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Reliable multi-scale and multi-window stereo matching

Antoni Buades∗ and Gabriele Facciolo†

Abstract. We consider the two-images stereo disparity problem favoring correctness of matches over density.
We will deal with high resolution images which permit an accurate matching in textured zones, but
which might present, as any stereo pair, ambiguities and occlusions. Global variational methods
can estimate a dense map based on regularity assumptions about the disparity function. However,
if these assumptions are incorrect this may lead to erroneous interpretations and mismatches. The
availability of tri-stereo or even multi-view stereo imagery permit to combine the disparities from
different pairs, allowing for a reliable densification not based on regularity assumptions.

Local methods are suitable for this purpose since they permit to check the validity of each match.
The main disadvantages of local methods are the matching ambiguity and the failures of the front-
parallel hypothesis (at places like discontinuities and slanted surfaces). We advocate, in this work,
for the use of oriented windows in order to deal with slanted surfaces and discontinuities. Unlike
adaptive support windows the oriented windows permit to correctly estimate disparities on non
front-parallel surfaces.

Several parameter-less techniques for detecting mismatches are presented. The incorporation
of these validation techniques in a coarse-to-fine multi-window algorithm, allows to obtain fairly
dense results with few mismatches. An extensive comparison, including classical stereo pairs, high
resolution satellite images and images from the KITTI benchmark, illustrates the performance of
the proposed method.

1. Introduction. Stereovision consists in estimating the depth of a scene from two or
more images taken from slightly different viewpoints. The principle of stereovision is that the
apparent motion (or parallax movement) induced by camera movement, is larger for objects
closer to the camera and smaller for far away objects. Thus, computing the apparent motion
of corresponding points in the two images permits to estimate the depth. For any point x in
one image, it can be shown [24] that the corresponding point in the second image lies on the
so-called epipolar line of x. A stereo pair (consistent with the pinhole camera model) can be
stereo-rectified [24] so that the all parallax motion is horizontal, in which case it is referred to
as disparity.

Stereo matching algorithms aim at estimating the disparity of as many image points as
possible. The stereo matching methods are classified [44] in local and global methods. The
local methods compute the disparity by correlating a small window (or patch) along the
epipolar lines, being the Sum of Squared Differences (SSD) the most common matching cost
used for this purpose. The lack of texture or information in the image is the main challenge
of local methods. That is, if an image patch lacks texture or its signal-to-noise ratio is too
small, then the computed disparity will likely be incorrect. Global methods cope with these
ambiguities by restricting the disparities to some class of smooth functions, which usually
permit to derive reasonable estimations even on textureless areas. Most global methods could
even extend these estimations to half-occluded regions (regions which are visible only in one of
the images). However, the result of a global method makes no explicit distinction between bad
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and good matches, confusing where the disparity is factual or not. Moreover, the smoothness
of the solution is always controlled by some parameter, whose optimal value usually depends
on the scene being processed.

The choice between local and global methods is certainly application dependent. In some
cases dense disparity maps are needed, regardless of the possible extrapolation errors that
a global method may introduce. However, here we will focus on applications that favor
reliability over completeness thus allowing for non matched regions. Although a dense map
is desirable, in some cases it is important to distinguish reliable, and thus validated regions,
from interpolated ones. This is the case, for instance, of cartographic applications from high
resolution satellite stereo images [12] and urban mapping from a car-mounted stereo rig such
as the ones from recent benchmark [21], for which our algorithm yields the lowest error for the
estimated pixels. Besides these applications we will also consider classical stereo databases.

In this work we propose a principled block-matching algorithm for stereo, using a coarse-
to-fine strategy. A multi-window algorithm with oriented windows is used to compute the
disparities. This new approach permits to deal with non fronto-parallel surfaces and to match
closer to the edges of the object, leading to higher matching densities. On a slanted surface
the chosen window will adapt to the direction of least variation of the disparity. Whereas near
a disparity discontinuity the window oriented as the edge will match with lower cost, thus
correctly matching closer to the discontinuity.

To limit the mismatches we propose a set of criteria to detect and reject the incorrect
matches. Each criterion is designed to cope with one of the limitations of block-maching.
Match ambiguity is solved by adapting previous distinctiveness approaches [35, 41] while
a new criterion is designed to cope with fattening effects due to occlusions. Unlike most
match validation methods the proposed ones have no tradeoffs and are virtually parameter-
less besides the size of the patch. The criteria are applied for each oriented window and
scale.

We summarize the plan of the paper as follows. Section 2 introduces local methods and
their main limitations. The literature including state of the art methods and how they deal
with local methods weakness are also reviewed. In Section 3 we introduce the multi-scale
and multi-window block-matching. In the same section we describe the criteria used to reject
incorrect matches. Lastly, Section 4 compares the proposed algorithm with state-of-the-art
local methods for non-dense block-matching. It is shown that the proposed method yields
the lowest mismatch rates among all the considered algorithms while producing fairly dense
disparity maps. This validation is mainly done using the high resolution Middlebury images
[27] for which a ground truth is available. We also compare the results obtained on satellite
images1 and street-level urban images from the recent KITTI benchmark [21]. An on-line
demonstration of our algorithm is also made available2.

