L∞(Ω), u = û in Oc, ν ∈ MP}.

For (u, ν) ∈ A2,0, define

E2,0(u, ν) :=

∫

Õ

∫

Õc

g ∗ (u(x+ ·)− û(y + ·))2dν(x, y). (5.1)

Notice that, by Lemma 4.2, the above integral is well defined. We are now ready to
state the existence result.

Proposition 5.2. There exists a minimum (u, ν) ∈ A2,0 of E2,0.
Proof. Let (un, νn) ∈ A2,0 be a minimizing sequence of E2,0. Let us observe that

we may take un uniformly bounded. Indeed, let κ = 2‖û‖∞ and uκ,n = unχ|un|≤κ.
Then

|uκ,n(x)− û(y)| ≤ |un(x) − û(y)|.

This is clearly true if |un(x)| ≤ κ. Now if |un(x)| > κ we have

|un(x) − û(y)| > κ− û(y) ≥ ‖û‖∞ ≥ |uκ,n(x) − û(y)|.

Thus g ∗ (uκ,n(x + ·) − û(y + ·))2 ≤ g ∗ (un(x + ·) − û(y + ·))2 and (uκ,n, νn) is also
a minimizing sequence. Thus, we may assume that un is uniformly bounded. By
extracting a subsequence, if necessary, we may assume that un converges to some
u ∈ L∞(Õ+Ωp) with u|Oc = û. By Lemma 4.2, g ∗ (un(x+ ·)− û(y+ ·))2 is uniformly
Lipschitz in x, y and we may assume that it converges uniformly to a functionW (x, y).
On the other hand, we may also assume that νn → ν weakly∗ as measures. Hence

∫

Õ

∫

Õc

W (x, y)dν(x, y) ≤ lim inf
n

∫

Õ

∫

Õc

g ∗ (un(x+ ·)− û(y + ·))2dν(x, y).

Notice that π♯ν = LN |
Õ
. Clearly from the weak∗ convergence, we have that ν(V ×

cl(Õc)) ≤ LN (V ) for any open set V ⊆ Õ and ν(K × cl(Õc)) ≥ LN (K) for any

compact set K ⊆ Õ. By regularity of the measure ν we have that ν(B×cl(Õc)) = |B|

for any Borel set B ⊆ Õ. Thus π♯ν = LN |
Õ
.

Now, as in the proof of Proposition 4.1, we have that g ∗ (u(x+ ·)− û(y + ·))2 ≤
W (x, y). Hence

∫

Õ

∫

Õc

g∗(u(x+·)−û(y+·))2dν(x, y) ≤ lim inf
n

∫

Õ

∫

Õc

g∗(un(x+·)−û(y+·))2dν(x, y).

Thus (u, ν) ∈ A2,0 is a minimum of E2,0.
Remark 2. If û ≥ 0 we may also take uκ,n = τκ(un) where κ ≥ ‖û‖∞ and

τκ(r) = sign(r) inf(|r|, κ).

Let ϕ : Õ → Õc be a measurable map. Then x ∈ Õ → νx = δϕ(x)(y) is measur-

able. Similarly if the map x ∈ Õ → νx = δϕ(x)(y) is measurable then ϕ is measurable.
Let us denote by νϕ the measure determined by ϕ.

Proposition 5.3. There exists a minimum (u∗, ν∗) ∈ A2,0 of E2,0 such that

ν∗ = νϕ where ϕ : Õ → cl(Õc) is a measurable map.



18 P. ARIAS, V. CASELLES AND G. FACCIOLO

Proof. Let (u∗, ν∗) ∈ A2,0 be a minimum of E2,0. Then ν∗ ∈ argmin
ν∈MP

E2,0(u
∗, ν).

Let us prove that there is a measurable map ϕ such that νϕ is a minimum of A2,0.
Indeed, this is a consequence of the Kuratowski-Ryll-Nardzewski Theorem [52] (The-
orem 5.2.1) or [2] (Theorem 14.86). Let us consider U(x, y) = g ∗ (u(x+ ·)− û(y+ ·))2,

x ∈ Õ, y ∈ Õc. Let

m(x) = min
y∈Õc

U(x, y),

M(x) = {y ∈ Õc : U(x, y) = m(x)}.

Then, by Berge’s maximum theorem applied to −U(x, y) [2] (Theorem 14.30) we
have that m(x) is continuous and M(x) is an upper hemicontinuous correspondence
with compact values. Thus it has a closed graph [2] (Theorem 14.12), hence it is
measurable [2] (Theorem 14.68). By the Kuratowski-Ryll-Nardzewski Theorem [52]
(Theorem 5.2.1) or [2] (Theorem 14.86), we know that x→M(x) admits a measurable
selector, that is there is a measurable map x → ϕ(x) ∈ M(x). The measure νϕ is a
minimum of A2,0 since we may write

U(x, ϕ(x)) = min
y∈Õc

U(x, y) ≤

∫

Õc

U(x, y)dν∗x(y).

Integrating in x we deduce that

E2,0(u
∗, νϕ) =

∫

Õ

∫

Õc

U(x, y)dνϕx (y)dx ≤

∫

Õ

∫

Õc

U(x, y)dν∗x(y)dx = E2,0(u
∗, ν∗).

Let us sketch a second proof which gives a different point of view. Clearly, since
the energy function ν → E2,0(u∗, ν) is linear in ν, there are minima that are attained
on the set of extreme points of the convex set MP. Thus, the proposition is a
consequence of the following Lemma whose proof will be given in the Appendix.

Lemma 5.4. The set of extreme points of the convex set MP coincides with the
set of measures {νϕ : ϕ is a measurable map}.

We now address the relation between the patch NL-means functional for T > 0
and E2,0.

Proposition 5.5. The energies E2,T Gamma-converge to the energy E2,0. In
particular, the minima of E2,T converge to minima of E2,0.

Proof. Let (u, ν) ∈ A2,0 and (un, wn) ∈ A2 be such that un → u weakly∗ in L∞

and wn → ν weakly∗ as measures. The fact that un → u weakly∗ in L∞ includes
that un is uniformly bounded. By Lemma 4.2, g ∗ (un(x+ ·)− û(y+ ·))2 is uniformly
Lipschitz and converges uniformly to some function W (x, y). Then
∫

Õ

∫

Õc

W (x, y)dν(x, y) ≤ lim inf
n

∫

Õ

∫

Õc

wn(x, y)g ∗ (un(x+ ·)− û(y + ·))2dxdy

≤ lim inf
n

∫

Õ

∫

Õc

wn(x, y)g ∗ (un(x+ ·)− û(y + ·))2dxdy + Tn

∫

Õ

H(wn(x, ·)) dx.

Since g ∗ (u(x+ ·)− û(y + ·))2 ≤W (x, y), we have that

E2,0(u, ν) ≤ lim inf
n

E2,Tn
(un, wn).
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Now, let (u, ν) ∈ A2,0. Let νx be the probability measures obtained by disintegrat-
ing ν with respect to LN |

Õ
. Let us take wn(x, y) = gTn

∗νx(y) where gT (y) =
1
T 2 g(

y
T
)

for any T > 0. Thus wn ∈ W , wn → ν weakly∗ as measures and wn ≤ 1
TN
n
‖g‖∞. This

implies that (u,wn) ∈ A2 and

lim
n
Tn

∫

Õ

∫

Õc

wn(x, y) log wn(x, y) dxdy = 0.

On the other hand

lim
n

∫

Õ

∫

Õc

wn(x, y)g∗(u(x+·)−û(y+·))2 dxdy =

∫

Õ

∫

Õc

g∗(u(x+·)−û(y+·))2 dν(x, y).

Thus lim supn E2,Tn
(u,wn) ≤ E2,0(u, ν).

Remark 3. Statements analogous to Propositions 5.2, 5.3 and 5.5 also hold for
the non-local Poisson model where the limit energy is now

E∇,0(u, ν) :=

∫

Õ

∫

Õc

g ∗ (∇u(x+ ·)−∇û(y + ·))2dν(x, y).

In this case, we assume that û ∈ W 2,2(Oc) and g ∈ W 1,∞(RN ) has compact support
in Ωp and we use Lemmas 4.5 and 4.6.

5.2. Regularity of optimal correspondence maps. The following result
gives us some information on the the existence of correspondences with some reg-
ularity.

Theorem 5.6. Let X be an open bounded subset of RN with Lipschitz boundary
and Y be a compact subset of Rm. Let U : X × Y → R be a Lipschitz continuous
function. For each x ∈ X, let M(x) := {y ∈ Y : U(x, y) = minȳ∈Y U(x, ȳ)}. Then
there exists a selection of the multifunction x ∈ X → M(x) ⊆ Y , i.e., a function
S : X → Y such that S(x) ∈ M(x) ∀x ∈ X, which is a uniform limit of functions in
BV (X)m.