2. State of the art in local methods and limitations. We denote by x = (x1, x2) the
position of a point in a continuous image domain Ω ⊂ R2, and by u(x) = u(x1, x2) and
v(x) the images of a rectified stereo pair. For non-integer positions x ∈ Ω, u(x) is computed
interpolating the discrete samples of u. Local methods estimates the disparity d of the point

1Pléiades satellite images kindly provided by the Centre National d’Études Spatiales (CNES).
2On-line demo of the proposed method is available at: http://dev.ipol.im/~facciolo/msmw/

http://dev.ipol.im/~facciolo/msmw/
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x by the winner-take-all strategy

d(x) := argmin
d�∈pZ

c(x,x+ d
�),

where c(·, ·) is a cost function computed by comparing patches of u and v centered respectively
at x and x+ d

�. The factor p is the subpixel disparity step, usually p = 1
n with n ∈ N+.

Many matching costs have been proposed for local block-matching methods among them:
sum of squares distances (SSD), normalized cross correlation, robust costs, mutual informa-
tion, and census. For a comprehensive review on matching costs we refer to [27] and references
therein. Regardless of the cost used for comparing windows, there are some limitations intrin-
sic of local methods, namely: match ambiguity, inadequacy of geometric model, and disparity
sampling. In the following paragraphs we review the stereovision literature on local methods
highlighting how these limitations are dealt with.

Match Ambiguity. The lack of texture in the image is one of the main sources of matching
errors for the local methods. Similar issues are observed in presence of the aperture problem,
that is when the direction of the main geometrical structure in the patch coincides with
the epipolar line, or if the patch belongs to an object with a repetitive pattern. The latter
case is quite common for man made objects, as for example building facades. The common
denominator for all these cases is the ambiguity of the matches.

A straightforward way to reduce ambiguity is to use larger comparison windows. How-
ever, this increases the risk of incurring in other problems. For instance, larger windows are
more likely to contain objects with different depth or half occluded regions. For this reason
algorithms using larger window sizes usually adapt the shape of the windows by taking into
account image edges or objects [29, 32, 53, 56, 38, 6, 22, 54, 39]. These methods identify
depths discontinuities with image discontinuities, which is not always the case.

Even for large window sizes the extracted patches can be non-informative as for instance
in presence of repeated patterns. A common criterion used to detect these cases compares
the costs of the best and second best match candidates [43, 26, 10, 28]. This criterion is also
used in the SIFT keypoint matching algorithm [33] in order to reject mismatches. For that a
threshold on the ratio (or difference) of the first and second best costs has to be set. Different
detections might be obtained depending on the value of this critical parameter. Manduchi
and Tomasi [35] observed that the content of the reference image could be used to predict how
ambiguous the match would be. For that they define the distinctiveness of an image position
as the perceptual distance to the most similar other position in the same image within a search
window. Distinctive points are not necessarily rich in texture, but their features are unique
as they look like nothing else in the image (at least along the epipolar line). Particularly, in
[35] the authors used the auto-SSD function (Sum of Squared Differences computed in the
same image), rejecting pixels with auto-SSD above the average cost value for the entire image.
However, this test also depends on the critical choice of the threshold parameter.

A parameter-less approach was proposed by Sabater et al. [41]. The authors proposed
a new measure based on the number of false alarms (NFA) that a patch similarity takes by
chance, inspired by the general framework proposed in [15]. The algorithm uses a principal
component analysis (PCA) to represent patches and the histogram of PCA coefficients of
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Figure 1. Depth discontinuities and foreground fattening. The center of the window (A) is on the back-
ground but the window contains the depth boundary, thus some points in the window match at the foreground
disparity (B), while others match at the background disparity (B’). The best match will be for the region con-
taining the stronger horizontal texture, which is usually the object boundary itself. Since the object boundary has
the foreground disparity, a strong preference for the foreground disparity is created. Leading to the well-known
“foreground fattening” effect.

the whole image as an a priori model. The proposed model matches only correct pairs but
discards matches whenever the patches are slightly different, for example in slanted zones. In
the same work, the authors presented a distinctiveness based criterion, comparing for each
pixel the SSD cost of the best match in the second image and the auto-SSD proposed in [35].
We will modify this approach adapting it into our multi-scale and multi-window framework
for detecting ambiguous matches.

Inadequacy of geometric model. Three-dimensional geometric discontinuities of the scene
produce occlusions and dis-occlusions, which cause spurious matches or foreground fattened
results. This occurs because patches overlapping discontinuities are only partially visible in
one image [46, 31], thus the right match may not be found. Figure 1 illustrates the foreground
fattening phenomenon. A similar phenomenon is observed on slanted surfaces, there the block-
matching is usually imprecise and may even produce incorrect matches. This is because the
patches on slanted surfaces appear distorted (by an affinity in the case of rectified images) in
the second image [16]. The overall reason for these failures is the inadequacy of the fronto-
parallel hypothesis for block-matching methods. That is, the assumption that any image
patch can be found undistorted in the second image.