The result can be immediately applied to our case with X = Õ, Y = Õc. Indeed,
it can be applied to the patch NL-means model when we are under the assumptions
of Lemma 4.2 and to the patch non-local Poisson model when the assumptions of
Proposition 4.4 hold. Theorem 5.6 implies that the offsets map τ(x) = ϕ(x) − x is

a uniform limit of maps of bounded variation (in this case from Õ to R
2), since the

identity map x→ x is also.
Notice that the result does not say that all optimal correspondence maps are

regular. In view of Propositions 4.1 and 4.4, this raises the question if the solution
obtained by annealing, i.e. by solving E2,T (or E∇,T ) and letting T → 0+ is indeed
a regular solution in the sense described in Theorem 5.6. We are not able to answer
this question, at present.

We included a brief summary of the properties of BV functions after the proof of
this theorem. Notice that we defined X as an open set since we define the BV space
on open sets. The same statement holds true if we replace X by its closure X. In that
case, since X has a Lipschitz boundary (hence of Lebesgue null measure) functions in
BV (X) uniquely determine its extension to X (the trace on ∂X is well defined) [3].

Its proof is a simple adaptation of the Kuratowski-Ryll-Nardzewski Theorem [52]
(Theorem 5.2.1) or [2] (Theorem 14.86). For that we need the following simple Lemma.

Lemma 5.7. Let m(x) = infy∈Y U(x, y), x ∈ X. The function m(x) is Lipschitz.
Also are the functions x ∈ X → inf ȳ∈B U(x, ȳ) for any B ⊆ Y and ǫ > 0.
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Proof. Let x, x̄ ∈ X . Since U is Lipschitz in both variables we have

m(x) ≤ U(x, y) ≤ U(x̄, y) ≤ L|x− x̄|.

Taking infima with respect to y in the right hand side we havem(x) ≤ m(x̄)+L|x−x̄|.
By symmetry we have that m is Lipschitz. The more general case follows in the same
way.

Proof of Theorem 5.6. Let

Mǫ(x) = {y ∈ Y : U(x, y) ≤ min
ȳ∈Y

U(x, ȳ) + ǫ}, x ∈ X.

Let ǫn ↓ 0 and Mn(x) :=Mǫn(x). Let d denote the euclidian distance in Y . Without
loss of generality, assume that d < 1.

We define inductively a sequence Sn : X → Y of functions in BV (X)m taking
finitely many values such that for every x ∈ X and every n ∈ N,

(i) d(Sn(x),M(x)) ≤ 2−n, and
(ii) d(Sn−1(x), Sn(x)) ≤ 2−n+2.

For that, let {rk} be a countable dense set in Y . Define S0(x) = r0 for all x ∈ X . Let
n > 0 and assume that we have constructed Si satisfying (i), (ii) for all i < n. For
each k ∈ N, let

En
k = {x ∈ X : |Sn−1(x) − rk| ≤ 2−n+2, d(rk,Mn(x)) ≤ 2−n}.

Let us prove that for a suitable selection of ǫn the sets En
k are sets of finite perimeter

in X . Since Sn−1 is in BV (X)m and takes finitely many values, the set {x ∈ X :
|Sn−1(x) − rk| ≤ 2−n+2} is of finite perimeter in X . Observe

{x ∈ X : d(rk,Mn(x)) ≤ 2−n} = {x ∈ X : ∃y ∈ B(rk, 2
−n) s. t. U(x, y) ≤ m(x) + ǫn}

= {x ∈ X : inf
y∈B(rk,2−n)

U(x, y)−m(x) ≤ ǫn}.

Since by Lemma 5.7 the functions infy∈B(rk,2−n) U(x, y) and m(x) are Lipschitz func-
tions of x, by excluding a set of null measure we may select a sequence ǫn → 0+ such
that all sets En

k are sets of finite perimeter in X .
Let us consider a finite set Rn ⊂ {rk}k, which is a 2−n net in Y , that is, any

point y ∈ Y is at distance at most 2−n from Rn. Let us prove that X = ∪k:rk∈Rn
En

k .
Let x ∈ X . Since, by (i), d(Sn−1(x),M(x)) ≤ 2−n+1, there exists y ∈M(x) such that
|Sn−1(x) − y| ≤ 2−n+1. Let rk ∈ Rn be such that

|y − rk| ≤ 2−n. (5.2)

Then

|Sn−1(x)− rk| ≤ |Sn−1(x)− y|+ |y − rk| ≤ 2−n+1 + 2−n < 2−n+2. (5.3)

Thus x ∈ En
k .

Then there exist pairwise disjoint setsDn
k ⊆ En

k such that ∪k:rk∈Rn
Dn

k = ∪k:rk∈Rn
En

k =
X and Dn

k are sets of finite perimeter in X . It suffices to take Dn
k = En

k \ ∪j<kE
n
j .

Let Sn(x) =
∑

k:rk∈Rn
rkχDn

k
(x). Clearly Sn ∈ BV (X)m and takes finitely many

values in Y . By (5.2), we have that d(Sn(x),M(x)) ≤ 2−n. By (5.3), we have
d(Sn−1(x), Sn(x)) ≤ 2−n+2.
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Now, by (ii), the sequence Sn converges uniformly to some function S : X → Y .
By (i), S(x) ∈M(x) for all x ∈ X . Thus S is a uniform limit of functions in BV (X)m.

Remark 4. Notice that the above proof also shows that given ǫ > 0 there is a
function Sǫ ∈ BV (X)m with finitely many values such that U(x, Sǫ(x)) ≤ m(x)+ ǫ.

Let us point out some of the properties of S as a uniform limit of BV (X)m

functions. For a detailed account of the properties of functions of bounded variation,
we refer to [3].

Let Q be an open subset of RN . Let u ∈ L1
loc(Q). The total variation of u in Q

is defined by

V (u,Q) := sup

{∫

Q

u div σ dx : σ ∈ C∞
c (Q;RN ), |σ(x)| ≤ 1 ∀x ∈ Q

}
, (5.4)

where C∞
c (Q;RN) denotes the vector fields with values in R

N which are infinitely
differentiable and have compact support in Q. For a vector v = (v1, . . . , vN ) ∈ R

N

we denoted |v|2 :=
∑N

i=1 v
2
i . Following the usual notation, we will denote V (u,Q) by

|Du|(Q).

Let u ∈ L1(Q). We say that u is a function of bounded variation in Q if V (u,Q) <
∞. The vector space of functions of bounded variation in Q will be denoted by
BV (Q). Recall that BV (Q) is a Banach space when endowed with the norm ‖u‖ :=∫
Q
|u| dx+ |Du|(Q).

A measurable set E ⊆ Q is said to be of finite perimeter in Q if χE ∈ BV (Q).
The perimeter of E in Q is defined as P (E,Q) := |DχE |(Q). Recall that almost all
level sets of a bounded variation function are sets of finite perimeter.

Let us denote by LN and HN−1, respectively, the N -dimensional Lebesgue mea-
sure and the (N − 1)-dimensional Hausdorff measure in R

N .

Let u ∈ [L1
loc(Q)]m (m ≥ 1). We say that u has an approximate limit at x ∈ Q if

there exists ξ ∈ R
m such that

lim
ρ↓0

1

|B(x, ρ)|

∫

B(x,ρ)

|u(y)− ξ|dy = 0. (5.5)

The set of points where this does not hold is called the approximate discontinuity
set of u, and is denoted by Su. Using Lebesgue’s differentiation theorem, one can
show that the approximate limit ξ exists at LN -a.e. x ∈ Q, and is equal to u(x): in
particular, |Su| = 0. If x ∈ Q \ Su, the vector ξ is uniquely determined by (5.5) and
we denote it by ũ(x).

We say that x ∈ Q is an approximate jump point of u if there exist u+(x) 6=
u−(x) ∈ R

m and |νu(x)| = 1 such that

lim
ρ↓0

1

|B±
ρ (x, νu(x))|

∫

B±
ρ (x,νu(x))

|u(y)− u±(x)| dy = 0

where B±
ρ , νu(x)) = {y ∈ B(x, ρ) : ±〈y − x, νu(x)〉 > 0}. We denote by Ju the set

of approximate jump points of u. If u ∈ BV (Q)m, the set Su is countably HN−1

rectifiable, Ju is a Borel subset of Su and HN−1(Su \ Ju) = 0 [3]. In particular, we
have that HN−1-a.e. x ∈ Q is either a point of approximate continuity of ũ, or a jump
point with two limits in the above sense.
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As a uniform limit of functions in BV (X)m, S inherits some of its properties. In
particular, HN−1-a.e. x ∈ X is either a point of approximate continuity of S, or a
jump point with two limits in the above sense. Moreover given a point x ∈ JS , x ∈ JSn

for n large enough. That is JS = ∩k ∪n≥k JSn
= lim supn JSn

. In particular, JS is
a countably rectifiable set [3]. Outside it, the function is approximately continuous
modulo an HN−1 null set.