The usual way to cope with depth discontinuities is to use adaptive windows (also known
as adaptive support weights) that avoid image discontinuities as was first proposed by Kanade
and Okutomi [29]. Similar works by Lotti and Giraudon [32] and more recently by Wang et
al. [53] pre-compute the image edges and iteratively grow a comparison window that avoids
discontinuities. Patricio et al. [38] and Yoon and Kweon [56] select an adaptive window
containing only pixels with a grey level similar to the reference one, like in neighborhood
and bilateral filters [50, 55]. Recently, the Cost Volume Filter [39] has allowed to compute
such adaptive windows very efficiently by using a local linear model to filter the volume of
matching costs using the reference image as guide. Other methods limit the size and shape of
the window by imposing an image segmentation [6, 22, 54]. All these methods identify depth
discontinuities with image discontinuities, which is not always the case.

Other approaches do not try to explicitly avoid the discontinuities of the reference image.



Reliable multi-scale and multi-window stereo matching 5

Instead, they choose an adaptive window using a minimum matching cost criterion. The
underlying idea is that windows that do not contain depth discontinuities will match with a
smaller cost. Fusiello et al. [20] choose among all the windows containing the reference pixel
the one that yield the minimal matching cost. This well known technique can be computed
efficiently by the so-called min-filtering, which is a post-process of the costs computed with
centered windows [44]. This technique significantly reduces the foreground fattening near
the occlusion boundaries of the scene. However the min-filter post-process creates shocks on
regions with smooth disparities and sometimes it may also propagate incorrect disparities near
textureless areas. Veksler [51] applied the same strategy but considering square windows of
different sizes. A more elaborated version by Hirschmüller et al. [26] adapts the shape of the
window by dividing its support into small sub-windows and by selecting those for which the
minimum matching cost is attained.

The methods based on adaptive windows deal effectively with discontinuities, however
they are bound to the fronto-parallel hypothesis as they don’t contemplate the case of slanted
surfaces. To cope with the slanted surfaces some methods propose [23] to explore all possible
surface orientations, at each image point. For rectified images the transformations between
planar patches has three degrees of freedom: translation, horizontal tilt, and shear, which
may be unaffordable in many situations. Some recently proposed methods [7, 34] efficiently
explore the space of affine transformations by using the PatchMatch [3] strategy. In this work
we improve the matching on non-frontal surfaces by matching using elongated windows with
different orientations. This family of windows has a single degree of freedom: the orientation.

Recently, the mathematical analysis of local methods presented in [14, 42, 5] has clarified
the presence of subpixel fattening errors in regular parts of the disparity function. These
works were motivated by the study of subpixel precision in low baseline stereo for satellite
imaging. This micro-fattening introduces subpixel errors in the computed disparity whenever
the image gradient is not well spread over the comparison window. In [5] the authors proposed
a solution for this kind of fattening effect. However this solution is only valid for regular parts
of the disparity function and therefore cannot be applied on occlusion and dis-occlusion parts
of the stereo pair.

In this work we propose a new technique, related to the min-filter, for detecting occluded
and dis-occluded pixels.

Sampling issues. Inadequate sampling of the disparity can also result in mismatches (see
Figure 2). That is, because of the image sampling we can’t expect to find in the second image
an exact copy of reference patch (unless the true disparity is integer). For this reason many
block matching methods estimate subpixel disparities [48].

Birchfield and Tomasi [4] proposed a matching cost (based on the SSD) that is insensitive
to the sampling of the patches. This cost, which is estimated at integer positions, is proven
to be stable with respect to subpixel translations of the patches. This is particularly useful
when used within global methods. However, as seen in Figure 2, for a winner-take-all method
this cost [4] yields a limited performance gain with respect to the subpixel SSD cost.

Comparing in Figure 2 the disparity estimates at 1-, 1
2 -, and

1
4 -pixel steps we confirm

that integer disparity steps yield incorrect results on textured areas. Failures are less frequent
when sampling at 1

2 -pixel intervals, but can still occur. While sampling at 1
4 -pixel intervals
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1-pixel steps 1
2 -pixel steps

1
4 -pixel steps Birchfield & Tomasi

Figure 2. Top: synthetic stereo pair and ground truth disparity. Bottom, from left to right: disparity
computed using SSD by exhaustive search with 1-, 1

2 - and 1
4 -pixel steps. Note that increasing the precision

eliminates false matches from the upper-left corner and right portion of the image. The last image is computed
using the sampling insensitive cost proposed by Birchfield and Tomasi [4] with integer disparity steps, note that
the result is comparable to SSD at 1 pixel. All disparity images are quantified at 1 pixel for visual comparison.

Reference Secondary SSD ZSSD NCCC

Figure 3. Comparison of the SSD, ZSSD, and NCC matching costs using square patches of 5 × 5 pixels.
From left to right: the stereo pair, the disparity estimated obtained using SSD, ZSSD, and NCC. The three
methods give similar results when there is no contrast changes from one image to the other. Small intensity
differences present in the dark areas of the images above yield to SSD mismatches while are correctly matched
by both ZSSD and NCC. We observed that for aerial images ZSSD and NCC perform similarly [27] thus we
use the former.

these mismatches are seldom. Although more expensive, the subpixel sampling permits to
identify the true minima of the matching cost. In addition, to further refine the disparity, the
over-sampled cost function could be interpolated using compact interpolation filters [48]. In
this work we will estimate the disparities with quarter-pixel precision.

3. Multi-scale multi-window block matching algorithm. As cost function we use the
zero-mean SSD (ZSSD) [27] which removes the average intensity of each patch rendering the
comparison independent of the mean intensity. This cost is defined as

ZSSD(x,y) :=
1

|Br|
�

t∈Br

���u(x+ t)− v(y + t)− u|x+Br + v|y+Br

���
2
,
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Figure 4. Correlation windows with different orientations better adapt to different slanted planes, because
with the correct window orientation the depth of the underlying surface is almost constant. Top row: oriented
windows used in the experiments (with color code), corresponding to a 5× 5 window. Bottom row from left to
right. The stereo pair. The computed disparity map with some isolines highlighted, overimposed are shown some
windows whose orientation best fit the surfaces. The rightmost image illustrates the minimum-cost orientation
determined by the algorithm.

where v|y+Br denotes the average of image v over the window centered at y. In Figure 3 we
show that the ZSSD is able to deal with changes of intensity between the images.

3.1. Matching with multiple window orientations. Most block-matching methods im-
plicitly assume the fronto-parallelism of the scene by testing only for translations of the
matching windows. However, this hypothesis is seldom correct. If the disparity function
is not constant within a window, then the corresponding region appears distorted in the sec-
ond image. Thus two image patches should not be compared directly. The SSD minimization
is robust against slight deformations, but fails in presence of stronger ones. An extreme case
of this failure occurs when the window contains a depth discontinuity (two different depths).
In this case it is impossible to find a unique correspondence leading to the occlusions and
dis-occlusions artifacts.

The consequences of this failure of the fronto-parallel assumption are two fold. First,
mismatches appear on highly slanted surfaces because of to the strong distortions suffered by
the image within the matching window. Second, many points are mismatched in the proximity
of depth discontinuities.

To cope with both problems we propose to match each pixel using elongated windows with
different orientations and then to choose the window yielding the minimum matching cost.
This approach differs from the shiftable windows proposed in [2, 8, 44]. We propose to use
only windows centered at the reference pixel but with different shapes [26]. The shape of the
window giving the minimum matching cost intuitively will be the one for which the disparity
function varies the least. That is, the window being as fronto-parallel as possible. This is
confirmed by the experiment shown in Figure 4.

Using elongated and oriented windows improves the matching on slanted surfaces and close
to the depth discontinuities. Near a depth discontinuity the chosen window will be aligned
with the discontinuity, thus producing valid matches closer to the discontinuity. Whereas



8 A. Buades and G. Facciolo

on a slanted surface the chosen window will adapt to the direction of least variation of the
disparity, thus matching with a lower cost.

3.2. Multi-scale algorithm. The disparity range considered by the block-matching di-
rectly affects the computation time, but it also affects the ambiguity of the matching. That
is, as the search range grows so does the probability of mismatch due to repetitive patterns or
noise. In general, if a wide search range is considered, then larger patches are needed in order
to keep the ambiguities from growing. Thus, the patch must be large enough to contain the
information to match meaningfully, but it should also be small to avoid fattening artifacts.

The proposed multi-scale approach (see Algorithm 1) uses the disparity computed at a
coarser scale in order to restrict the search range at the current one. This permits to keep a
small window size while retaining meaningfulness of the matches. To prevent the propagation
of mismatches, rejection criteria (presented in Section 3.3) are applied at every scale. The
points rejected at the previous (coarser) scale are searched over the full disparity range. While
the valid points are assigned a narrow disparity range that depends on the minimum and
maximum disparity of valid points in the window.

Each multi scale level is obtained by convolution with a Gaussian kernel of standard
deviation σ = 1.2 and subsampling of factor two starting from the initial pair. This means
that the noise is reduced at each subsampling step making the matching more robust at coarser
scales. The disparity computed at coarser scales is up-sampled by bicubic spline interpolation
and used to constrain the search range at finer scales.

A classical problem with multi-scale procedures is related to small scale structures with
large disparities. This is a well-known problem in optical flow computation where small
objects moving fast disappear at lower scales of the pyramid making impossible to estimate
the displacement for these objects. Our algorithm is able to correctly deal with this problem
due to its locality and the validation criteria introduced in next section. If an incorrect search
range is predicted by a coarser scale, the match will be invalidated at the first scale the object
appears. Therefore, a full search range will be used for these pixels at the next fine scale.