6. Convergence of the alternating optimization scheme. To minimize the
energy, we use an alternating minimization scheme. At each iteration, two optimiza-
tion steps are solved: the minimization of E with respect to w while keeping u fixed;
and the minimization with respect to u with w fixed. In this Section we prove the
convergence of such a scheme to a critical point of the energy both for the case of
patch NL-means and -Poisson models.

Let Eε,T be one of the energies E2,T or E∇,T . Similarly, Aε denotes A2 or A∇

Algorithm 1 Alternate minimization of Eε,T .

Initialization: choose u0 with ‖u0‖∞ ≤ ‖û‖∞ .

For each k ∈ N solve

wk+1 = argmin
w∈W

Eε,T (u
k, w), (6.1)

uk+1 = argmin
(u,wk+1)∈Aε

Eε,T (u,w
k+1), (6.2)

Proposition 6.1. The iterated optimization algorithm converges (modulo a sub-
sequence) to a critical point (u∗, w∗) ∈ Aε of Eε,T . For the energy E2,T (resp. E∇,T )
the solution obtained has the smoothness described in Proposition 4.1 (resp. 4.4), that

is u∗ ∈W 1,∞(O) and w∗ ∈W 1,∞(Õ × Õc) (resp. u∗ ∈ W 1,2(O) ∩W 2,p
loc (O) ∩ L

∞(O)

for any p ∈ [1,∞) and w ∈ W 1,∞(Õ × Õc)).

Let us point out that the convergence of the alternating optimization (Algorithm
1) holds also in the discrete domain.

Proof. Being similar, we give the details only for the case of the patch NL-Poisson
energy.

Step 1. Basic estimates. Let us prove that

κ

N∑

k=0

‖wk+1 − wk‖2 + E∇,T (u
N+1, wN+1) ≤ E∇,T (u

0, w0) (6.3)

for some κ > 0 and {wk(x, y)}k is uniformly bounded in W 1,∞(Õ × Õc).

Let h(u,w;x, y) = w(x, y)‖pu(x)−pû(y)‖2g,∇+Tw(x, y) logw(x, y). We may write

E∇,T (u,w) =
∫
Õ

∫
Õc h(u,w;x, y)dydx.

To prove (6.3), let us observe that

h(uk, wk;x, y)− h(uk, wk+1;x, y) =
∂h

∂w
(uk, wk+1;x, y)(wk(x, y)− wk+1(x, y))

+
∂2h

∂w2
(uk, w;x, y)(wk(x, y)− wk+1(x, y))2
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for an intermediate value w(x, y) ∈ [wk(x, y), wk+1(x, y)]. Since ∂h
∂w

(uk, wk+1) = 0 and
∂2h
∂w2 (u

k, w) = T
w
, it suffices to prove that the sequence wk is bounded independently

of k, because this implies that also is w. In that case we have

h(uk, wk;x, y)− h(uk, wk+1;x, y) ≥ κ(wk(x, y)− wk+1(x, y))2 (6.4)

for some κ > 0.
To prove that wk is bounded independently of k it suffices to observe that

wk(x, y) =
1

Z∇,T (uk−1;x)
exp

(
−

1

T
‖puk−1(x)− pû(y)‖

2
g,∇

)
, (6.5)

where the normalizing factor Z∇,T (u
k−1;x) is given by

Z∇,T (u
k−1;x) =

∫

Õc

exp

(
−

1

T
‖puk−1(x) − pû(y)‖

2
g,∇

)
dy. (6.6)

Now, we observe that by Lemma 4.5, uk is uniformly bounded in W 1,2(O), and by
Lemma 4.6 ‖puk−1(x)−pû(y)‖2g,∇ is uniformly bounded. This implies that there exist
b > a > 0 independent of k such that

a ≤ Z∇,T (u
k−1;x) ≤ b.

By the results of Section 4.2 this implies that {wk(x, y)}k is uniformly bounded in

W 1,∞(Õ × Õc).
Now, using (6.4) we obtain

κ‖wk − wk+1‖22 ≤ E∇,T (u
k, wk)− E∇,T (u

k, wk+1)

= E∇,T (u
k, wk)− E∇,T (u

k+1, wk+1) + E∇,T (u
k+1, wk+1)− E∇,T (u

k, wk+1)

≤ E∇,T (u
k, wk)− E∇,T (u

k+1, wk+1),

since E∇,T (u
k+1, wk+1) − E∇,T (u

k, wk+1) ≤ 0 because uk+1 is given by (6.2). By
adding from k = 0, . . . , N , we get (6.3).

Step 2. Convergence to a critical point of E∇,T and regularity. By Step 1 we may
extract a subsequence kj such that wkj weakly converges to some w∗ in Lp for all
p ∈ [1,∞] and ukj converges to some u∗ ∈ W 1,2(O). By (6.3) also wkj+1 converges
to w∗ in Lp for all p ∈ [1,∞].

The equations satisfied by uk+1, wk+1 are

∆uk+1(z) = div vk+1(z) z ∈ O (6.7)

uk+1(z) = û(z) z ∈ ∂O,

where

v
k+1(z) =

∫

Ωp

g(h)

∫

Õc

wk+1(z − h, y)∇û(y + h)dydh (6.8)

and wk+1(x, y) is given by (6.5) and (6.6) with k replaced by k + 1.
Notice that

vkj (z), vkj+1(z) → v∗(z) :=

∫

Ωp

g(h)

∫

Õc

w∗(z − h, y)∇û(y + h)dydh



24 P. ARIAS, V. CASELLES AND G. FACCIOLO

as j → ∞. The convergence is also strong, since vk is uniformly bounded. Then,
using (6.7) we have that

‖∇uk−∇uk+1‖22 =

∫

RN

(vk−v
k+1)(∇uk−∇uk+1) dz ≤ ‖vk−v

k+1‖2‖∇u
k−∇uk+1‖2.

Since both uk and uk+1 have the same boundary values, uk − uk+1 converges to 0 in
W 1,2(O). Thus ukj , ukj+1 both converge to u∗ in L2(O). We have

w∗(x, y) =
1

Z∇,T (u∗;x)
exp

(
−

1

T
‖pu∗(x) − pû(y)‖

2
g,∇

)
, (6.9)

where the normalizing factor Z∇,T (u
∗;x) is given by

Z∇,T (u
∗;x) =

∫

Õc

exp

(
−

1

T
‖pu∗(x)− pû(y)‖

2
g,∇

)
dy. (6.10)

Notice that u∗ satisfies the boundary condition in (6.7). Thus (u∗, w∗) ∈ A∇ is a
critical point of E∇,T (u,w). Since E∇,T (u

∗, w) is a strictly convex function of w, then
w∗ is a minimum of E∇,T (u

∗, w). Since E∇,T (u,w
∗) is a strictly convex function of u,

then u∗ is a minimum of E∇,T (u,w
∗). By Remark 1, (u∗, w∗) we have the regularity

stated in the statement.

Let us notice that the iterations of the alternating optimization algorithm coincide
with the Expectation Maximization algorithm (EM). Indeed, (6.1) is the E-step, while
(6.2) is the M-step. Using the notation of Section 3, if

wε,T (u;x, y) =
1

Zε,T (u;x)
exp

(
−

1

T
‖pu(x) − pû(y)‖

2
g,ε

)
, (6.11)

where Zε,T (u;x) is the corresponding normalization factor, then we may write

1

T
Eε,T (u,w) =

∫

Õ

KL(wε,T (u;x, ·), w(x, ·)) dx − Lε(u),

where

Lε(u) =

∫

Õ

log Zε,T (u;x) dx (6.12)

corresponds to the so called marginal likelihood in the context of EM. The alternat-
ing optimization algorithm converges (modulo subsequences) to stationary points of
Lε(u). Notice that given u, the solution of minw Eε,T (u,w) is given by wε,T (u). Note
that

−TLε(u) = Eε,T (u,wε,T (u)) ≤ Eε,T (u,w) ∀(u,w)

and

min
(u,w)

Eε,T (u,w) = min
u

min
w

Eε,T (u,w) = min
u

Eε,T (u,wε,T (u)) = min
u

−TLε(u).

Thus, functional Eε,T (u,w) is equivalent to −Lε(u) in the sense that both have the
same minima. The alternating optimization algorithm converges to a critical point of
both of them. More precisely:
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Proposition 6.2. Any limit point of the sequence {uk}∞k=0 defined by Algorithm
1, is a stationary point u∗ of Lε(u) and Lε(u

k) converges monotonically to Lε(u
∗).

Proof. Indeed,

Lε(u
k+1)− Lε(u

k) = −
1

T
Eε,T (u

k+1, wε,T (u
k)) +

1

T
Eε,T (u

k, wε,T (u
k))

+

∫

Õ

KL(wε,T (u
k+1;x, ·), wε,T (u

k;x, ·)) dx −

∫

Õ

KL(wε,T (u
k;x, ·), wε,T (u

k;x, ·)) dx

≥ −
1

T
Eε,T (u

k+1, wε,T (u
k)) +

1

T
Eε,T (u

k, wε,T (u
k)) ≥ 0.

Thus Lε(u
k) is increasing.

Let us notice that one can prove Proposition 6.2 by adapting the proof of Theorem
2 in [58].

Remark 5. We can also interpret the above expressions in terms of a probabilistic
model in the space of patches. The marginal likelihood (6.12) can be interpreted by
noticing that Zε,T (u;x) is a density estimate (in the patch space) of the set of patches
in Oc: it corresponds to the total unnormalized similarity of patch pu(x).

The minimizer (u∗, w∗) are obtained when for all (x, y) ∈ Õ × Õc, w∗(x, y) =
pε,β(u

∗;x, y) (i.e. normalized Gaussian weights), and the patches of the inpainted
image are in regions of high density in the patch space. This provides a geometric
intuitive interpretation of our variational formulation. The image is considered as an
ensemble of overlapping patches. Known patches in Õc are fixed, forming a patch
density model used to estimate the patches in Õ.

6.1. The relaxed correspondence model (discrete case). The translation
of the previous approach to the relaxed correspondence model Eε,0 described in Section
5 has to face in its continuous version the difficulty of the lack of estimates ensuring
the compactness of the iterates of (6.13) and (6.14) in Algorithm 2. In the discrete
case, the convergence can be proved thanks to the convexity of Eε,0(u, ν) in each
variable when the other is fixed. Thus, we work only in the discrete case.

Algorithm 2 Alternate minimization of E2,0.

Initialization: choose u0 with ‖u0‖∞ ≤ ‖û‖∞.

For each k ∈ N solve

νk = argmin
ν∈MP

Eε,0(u
k, ν) (6.13)

uk+1 = argmin
u

Eε,0(u, ν
k) (6.14)

Proposition 6.3. There exists a subsequence which converges to a critical point
of the energy Eε,0.

Proof. Since uk and νk are bounded, there is a subsequence (ukj , νkj ) converging
to (ū, ν̄). Notice that if ν is fixed, then the solution of minu Eε,0(u, ν) is unique.
Clearly ν̄ is a minimum of ν → Eε,0(ū, ν). Proceeding as in [13], one can prove that
ukj+1 − ukj converges to 0 and deduce that ū is a minimum of u→ Eε,0(u, ν̄).

The convergence of the first step of the algorithm (6.13) is the object of next



26 P. ARIAS, V. CASELLES AND G. FACCIOLO

Section. The solution of (6.14) is explicitly given by

ū(x) =
∑

Z2

g ∗ (χ
Õ
χ
Õcν

k)(x− ·, y − ·)û(y) (6.15)

for the energy E2,0 and requires the solution of a discrete version of Poisson equation
for E∇,0.

7. Computation of the Nearest Neighbor Field. In this Section we discuss
some aspects on the numerical minimization of the inpainting functionals. Through-
out the Section we consider discretized versions of the inpainting domain and its
complement, Õ = Õ ∩ Z

2 and Õc = Õc ∩ Z
2. To avoid a cumbersome notation, we

slightly modify it in this Section (for instance some arguments of functions will be
denoted as subindices).

For minimizing the functionals derived from (2.1), (2.2) we use alternating opti-
mization schemes (Algorithms 1 and 2). Most of the computational load is caused
by the updating of the weights. In this Section we discuss the convergence proper-
ties of PatchMatch, an algorithm recently introduced by Barnes et al. [9], which we
use to speed-up the computation of the similarity weights. For other aspects of the
numerical implementation we refer to Section 8. More details can be found in [5].

For T > 0, the computation of the weight function w is of order O(|Õ||Õc||Ωp|).
This is also the case in the limit T = 0, namely for Eε,0. In that case, as shown
in Proposition 5.3, there are minima given by measurable measure-valued maps ν
determined by a measurable correspondence map ϕ : Õ → Õc. This allows us to
express the energy directly in terms of the unknown map ϕ, instead of the measure-
valued map ν. Thus, when considering the optimization of Eε,0 the weights update
step is substituted by a minimization w.r.t. a correspondence map ϕ,

ϕx ∈ argmin
ξ∈Z2

Ux(ξ), for all x ∈ Õ,

where the energy Ux corresponds to the patch error function

Ux(ξ) =

{
ε(pu(x)− pû(ξ)) if ξ ∈ Õc

+∞ otherwise.

Although the patch error does not have to be a metric, we will refer to pû(ϕx) as the
nearest patch or nearest neighbor of pu(x). Following [9], we denote the correspondence

map ϕ : Õ → Õc as the nearest neighbor field (NNF). A brute force search for the

NNF also conveys O(|Õ||Õc||Ωp|) operations.
PatchMatch is a very efficient algorithm for approximating the NNF [9]. The

search for the nearest neighbor is performed simultaneously over the points in Õ
based in the following heuristic: since query patches overlap, the offset ϕx − x of a
good match at x is likely to lead to a good match for the adjacent points of x as well.
It is an iterative algorithm which starting from a random initialization, alternates
between steps of propagation of good offsets and random search.

For describing them, we need some definitions. Pixels in Õ = {x1, x2, . . . , x|Õ|}

are sorted according to the lexicographical order in Z
2. For any x ∈ Õ, let N4(x) =

{z ∈ Õ : 0 < |z − x| 6 1} be its 4-neighborhood. We consider a transition probability

kernel Q : Õc × B → [0, 1], where B is a σ-algebra in Õc (the subsets of Õc in our
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discrete case). Finally, let us define the notation,

η ∧x ξ =

{
η if Ux(η) ≤ Ux(ξ)
ξ if Ux(η) > Ux(ξ),

where ξ, η ∈ Õc.

The PatchMatch algorithm is described in Algorithm 3. The computational order
is O(|Ωp||Õ|), whereas the memory requirements are of O(|Õ|). For most applications,
a few iterations after a random initialization are often sufficient. Our implementation,
coded in C without optimizations, running on a notebook’s dual core 1.8GHz CPU,
takes between 3s to 4s to compute the correspondences for an image of 300 × 255,
with a mask of |Õ| ≈ 14.000 pixels and |Õc| ≈ 50.000 pixels and a patch of size 7× 7.

This algorithm can be extended to store queues of L offsets in an L-Nearest
Neighbors Field [10] (see also [5]). This allows its application to the case T > 0, by
truncating the support of w(x, ·) to the L-nearest neighbors of pu(x). This increases
the computational cost and the memory requirements by a factor of L. We note
however, that although each iteration is more costly, the use of queues usually reduces
the required number of iterations.

Algorithm 3 PatchMatch with propagation of offsets.

Initialization. Choose ϕ0
x ∼ U(Õc), i.e., randomly with a uniform distribution.

For each n ∈ N,

Random search. For each x ∈ Õ draw Sϕn
x ∼ Q(ϕn

x , · ). Set ϕ
n+ 1

2
x = ϕn

x ∧x Sϕ
n
x .

Forward propagation. If n is odd, for each i = 1, . . . , |Õ|, set

ϕn+1
xi

= ϕ
n+ 1

2
xi ∧xi

(
∧

xi

{ϕn+1
xj

+ xi − xj : xj ∈ N4(xi), j < i}

)
.

If n is even, invert the direction of propagation (backward propagation).

7.1. Convergence of the PatchMatch algorithm. In this Section we discuss
the convergence properties of the PatchMatch algorithm (for L = 1, i.e. without
considering queues). For simplicity we will prove the convergence result for a different
version of the PatchMatch algorithm. The difference lies in the propagation step: In
the original version of Barnes et al. [9], a node z will propagate the offset ϕz − z

to x. In our simplified version, the absolute position ϕz ∈ Õc is propagated instead
(Algorithm 4). The arguments for the simplified “position-propagation” case can be
applied to the “offset-propagation” case (with more involved computations). The
latter is much more relevant from the practical point of view. This is briefly discussed
in Section 7.1.1. Before proceeding to the convergence result, it is necessary to add
some additional structure.