3.3. Match validation criteria. Most stereo matching algorithms use the classic Left-
Right consistency check [11, 19] to reject incorrect matches. This test rejects a match whenever
the left-based disparity is not the inverse mapping of the right-based disparity. That is, a
match is rejected if |dR(x + dL(x)) + dL(x)| > τ, where the threshold τ is usually set to 1
and x + dL(x) denotes the position in the right image of the homologous point of x (in the
left image).

The Left-Right consistency check permits to detect many occluded pixels, but not all
of them (see Figure 7). Some errors due repetitive patterns and textureless areas might be
detected as well, but the foreground fattened pixels associated to dis-occlusions are usually
not detected.

In the following paragraphs we present two tests specifically designed to detect ambiguous
matches and dis-occlusion fattening artifacts.
Match ambiguity. Sabater et al. [41] proposed a criterion for detecting ambiguous matches

that compares the costs of the best candidate match in the secondary image c1 and
the cost of the best match in the reference image itself cauto (see Figure 5). The idea is
that when the auto-similarity cost of a patch (cauto) is smaller than the cost of its best
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Algorithm 1: Recursive multi-scale block matching algorithm. Initially dMin and
dMax are constant images set to the global minimum and maximum ranges and s = 0.

MultiscaleChain(u, v, dMin, dMax, nScales, s):

Input: image pair u and v.
Input: min & max disp. range images dMin and dMax.
Input: number of scales nScales.
Input: current scale s.

Output: Fixed precision disparity disp.
Output: Updated dMin and dMax.

if s < nScales then

Gσ ← Gaussian kernel of std σ = 1.2
Gu = Gσ ∗ u; su = Gu ↓ 2;
Gv = Gσ ∗ v; sv = Gv ↓ 2;
GdMin = Gσ ∗ dMin; sdMin = GdMin ↓ 2;
GdMax = Gσ ∗ dMax; sdMax = GdMax ↓ 2;
sdMin = 0.5 ∗ sdMin; sdMin = 0.5 ∗ sdMin;
disp = MultiscaleChain(su, sv, sdMin, sdMax, nScales, s+ 1);
dMin = sdMin ↑ 2; dMax = sdMax ↑ 2;
dMin = 2 ∗ dMin; dMin = 2 ∗ dMin;

end if

disp = BlockMatching(u, v, dMin, dMax)

for each pixel p in disp do

if p is rejected then

Set dMin(p) and dMax(p) to the global minimum and maximum range.
else

Set dMin(p) and dMax(p) to the minimum and maximum of validated disparities
inside the correlation window.

end if

end for

match in the second image (c1), then patch is likely to be part of a repetitive pattern
and thus non-distinctive. We adapt this criterion, introducing a sampling correction
term csampling, rejecting a match when

(3.1) c1 > cauto − csampling,

where the window shape and disparity step p (in our case the disparity step is p = 1/4
of pixel) are the same as in the matching step. The computation of the cost cauto only
takes into account windows in the reference image at a distance larger than one pixel
of the reference window. The correction term csampling is computed as the maximum
of the costs of matching the reference window with itself but shifted by p/2 and −p/2.
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Figure 5. Match ambiguity criterion. Compares the cost c1 of the best match candidate in the secondary
image and the cost cauto of the best match in the reference image itself minus a small sampling compensation
term. If cauto − csampling < c1 then the match is considered ambiguous.

The sampling term is needed to compensate for the differences due to the samplings
in both images. That is, c1 and cauto are directly comparable only if the patches are
sampled at the same sub-pixel position, which is usually not the case.
Note that cauto acts as an adaptive threshold for the match. If the patch belongs to
a repetitive structure, then the test is more restrictive. Textureless regions are also
detected as ambiguous by this criterion. Moreover, unlike other criteria based on the
relation of the first and second best match, this test needs no parameter tuning.
The distinctiveness measure proposed by Manduchi and Tomasi [35], and later refined
by Yoon and Kweon [57], rejects pixels based on a global threshold on the value of
cauto. Instead the proposed test uses c1 as an adaptive threshold. Egnal [17] proposes
to take two images in quick succession from each viewpoint, then use the second image
to estimate an adaptive confidence for the matching. However, this procedure is only
useful for static camera systems where it is possible to take two images, which is not
the case for instance in satellite imaging. Instead, the used match ambiguity criterion
does not require any supplementary image.

Fattening detection. We design a test to detect fattening artifacts due to occlusions,
dis-occlusions, and errors on slanted surfaces. The proposed method shares with the
shiftable window method by Fusiello et al. [20] that it gives more confidence to the
pixel in the neighborhood having the lowest matching cost xMC .
The proposed method computes a planar approximation of the disparity around the
current patch center x. This approximation is computed by a modified RANSAC
[18] strategy. We fix the point xMC and randomly select two different pixels in the
neighborhood of x and compute the plane passing though the coordinates and associ-
ated disparities of the fixed triplet. This process is iterated and among all the tested
planes we keep the one correctly approximating the larger quantity of disparities in
the neighborhood.
The reference pixel x is not necessarily one of the correctly represented disparities by
the selected plane. The pixel x is rejected if its disparity differs too much from the
estimated planar approximation Π

(3.2) |d(xMC)−Π(x)| > s,

where s a precision threshold set in practice to 1. Figure 6 illustrates the behavior of
this criterion in the 1D case.