We will consider that elements in Õ correspond to the vertices of a directed acyclic
graph (DAG) G = (Õ, E), where E ⊂ Õ× Õ denotes the edge set. We define the edge
set as follows:

E = {(x, y) ∈ Õ × Õ : y ∈ N4(x), x < y}.
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By x < y we mean that x precedes y in the lexicographical order. Note that the
lexicographical order is a topological order for the resulting DAG. Paths in G will be
denoted by c = (c1, . . . , cnc

) ∈ Õnc , where nc ∈ N is the length of the path. Given any

pair of nodes, x, z ∈ Õ, we will denote by P(z, x) the set of paths from z to x. A node

z ∈ Õ is said to be an ancestor of x if P(z, x) 6= ∅. Note that if z is an ancestor of x,
then z comes before x in the lexicographical ordering. Similarly, z is a descendant of
x if P(x, z) 6= ∅ (i.e. x is an ancestor of z). We will write A(x) and D(x) for the set
of ancestors and descendants of node x, respectively.

Algorithm 4 Propagation of positions.

Given n ∈ N, and ϕn+ 1
2 :

Forward propagation. If n is odd, for each i = 1, . . . , |Õ|, set

ϕn+1
xi

= ϕ
n+ 1

2
xi ∧xi

(
∧

xi

{ϕn+1
xj

: xj ∈ N4(xi), j < i}

)
.

If n is even, invert the direction of propagation (backward propagation).

The following proposition provides a bound on the convergence rate (in proba-
bility) for Algorithm 4. Without loss of generality we will assume throughout this

Section that minξ Ux(ξ) = 0 for all x ∈ Õ.

Proposition 7.1. Assume that for each pair x, y ∈ Õ, we have that dx,y := ‖Ux−

Uy‖∞ < +∞. Assume that Õc is compact (and therefore finite) and that Q(x,A) > 0,

for all x ∈ Õ, A ⊂ R. Then, the sequence (ϕn) defined by the PatchMatch algorithm
converges to a minimizer of the total energy U , in the sense that

lim
n→∞

P (Ux(ϕ
n
x) > ǫ) = 0, for all ǫ > 0, x ∈ Õ.

Moreover, we have that

P (Ux(ϕ
n+1
x ) > ǫ) 6

∏

z∈A(x)

C(z, ǫ− ℓz,x)P (Ux(ϕ
n
x) > ǫ), (7.1)

where ℓz,x is the length of the minimal path from z to x:

ℓz,x :=

{
minc∈P(z,x)

∑nc

i=2 dci−1,ci if P(z, x), 6= ∅,
+∞, if P(z, x) = ∅,

and for each z ∈ Õ, C(z, · ) : R → [0, 1] is a non-increasing function defined by:

C(z, a) := sup
η∈{Uz>a}

Q(η, {Uz > a}).

For a > 0, C(z, a) < 1.
The proof of Proposition 7.1 relies on the following lemma.
Lemma 7.2. Assume that for each pair x, y ∈ Õ, we have that dx,y := ‖Ux −

Uy‖∞ < +∞. Let us consider an assignment ϕ resulting from a propagation step.

Then we have that for each pair of nodes x, z ∈ Õ,

Ux(ϕx) > ǫ ⇒ Uz(ϕz) > ǫ− ℓz,x.
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Proof. Let us consider a path c ∈ P(z, x). We have that for any a > 0,

Uci(ϕci) > a ⇒ Uci(ϕci−1
) > a

(otherwise, ϕci−1
would have been propagated to node ci). Since ‖Uci − Uci−1

‖∞ =
dci−1,ci , we have that

Uci(ϕci) > a ⇒ Uci−1
(ϕci−1

) > a− dci−1,ci .

A simple recursion results in

Ux(ϕx) > ǫ ⇒ Uz(ϕz) > ǫ−
nc∑

i=2

dci−1,ci .

Thus each path from z to x imposes a bound over Uz(ϕz). The intersection of all of
them is given by Uz(ϕz) > ǫ− ℓz,x.

We now prove Proposition 7.1.
Proof. Let us consider x ∈ Õ. Since ϕn+1 is the result of a search step followed

by a propagation step, we can apply Lemma 7.2. Thus,

Ux(ϕ
n+1
x ) > ǫ ⇒ Uz(ϕ

n+1
z ) > ǫ− ℓz,x, ∀z ∈ Õ,

⇒ Uz(ϕ
n
z ) > ǫ− ℓz,x and Uz(Sϕ

n
z ) > ǫ − ℓz,x, ∀z ∈ Õ,

where the last implication is due to the random search step. Taking probabilities we
have that

P (Ux(ϕ
n+1
x ) > ǫ) 6 P (Uz(ϕ

n
z ) > ǫ− ℓz,x and Uz(Sϕ

n
z ) > ǫ− ℓz,x, ∀z ∈ Õ)

=
∏

z∈Õ

P (Uz(Sϕ
n
z ) > ǫ− ℓz,x|Uz(ϕ

n
z ) > ǫ − ℓz,x)P (Uz(ϕ

n
z ) > ǫ− ℓz,x, ∀z ∈ Õ)

6
∏

z∈Õ

P (Uz(Sϕ
n
z ) > ǫ− ℓz,x|Uz(ϕ

n
z ) > ǫ − ℓz,x)P (Ux(ϕ

n
x) > ǫ).

The second equality is due to Bayes’ formula for conditional probabilities, and to the
conditional independence of the random searches given ϕn. In the latter inequality
we have used that P (Uz(ϕ

n
z ) > ǫ − ℓz,x, ∀z ∈ Õ) 6 P (Ux(ϕ

n
x) > ǫ) since the l.h.s.

corresponds to the probability of the intersection of several events, while the r.h.s. is
the probability of only one of such events.

Given z ∈ Õ, we denote by P z,n the probability distribution of ϕn
z (i.e. P (ϕn

z ∈

A) = P z,n(A), for A ∈ B(Õc)). Then, by the definition of conditional probability, we
have:

P (Uz(Sϕ
n
z ) > a|Uz(ϕ

n
z ) > a) =

1

P z,n({Uz > a})

∫

Uz(η)>a

P z,n(dη)

∫

Uz(ξ)>a

Q(η, dξ).

Notice that P z,n
a := [P z,n({Uz > a})]−1P z,n is a probability when restricted to the

upper level set {Uz > a}. Therefore, the following bound holds

P (Uz(Sϕ
n
z ) > a|Uz(ϕ

n
z ) > a) 6 sup

η∈{Uz>a}

Q(η, {Uz > a}) =: C(z, a).
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The coefficient C(z, a) a supremum of probabilities, thus C(z, a) ∈ [0, 1]. The function
C(z, · ) : R → [0, 1] is non-increasing, since for a1, a2 ∈ R, a1 > a2 we have that
{Uz > a1} ⊆ {Uz > a2}. Finally, since Uz is non-negative with a minimum value of

0, for a > 0, we have that Q(η, {Uz > a}) < 1, for all η ∈ Õc. Since Õc is compact
(and therefore finite in the discrete setting) we have that C(z, a) < 1, for a > 0.

Remark 6. The efficiency of the PatchMatch is mostly given by the propagation
steps, when nodes collaborate by sharing their findings. This is reflected by (7.1).
For comparison, consider a PatchMatch algorithm without propagation. Each ϕx is
searched for independently for each x ∈ Õ. In that case, the bound on the rate of
convergence (7.1) reduces to

P (Ux(ϕ
n+1
x ) > ǫ) 6 C(x, ǫ)P (Ux(ϕ

n
x) > ǫ).

The speed-up given by the propagation corresponds to
∏

z∈A(x)
z 6=x

C(z, ǫ − ℓz,x). Note

that only those z ∈ A(x) with ℓz,x < ǫ contribute to lower the bound.

7.1.1. Registered propagation. Let us now address the propagation of offsets
(Algorithm 3). We extend the definition of the energies to Z2 by taking Ux(ξ) = +∞ if

ξ ∈ Z
2\Õc. For each pair of connected nodes (z, x) ∈ E we are given a transformation

Tx,z : Õc → Z
2 (which is Tx,z(ξ) = ξ−z+x in Algorithm 3). The registered propagation

is defined as follows:

ϕn+1
xi

= ϕ
n+ 1

2
xi ∧xi

(
∧

xi

{Txi,z(ϕ
n+1
z ) : (z, xi) ∈ E}

)
.

With analogous computations (slightly more involved), one can prove that this version
of the PatchMatch also converges, with the following bound for the rate of conver-
gence:

P (Ux(ϕ
n+1
x ) > ǫ) 6

∏

z∈A(x)

C(z, β(T, z, x, ǫ))P (Ux(ϕ
n
x) > ǫ), (7.2)

where

β(T, z, x, ǫ) = max
c∈P(z,x)

min
i=1,...,nc



U

∗(T, c, ǫ)i −
nc∑

j=i+1

d(T )cj−1,cj



 , (7.3a)

U∗(T, c, ǫ)i =

{
ǫ if i = 1,

min{Uci−1
(ξ) : ξ ∈ Õc \ T−1

ci,ci−1
(Õc)} if i = 2, . . . , nc,

(7.3b)

d(T )x,z = ‖Ux ◦ Tx,z − Uz‖∞,T−1
x,z(Õc). (7.3c)

This is a consequence of the fact that we are allowing the transformations Tx,z to

map some ξ ∈ Õc outside Õc, i.e. Tx,z(ξ) ∈ Z
2 \ Õc. If Tx,z(ϕz) ∈ Z

2 \ Õc, then
it is not propagated to node x. Thus, the fact that Ux(ϕx) > ǫ, implies that either

ϕz ∈ T−1
x,z (Õ

c) and Uz(ϕz) > ǫ− d(T )x,z, or ϕz ∈ Õc \ T−1
x,z (Õ

c), in which case, we do
not have control over Uz(ϕz) other than

Uz(ϕz) > min{Uz(ξ) : ξ ∈ Õc \ T−1
x,z (Õ

c)}.
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This gives rise to the U∗ coefficients in (7.2).

Observe that in the case in which Tx,z(Õ
c) ⊂ Õc, for all (z, x) ∈ E, then one

recovers

β(T, z, x, ǫ) = ǫ− ℓ(T )z,x = ǫ− min
c∈P(z,x)

nc∑

i=2

d(T )ci−1,ci ,

as in (7.1). The transformations Tx,z should be chosen to lower the edge cost d(T )x,z,
by registering Ux and Uz.

In [9] the propagation is performed with a transformation Tx,z(ξ) = ξ−z+x, which
corresponds to the propagation of the offset ξ− z. Let us estimate the corresponding
bound according to (7.2). We denote by e0 = (0, 1) and e1 = (1, 0). The parents of

node x ∈ Õ are x − ei with i = 0, 1, and correspondingly Tx,x−ei(ξ) = ξ + ei. Note

that Õc \ T−1
x,x−ei

(Õc) = Õc \ (Õc − ei). To simplify the discussion, we assume that

min{Uz(ξ) : ξ ∈ Õc \ (Õc − ei)} > κ > 0

for all z ∈ Õ. Then, as can be seen from (7.3a) and (7.3b), for all ǫ < κ, we have that
β(T, z, x, ǫ) = ǫ−minc∈P(z,x)

∑nc

i=2 d(T )ci−1,ci.
For d(T )x,x−ei we have

d(T )x,x−ei = ‖UxTx,x−ei − Ux−ei‖∞,T−1

x,x−ei

= sup
ξ∈T−1

x,x−ei
(Õc)

|g ∗ e(u(Tx,x−ei(x− ei) + ·)− û(Tx,x−ei(ξ) + ·))−

g ∗ e(u(x− ei + ·)− û(ξ + ·))|

6 sup
ξ∈T−1

x,x−ei
(Õc)

|(g ◦ Tx,x−ei − g)| ∗ e(u(x− ei + ·)− û(ξ + ·)). (7.4)

We have used that x = Tx,x−ei(x − ei) and that if T is a translation g ∗ (f ◦ T ) =
(g ◦ T ) ∗ f . The bound 7.4 corresponds to a patch error weighted by the kernel

∂+i g(h) := g ◦ Tx,x−ei(h)− g(h) = g(h+ ei)− g(h) ≈ ∂ig(h),

which is an approximation of the partial derivative of g. This is an interesting prop-
erty, because if g is smooth, |∂+i g(h)| is small (recall that we should minimize d(T ) to
maximize the coefficients β). This is essentially the Lipschitz estimate of Lemma 4.2
in the present context.

The “propagation of offsets” exploits the overlap of neighboring patches in the
image domain, suggesting that each node should be connected with its neighbors on
the image grid. This supports the intuitions in [9].

7.2. Case T > 0: MCMC à la PatchMatch. As discussed before, a naive
computation of w is of order O(|Ωp||Õ||Õc|), which makes the inpainting algorithm
of little practical use. The PatchMatch scheme allows an efficient computation of the
correspondence map ϕ, when T = 0. But when T > 0, the nearest neighbor is only
the mode of w(x, ·). One way to circumvent this problem is to use an extension of
the PatchMatch algorithm which finds the L nearest neighbors for each patch. For L
large enough, most of the mass of w(x, ·) will be captured by the L nearest neighbors.
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This works for low values of T , but will yield a bad approximation when T is high.
Furthermore, even when T is low, it is hard to set the appropriate value of L.

A more accurate estimation of w can be obtained with a Monte Carlo method,
which consists of approximatin w(x, ·) by a set of L samples yx,1, . . . , yx,L drawn
independently from w(x, ·). This opens an interesting problem, namely how to sam-
ple efficiently from a family of spatially indexed probability distributions, varying
smoothly w.r.t. to the spatial index. The PatchMatch algorithm is designed to solve
a related problem: finding the modes of this family of distributions. Thus, it can be
expected that some sort of spatial collaboration between neighboring nodes (as the
propagation step in PacthMatch) can yield a more efficient sampler. The investigation
of these ideas in the context of MCMC will be the object of future research.

8. Experiments. We display some experiments using the energies above, namely
the patch NL-means model, the patch NL-Poisson model, and a mixture of them (see
Section 8.2). For inpainting real images we use the models with T = 0, but we also
display an example obtained using the annealing scheme. Let us denote E(u,w) any of
the energies used below. The numerical algorithm we use is based on the alternating
optimization scheme (or EM scheme), Algorithms 1 and 2. The solution of the image
update step is given explicitly as a non-local average (patch NL-means) or it requires
the solution of a Poisson type equation (patch NL-Poisson and the combination of
both). For computing the weights, we use the PatchMatch algorithm in case T = 0
or, for T > 0, an extension of it adapted to store queues of L offsets in an L-Nearest
Neighbors Field [10] (see also [5]).

Figure 8.1: Inpainting of a synthetic texture. The initial condition is shown in
the first column. The other four columns show a zoom (region in the red rectangle) of
the results of patch NL-means, and -Poisson. Top row, T = 0, bottom row T = 200
and T = 400, respectively. The intra-patch weight kernel g is shown in the bottom
right corner of the initial condition, it has a standard deviation a = 5 and the patch
size is s = 15.

8.1. Effect of the selectivity parameter. First we consider the inpainting
of a regular texture (shown in Figure 8.1) with two different mean intensities. The
inpainting domain hides all patches on the boundary between the dark and bright
textures. With this example we can test the ability of each method to create an
interface between both regions. Situations like these are common in real inpainting
problems, for instance due to inhomogeneous lighting conditions. We have also added
Gaussian noise with standard deviation σ = 10 to show the influence of the selectivity
parameter T . Each column of Figure 8.1 shows the results of the four methods
described in the previous Section. We have tested each method with T = 0 (top row),
and T > 0 (bottom row), chosen approximately to match the expected deviation of
each patch error due to the presence of noise. The intra-patch weight kernel g is
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shown in the bottom right corner of the initial condition. It is a Gaussian kernel with
standard deviation a = 5 truncated to a square patch of size is s = 15.

Notice that the gradient-based method yields a much smoother shading of the
texture. This is due to the fact that the image update step is computed as the
solution of a PDE which diffuses the intensity values present at the boundary of the
inpainting domain.

40 50 60 70 80 90 100 110

100

150

200

250

patch NL−means

patch NL−Poisson
known image

Figure 8.2: Profiles of the results in Figure 8.1. The profiles are taken from an
horizontal line going between the circles in Figure 8.1. Top: results with T = 0 and
bottom: results with T > 0.

As expected, the results using a higher value of T show some denoising. This effect
can be better appreciated in the profiles shown in Figure 8.2, which depict the image
values for a horizontal line between the circles. In the usual context of inpainting, in
which the available data is not perturbed by noise, this denoising translates into an
undesirable loss of texture quality (some details are treated as noise, a common effect
in image enhancement). For that reason for the rest of the inpainting experiments
shown in this paper we will consider T = 0. In other applications such as denoising or
image regularization, the case of T > 0 becomes relevant. Although we do not pursue
them in the present work, it would be interesting to explore the application of this
formalism to more general settings following the line of [48] and our work in [28] on
the reconstruction of of sparsely sampled images.