Finishing touches. Isolated matches are also rejected. These are valid matches surrounded
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Figure 6. Illustration of the fattening detection behavior in 1D. First row: typical validation/invalidation
of x in a slanted surface. Bottom row: typical validation/invalidation of x in a depth discontinuity.

by many rejected points (rejected by the previous criteria). The rationale of this test
is that a valid but isolated point is more likely to be a mismatch than a proper match.
In the eventuality of being a proper match, it would still be a too small feature for the
current window size. We apply a grain filter [52, 36, 9] to remove validated regions
with area smaller than the area of the correlation window (5 × 5 pixels in all the
experiments).

Figure 7 shows the disparity computed using ZSSD and the pixels rejected by each one
of the described criteria. As expected the Left-Right consistency test rejects points on the
occlusion and dis-occlusion parts of the image because in those regions the same patch doesn’t
exist in both images (extract (a) in Figure 7). However, some of the occlusion and dis-occlusion
points may produce consistent matches because of the fattening effect. In those cases the
correspondence match is dominated by the occluding edge, which is visible in both images.
The fattening detection rejects points mainly in dis-occlusions parts of the scene as seen in
the extract (b) in Figure 7. The self-similarity criterion correctly rejects points in ambiguous
areas (see the rooftop in the top left corner of the image in Figure 7 and in the extract (c)).
It might also reject pixels at occluded parts, since it might happen that the auto-similarity
cost is smaller than the matching cost just because the patch does not exist in the secondary
image. Moreover, as mentioned before, the self-similarity test also rejects textureless regions,
leaving only some isolated points, which are then removed by the isolated pixel criterion.

3.4. The final MSMW algorithm. The final algorithm uses the multi-window strategy
(Algorithm 2) at each scale of the multi-scale method described in Algorithm 1. At each scale
the validation criteria of Section 3.3 are applied for each window orientation. We denote the
resulting algorithm multi-scale multi-window (MSMW).

Importance of multi-window. Figure 8 compares the results of ZSSD block-matching using
5× 5 windows and the proposed multi-window algorithm using 5 and 9 window orientations,
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Reference Secondary Ground truth

No test LR consistency Fattening detection Match ambiguity All criteria

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

Figure 7. Application of reject criteria with a 5×5 patch and a single scale. The disparity is displayed with
rejected pixels by each criterion marked in red. From top to bottom and left to right: pair images, ground truth,
disparity with no criteria applied, LR consistency, fattening detection, self-similarity and all criteria at once.
The third row shows the corresponding errors computed with the ground truth, displayed in range [0, 2.5]. The
last row shows the details (a), (b), and (c) for each one of the results. The extract (a) contains an occlusion,
(b) contains a dis-occlusion, and (c) contains a repetitive pattern.

where all windows have roughly the same area. We note that more pixels are correctly matched
nearer the occlusions and dis-occlusions boundaries and on slanted surfaces of the scene. The
orientations of the windows, illustrated with the color code of Figure 4, coincide as expected
with the direction of least variation of the disparity.

Importance of the rejection criteria. The rejection criteria of Section 3.3 are straightfor-
wardly adapted to any window shape. Moreover, we observed that the matches are much
easily validated for the correct window shape, thus improving the overall performance of the
rejection stage. For each window shape, the matching and rejection stages are applied inde-
pendently. Then for each pixel the choice for the optimal window shape is made considering
only the window orientations validated at that pixel. Algorithm 2 details the complete pro-
cess. It is important to note that the rejection criteria are applied in a specific order, so that
once a point has been rejected by a test it is no longer considered in the subsequent tests.

Importance of multi-scale. In Figure 9 we see that the advantages of the multi-scale add
to those of the multi-window matching: the results are denser and there are fewer errors.
Indeed the narrow windows allow to pick up narrow features at coarser scales, thus reducing
the corresponding search ranges and considerably improving the matching. The multi-scale
strategy also significantly reduces the disparity computation time.
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64.4% 72.2% 73.4%

63.5% 70.6% 71.9%

54.3% 66.3% 68.4%

1 orientation 5 orientations 9 orientations

Figure 8. Comparison of single and multiple window orientations (book, aloe, and wood pairs from
Figure 11). Using respectively 1, 5 or 9 windows orientations with support equivalent to 5× 5 windows, using
all filters and exhaustive search with precision of 1/4 of pixel. This figure illustrates how the elongated windows
adapt to the surface orientations, thus improving the matching and leading to denser results. The density of
each disparity map is indicated in the lower left corner.
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Algorithm 2: Multi-window block-matching algorithm. dMin and dMax are images
indicating the search ranges for all the pixels. disp contain both disparity maps LR and
RL.

MultiWindowMatching(u, v, dMin, dMax):

Input: image pair u and v.
Input: min & max disp. range images dMin and dMax,

minimum and maximum disparity for each pixel.

Output: Fixed precision disparity disp.

for each window w do

// Compute left and right disparity maps

dispw = ZSSDMatching(u, v, dMin, dMax,w)

// Apply the rejection criteria to dispw
Update dispw applying the Fattening detection
Update dispw applying the Match Ambiguity detection
Update dispw applying the LR criterion
Update dispw removing the ISOLATED MATCHES

end for

disp = Combine all the dispw

// Ensure consistency of disp after combining

Update disp applying the LR criterion
Update disp removing the ISOLATED MATCHES
Update disp FILLING-IN small holes (optional)

Filling-in small holes. An optional post-process is applied in order to fill-in small holes in
the disparity map. A hole is a connected component of rejected pixels (with 4-connectivity).
For each hole an affine model is estimated from its boundary values using least squares. A
hole is interpolated only if the regression model has a slope below 5 and fits the boundary
disparities with an error below 3. This usually removes only small holes in the disparity map
without introducing errors (see Figure 10).

4. Experiments and comparison with the state-of-the-art. In this section we compare
the proposed algorithm with methods from the state-of-the-art. Even if our focus is the
estimation on real scenes, we first evaluate using studio cases for which the ground truth is
available. Then, we compare and discuss the results on satellite and urban images. Satellite
images are courtesy of the French Spatial Agency (CNES) while the urban images are from
the KITTI benchmark [21]. We consider the following methods as representatives of the
state-of-the-art.

• The graph cuts method (GC) introduced in [30] is representative of global optimization
methods. The algorithm writes as the minimization of a discrete energy containing
three terms: one penalizing the pixel-wise radiometric differences between the two
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Reference 1 scale, 1 window 1 scale, 5 window orient.

39.5% 55.4%

Secondary 4 scales, 1 window 4 scales, 5 window orient.

44.2% 59.3%

Figure 9. Interaction between multi-scale and multi-window matching. In the left-most column is shown
the image pair. The second column shows results obtained using a 5×5 pixels window with 1 and 4 scales, note
that the multi-scale result is denser. The third column shows results obtained using windows with 5 orientations
with 1 and 4 scales. The density of each disparity map is indicated in the lower left corner. With 5 orientations
the single scale result is already denser than the one obtained with a single squared window, and the multi-scale
result is even denser. The multi-scale algorithm is also faster than the single scale one.

before after Fill before after Fill

Figure 10. Filling-in small holes. This post-processing step removes small holes from the disparity maps
by extrapolating from the boundary of the hole. In the first row are shown the computed disparity maps before
and after the filling-in, in the second row are shown the corresponding error maps represented in the range [0,
2.5]. The disparity map has been computed with a single scale, single window and pixel precision SSD algorithm
combined with the proposed reject tests.
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images, a second one imposing a penalty for making a pixel occluded, and a smoothness
term forcing neighboring pixels to have similar disparities. Two parameters must be
set in the graph cuts method, one for setting the regularity of the solution and one for
the amount of occlusions to be detected.

• Cech and Sara’s growing correspondence seeds (GCS) [10] and the five regions correla-
tor (5REG) proposed by Hirschmuller et al. [26] are representative of local non dense
methods. The GCS algorithm, as ours, favors reliability over completeness of the re-
sults. The algorithm performs a region growing from “sure” matches chosen as Harris
interest points. The 5REG algorithm considers five overlapping 5 × 5 sub-windows
for each pixel and the matching cost is determined adding the cost of the center sub-
window plus the two sub-windows yielding the smallest costs. The matches are then
filtered applying the Left-Right consistency test and comparing the matching cost with
the cost of the second local minimum. We used the implementation of 5REG provided
in [1] which lacks the fattening refinement described in the original paper [26].

• The cost-volume filtering method (CVF) [39] is representative of adaptive window
algorithms. These methods use large comparing windows, for the CVF a 17 × 17
window is used. The window support is then adapted taking into account the reference
image in order to select pixels belonging to the same object. The CVF algorithm also
proposes a densification post-processing, which is disabled in the comparison. We used
the implementation from Tan and Monasse [49] of CVF which permits to disable the
densification stage of the algorithm.

• Hirschmuller’s semi global matching (SGM) [25] is a strategy for minimizing a global
energy that comprises a pixel-wise matching cost and a global smoothness constraint.
In SGM the two-dimensional smoothness constraint is efficiently approximated as the
average of one-dimensional line optimization problems. We use here the implementa-
tion of SGM [25] included in OpenCV3.

For MSMW we use 9 window orientations with areas comparable to a 5× 5 pixel window
(the windows are shown in Figure 4), for the multi-scale we consider 4 levels. As commented in
section 3 the subpixel precision is set to p = 1/4 and the threshold for the fattening detection
is set to s = 1. We consider two variants of MSMW one without post-processing and a second,
denoted MSMW w/fill, including the optional filling-in of small holes from section 3.4.