8.2. Results on real images. We present some results to illustrate how the
inpainting functionals work on real images. We begin by briefly enumerating some
implementation issues. For a detailed presentation of these issues we refer the reader
to [5], where they will also find more results and a comparison with other state-of-
the-art methods.

We consider two inpainting methods, variations of studied framework, namely
patch NL-means, and -Poisson. As discussed in the preceding Section we set T = 0
to prevent from blurring.

Combination of gradients and intensities. For patch NL-Poisson the patch simi-
larity weights w are computed based only on the gradients of the image. In most cases
however, the gradient is not a good feature for measuring the patch similarity, and it
is convenient to consider also the gray level/color data. For this reason we consider a
convex combination of the patch error functions of patch NL-means and -Poisson:

E2,λ,0(u,w) =

∫

Õ

∫

Õc

w(x, y)
(
λ‖pu(x) − pû(y)‖

2
g + (1− λ)‖pu(x)− pû(y)‖

2
∇,g

)
dydx,

(8.1)

where the parameter λ ∈ [0, 1) controls the mixture. The theoretical results of the
paper hold in this case, under the assumptions of the patch NL-Poisson method. From
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now on, we will use the term patch NL-Poisson to refer to this model. The case λ = 1
corresponds to the patch NL-means and will be considered separately. Typically we
will set λ 6 0.1, in this way we include some intensity information in the computation
of the weights, without departing too much from the Poisson equation (2.6).

In this case the Euler equation w.r.t. u becomes:

(1− λ)∆u(z)− λu(z) = (1− λ)div v(z)− λf(z), for z ∈ O,

u(z) = û(z), for z ∈ ∂O.

Here

f(z) :=

∫

R2

g ∗ w
Õ,Õc(z − ·, z′ − ·)û(z′)dz′,

v(z) =

∫

R2

g ∗ w
Õ,Õc(z − ·, z′ − ·)∇û(z′)dz′.

Observe that f corresponds to a patch NL-means image update, and v is a non-local
average of the gradients in Oc. The problem is linear and can be solved for instance
with a conjugate gradient scheme.

Multiscale scheme. Exemplar-based inpainting methods have a critical depen-
dence with the size of the patch. Furthermore, when the inpainting domain is large in
comparison with the patch, the energies have many local minima, and not all of them
are good inpaintings. It is the common practice in the literature (e.g. [37, 39, 57]),
to incorporate a multiscale scheme. It consists on applying sequentially the inpaint-
ing method on a Gaussian image pyramid, starting at the coarsest scale. The result
at each scale is upsampled and used as initialization for the next finer scale. The
patch size is constant through scales, which amounts (approximately) to minimize
a sequence of energies with decreasing patch sizes without subsampling the image.
This alleviates the critical dependence w.r.t. the size of the patch, helps in avoiding
local minima and alleviates the computational cost. In our experiments, the size of
the coarsest scale is a 10 − 20% of the original size, except for a few cases which
required less subsampling. The number of scales is set such that the subsampling rate
is approximately 0.8 as in [57].

The results are shown in Figures 8.3, 8.4 and 8.5, classified according to the
nature of the inpainting problem. The most important parameters are the patch size,
the size of the coarsest scale, and λ. For almost all experiments we used patches of
size s between 3× 3 and 9× 9. We used constant intra-patch weights (ga = 1/|Ωp|).
For the mixing coefficient λ for the patch NL-Poisson model in (8.1) we tested two
configurations: λ = 0.01 and λ = 0.1. Recall that lower values of λ give a higher
weight to the gradient component of the energy. This is appropriate for structured
images with strong edges.

Copy regions and transition bands. Let us focus now on the solution of the func-
tional in the limit case when T → 0. In this case, the weights w are replaced by a map
ϕ : Õ → Õc. As a result of the alternating minimization scheme, ϕ(x) corresponds to
the center of the most similar patch to pu(x) (the nearest neighbor).

In Figure 8.7 we show some steps of the minimization process for the patch NL-
means applied to a natural texture. The red curves on the bottom row depict the
boundaries of the regions with constant offset with respect to the nearest neighbor.
This offset is given by t(x) = ϕ(x) − x, for x ∈ Õ. Since ϕ is the nearest neighbor
field (NNF), we will refer to t as the offset-to-the-nearest-neighbor field (ONNF). The
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Figure 8.3: Results on structured images. KT: method of Komodakis and Tziritas
[39] and KSY: method of Kawai et al. [37]. M, and P stand for patch NL-means, and
-Poisson. From top to bottom cabin, station bench and sofa.

Figure 8.4: Results on random textures. KT: method of Komodakis and Tziritas
[39]. M and P stand for patch NL-means and -Poisson. From top to bottom baseball,
bridge and golf.

minimization process starts from a highly complex ONNF. Then regions of constant
offset start to grow from the boundaries towards the interior of the inpainting domain,
creating a (rather simple) partition of Õ.

Let us analyze how would the inpainting look like for the simple case in which O
is partitioned in two regions of constant ONNF, R1 with t(x) = t1 and R2 with t2
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Figure 8.5: Results on periodic textures. KT: method of Komodakis and Tziritas
[39] and KSY: method of Kawai et al. [37]. M and P stand for patch NL-means and
-Poisson. From top to bottom matsuri and mailboxes.

Figure 8.6: Two copy regions and the transition band. In regions R1 and R2,
which have a constant NNF, data is rigidly translated (copied) from corresponding
source regions in the complement. The transition between these copy regions takes
place on a band whose width coincides with the patch size.

(Figure 8.6). Thus, for the patch NL-means we have

u(z) = α1û(z + t1) + α2û(z + t2),

where αi =
∫
Ωp
ga(y)χRi

(z− y)dy, i = 1, 2, is the area of the intersection of the patch

centered at z with Ri.
Pixels in the red band in Figure 8.6 receive two contributions (α1, α2 > 0). Out-

side this band, in both regions R1 and R2, the image u results from a rigid translation
(i.e. a verbatim copy) from two corresponding regions in Oc. The transition between
both copy regions takes place at the red transition band. Patch NL-means performs
a smooth blending.

This argument generalizes to an arbitrary number of regions. The value of u
at each pixel z is determined by the copy regions overlapped by the patch centered
at z, weighted by the overlap area. The transition bands are defined as the centers
of patches intersecting at least two different copy regions. Outside these bands, the
resulting image is an exact copy (of intensities or gradients) of a corresponding source
region in Oc.

The bottom row in Figure 8.7 shows the evolution of the patch error ε(pu(x) −
pû(n(x))). Recall from (2.9) that, in the limit T → 0, the energy is computed as
the sum of these errors. The energy is concentrated around the transition bands,
since patches that do not overlap any band are an exact copy of the source patch.
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This explains why the minimization of the energy often favors the emergence of copy
regions. Let us point out that there are cases in which the optimum inpainting does not
present any copy region at all. The multiscale approach tends to prevent convergence
to these kind of minima.

Figure 8.7: Minimization of the energy. Iterations k = 1, 2, 3, 20, 50, 66 of the
minimization procedure corresponding to the patch NL-means (all schemes have a
similar behaviour). The algorithm converged at k = 66. The bottom row shows the
corresponding distribution of the patch error (energy density). Notice the emergence
of coherent copy regions and how the energy concentrates along their boundaries.

8.3. Some comments. The patch NL-Poisson performs well in images with a
strong structure (Figures 8.3 and 8.5) but fails in images characterized by random
textures. In the following we are going to analyze the reasons for this behavior,
discussing the benefits and limitations of using gradients both in the image and weights
update steps.

Gradients in the image synthesis. The image obtained with patch NL-Poisson is
the result of copying gradients from the known portion of the image into the hole and
then solving a PDE. Although we do not have a proof of it, in our experiments we
observe that the synthesized image will not have edges which are not in Oc. This is
not the case for patch NL-means, which may present discontinuities (seams) at the
boundary of the hole (see for instance the result of patch NL-means in sofa, Figure
8.3).

Gradients in the patch similarity weights. For patch NL-Poisson (8.1), the patch
error is a combination of intensity and gradients. With the low values of λ used,
the gradient component dominates. For some textured images this may cause the
method to fail. For instance, in baseball (Figure 8.4), segments of the sky have been
reproduced in the snow. The result with λ ≈ 1 produces a better reconstruction.

8.4. Further developments. Let us discuss some preliminary results on several
directions that deserve future exploration.

Equilibria of some non-variational schemes. Figure 8.8 shows results obtained
with a variant of the patch NL-Poisson. Different values of the mixture coefficient λ
are used for the image (λu) and weights update (λw). Results in Figure 8.8 correspond
to λw = 1, i.e. the weights are computed based only on the image values. The image
is updated using the corresponding image update step with a low value of λu. Such
scheme is non-variational unless λu = λw. However, it can be proven that the iterative
scheme converges to a Nash (type) equilibrium of two different energy functionals, one
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Figure 8.8: Results for non-variational gradient methods. Results using the
non variational extension of the patch NL-Poisson. The patch similarity is computed
based solely on image values (setting λw = 1), whereas the image update step is
mainly gradient-based by keeping λu to a low value.

Figure 8.9: Symmetries. Result using patch NL-means. To enrich the set of exem-
plars, Õc is redefined as the union of the complement of the inpainting domain with
its vertical, horizontal and central symmetries.

for the computation of weights when the image is fixed, and the other for the synthesis
of the image, when the weights are fixed.

Enriching the set of exemplars. Our inpainting formalism can be easily extended
to handle transformations of exemplars (such as symmetries, rotations, or affinities),

by considering an orbit of Õc:

E(u,w) =
∑

τ∈T

∫

Õ

∫

τ−1(Õc)

w(x, y, τ)ε(pu(x)− pû◦τ (y))dydx− T

∫

Õ

H(w(x, ·, ·))dx

where T is the family of transformation defining the orbit. Here w(x, ·, ·) is a probabil-
ity over the orbit. In Figure 8.9 we show a preliminary result considering as the orbit,
the identity and vertical, horizontal and central symmetries. From a computational
point of view, this is equivalent to having an image with a larger Õc. It is interesting
to point out, that since the computational cost of the PatchMatch is of O(|Ωp||Õ|),
this has little effect on the computing time.

Deterministic Annealing. Our formalism is related to the deterministic annealing
framework for clustering of [51]. In this work the author presents a deterministic
annealing scheme for finding a global minimum for an energy closely related to ours.
In our context, this corresponds to minimization of a series of energies (E2,Tn

)n where
Tn is a decreasing sequence of temperatures (e.g. Tn = αnT0). The minimum find for
Tn is used as initialization for Tn+1.

Our context is not equivalent to that of [51], however it is still interesting to
explore the application of such an annealing scheme. Indeed, this has already been
used for non-local demosaicing [1] and in our previous work on interpolation of sparsely
sampled images [28].
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Figure 8.10: Deterministic annealing. Result using patch NL-means. Top: original
image and inpainting domain. Some iterates of a deterministic annealing process, from
left to right T = 500, 154, 65, 61, 1.

Figure 8.10 shows some images of the annealing sequence for T = 500, 154, 65, 61.
The red curves on the bottom row depict the boundaries of the regions with constant
offset with respect to the nearest neighbor. This offset is given by t(x) = n(x)−x, for

x ∈ Õ, where n(x) ∈ Õc denotes the position of the nearest neighbor of pu(x). When
T = 0, n(x) corresponds to the correspondence map ϕ. However, it is still useful to
show the properties of the solution with T > 0.

When decreasing T , the results vary smoothly, except at some critical tempera-
tures in which the solution changes considerably, suggesting the possibility of phase
transitions. This can be seen in Figure 8.10: T = 65 and T = 61 correspond to
consecutive temperatures in the sequence. Their solutions differ considerably. Notice
also the corresponding change in the regions of constant offset t.

The results seem to support the idea that the optimal correspondence maps ob-
tained by annealing have the regularity properties described in Theorem 5.6. We do
not know the answer to this question.

9. Appendix: proof of Lemma 5.4. Assuming that Ωp is an open set, then Õ

is also open, hence Õc is closed. Let us denote by M(Õc) the Banach space of (finite)

Radon measures in Õc which is the dual of the space of continuous functions in Õc,
denoted by C(Õc). We denote by σ(M(Õc), C(Õc)) the weak∗ topology of M(Õc).

Proof. Clearly, the measures νϕ are extreme points of MP . Let ν ∈ MP be
an extreme point. Then for almost any x ∈ Õ, νx is also an extreme point of the
set of probability measures in Õc. Let us prove this assertion. The decomposition of
a measure λ into its diffuse part λd and its atomic part λa as well as the Lebesgue
decomposition λ = λac + λs into its LN -absolutely continuous part λac and its λs-
singular part define maps λ→ λd, λ→ λa, λ→ λac and λ→ λs in M(Õc), which are

measurable with respect to the Borel structure generated by the σ(M(Õc), C(Õc))-

topology onM(Õc) [24] (see also [56]). Thus the maps x→ νax , ν
ac
x , νsx are measurable.

Let us observe that we can reduce the proof to the case that only one of the
components is non-null. Indeed, let us assume that we can write νx as

νx = α(x)νAx + β(x)νBx ,

where νAx , ν
B
x ∈ MP, νAx and νBx are orthogonal, and α(x), β(x) ≥ α > 0 on some set

X ⊆ Õ of positive (Lebesgue) measure. Then we define

ν1x = (α(x) − αχX(x))νAx + (β(x) + αχX(x))νBx ,
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ν2x = (α(x) + αχX(x))νAx + (β(x) − αχX(x))νBx ,

Then ν1x, ν
2
x ∈ MP and νx = 1

2ν
1
x +

1
2ν

2
x. Since ν

A
x and νBx are orthogonal this implies

that ν is not an extreme point of MP. Thus we may assume that α ∧ β = 0 (the
operator ∧ acting on two measures denotes its infimum as measures [3]) and we may
consider that νx has only one component.

Let us consider the case where νx = νsx a.e. in x. Let us prove that we can find

sets A,B ⊆ Õc such that

{x ∈ Õ : νx(A) > 0, νx(B) > 0} is of positive Lebesgue measure. (9.1)

Recall that since νx are singular measures νx(B) → 0 as diameter(B) → 0+. Let us

consider a dyadic subdivision of the minimum rectangle containing Õc. We consider
the rectangles of the subdivision so that they are of the form [a, b) × [c, d). As the
subdivision gets refined their diameter tends to 0+. At the first step i = 0 of the sub-
division we have four sets: D1

i , D
2
i , D

3
i , D

4
i . Thus either our assertion is true or we may

divide Õ into four disjoint sets Er
i = {x ∈ Õ : the support of νx is contained in Dr

i },
r = 1, 2, 3, 4. Thus if our assertion was never true, we would get that the support of
each νx is contained in a set whose diameter tends to 0, therefore νx = 0 a.e. in x.
Thus (9.1) is true. Thus we may assume that

νx = α(x)νAx + β(x)νBx ,

where νAx = χAνx
‖χAνx‖

, νBx = χBνx
‖χBνx‖

, α(x) = ‖χAνx‖, β(x) = ‖χBνx‖. Proceeding as

in the previous proof where we reduced to the case of only one component we prove
that ν cannot be an extreme point of MP.

In a similar way, we prove that if νx = νacx a.e. in x, then ν cannot be an
extreme point of MP. But, let us notice that in the present case we can give a more
simple proof. Let us prove that νacx = 0 a.e.. Otherwise, let αx > 0 be such that∫
Õc(ν

ac
x − αx) dy = 1

2

∫
Õc ν

ac
x dy. Then also

∫
Õc(ν

ac
x ∧ αx)

+ dy = 1
2

∫
Õc ν

ac
x dy. Then

νacx =
1

2
(2(νacx − αx)

+) +
1

2
(2(νacx ∧ αx)),

and ν cannot be an extreme point of MP .
We conclude that νx = νax a.e.. Assume that νax = α1(x)δσ1(x) + α2(x)δσ2(x) + ν′x

[36, 56]. We proceed as above: We may assume that there is α > 0 such that

α1(x), α2(x) ≥ α on some measurable set A ⊆ Õ. Then we define νa1x = (α1(x) −
αχA(x))δσ1(x)+(α2(x)+αχA(x))δσ2(x)+ν

′
x, ν

a2
x = (α1(x)+αχA(x))δσ1(x)+(α2(x)−

αχA(x))δσ2(x) + ν′x. Then νax = 1
2ν

a1
x + 1

2ν
a2
x . Thus νax cannot be an extreme point

unless there exists a map x ∈ Õ → ϕ(x) ∈ Õc such that νx = δϕ(x)(y). By the
observation previous to the Lemma, ϕ is measurable. Hence ν = νϕ.
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[46] G. Peyré. Manifold models for signals and images. To appear in Comp. Vis. and Im. Unders.
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