4.1. Evaluation on Stereo Pairs with Ground Truth. In Figures 12 – 13 we compare the
results of the methods mentioned above for stereo pairs with ground truth, both real [27, 45, 47]
and synthetic [37, 40]. The images show the computed disparities and the errors with respect
to the ground truth. The reference images and ground truth are shown in Figure 11.

We observe that the graph cuts algorithm fails at detecting the occlusions in most of the
examples with complex geometry (i.e. the leaves in the Aloe image in Figure 12). We also
observe an over-quantization of the disparity computed by graph cut. This is due to the fact
that discontinuities of disparity are penalized independently of its amplitude in the regularity
term, see [30] for more details. Both, the GCS and 5REG algorithms produce fairly dense

3StereoSGBM module in OpenCV 2.4.8 (http://opencv.org) and with default parameters. To filter more
outliers we compute a second disparity map reversing the reference and secondary images and enforce the
consistency of both maps [25].

http://opencv.org
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Aloe [-105,-21] Wood [-107,-28] Fountain [-90,30] Rocks [0,70]

Village2 [-10,10] Book [-61,0] Cones [-110,-30] Art [0,60] Dolls [-60,-10]

Figure 11. Reference images and ground truths for the stereo pairs used in the experimentation section.
For each stereo pair the disparity range [dMin, dMax] is indicated in the caption.

results. However, they contain many spurious matches and false detections (i.e. the back-
ground of the Aloe image in Figure 12). Both use ambiguity detection criteria based on fixed
thresholds of the ratio between first and second local minima of the correlation function. In
comparison, the proposed match ambiguity criterion combined with the multi-scale scheme
of MSMW significantly reduces the mismatches while obtaining denser results. The CVF,
SGM, and MSMW produce sharp disparity maps consistent with the image geometry. How-
ever, CVF has a limited performance on self-similar regions (upper-left corner of the Village2
image in Figure 13). This is again due to the lack of ambiguity detection.

The quality of the results of MSMW comes close to SGM and CVF on textured regions
and close to the object edges (as in the Aloe image). Only, the textureless areas such as in
the Cones image are handled worse. On slanted surfaces the results are much denser than the
other algorithms.

Quantitative analysis. To compare the methods we evaluate the density of the disparity
maps and the number of mismatches produced by each method. Note that a density of 100%
cannot be attained unless the disparity maps are interpolated. A mismatch is a point not
rejected by an algorithm and whose disparity differs from the ground truth by more than a
certain threshold. Two mismatch thresholds are considered: 1 and 3 pixels. We compute
these indicators on three regions of each image [44]: all the pixels (ALL), the non-occluded
pixels (NONOCC), and the occluded pixels (OCC). Errors at occluded pixels can be computed
because a the ground-truth is known also in occluded areas.

In table 1 we report the results of the algorithms for each image, evaluated on the region
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containing with ALL the pixels. For brevity the tables corresponding to OCC and NONOCC
are not reported as the same conclusions can be drawn from the averages seen in table 2. It
is observed that the proposed algorithm attains the lowest mismatch rate on non-occluded
pixels, while keeping a relatively high density. Beside the GC method, which is a global, the
highest densities are attained by SGM and MSMW with small differences between the two.
The 5REG method also yields high densities but at the expense of a higher mismatch rates.
GCS has low mismatch rates but also low density. We can confirm that the filling in post
process for MSMW increases the final density without too much impact on the mismatch
statistics. We also see that for strongly fronto-parallel scenes the CVF method yields the
lowest errors, while for the scenes with slanted surfaces the error is much lower for MSMW.

Performance on slanted surfaces. The issue of non-frontal surfaces is evident on the ground
planes of the Aloe, Wood, and Fountain images in Figure 12. The adaptive window methods
such as CVF are bound to the fronto-parallel hypothesis. Although the shape of the window
is determined from the image content, its is not necessarily adapted to the geometry of the
surface, leading to poor results.

A bias towards the constant disparity is also observed in the results of SGM. This is
probably due to the discontinuity penalty term P1 in the line optimization of SGM [25]. On
the same slanted surfaces the results of MSMW are denser and have less mismatches than all
the consider methods.

Errors on occluded areas. We have observed that many of the errors of MSMW come from
the occlusion regions (OCC) in the scenes. According to table 2 all the window based methods
(except for CVF) have a comparable performance on these regions. These errors are manly
due to the fattening effect, and the adaptive windows used by CVF greatly reduce it. The
fattening detection used in MSMW also mitigates the fattening errors, which is lower than
GC, 5REG and SGBM. Yet, it is clear that adaptive windows constitute a powerful tool when
it comes to removing the foreground fattening, and its incorporation in the current framework
must be subject of future works.

4.2. Evaluation on Stereo and Tristereo Satellite Images. One of the interests of this
paper is the estimation of digital elevation models from satellite images. The existence of
high-resolution quasi-simultaneous satellite imagery is leading to an increase in the demand
of automatically generated and reliable digital elevation models.

Figures 14-15 compare the performance of previous algorithms applied to stereo pairs
kindly provided by the CNES (Centre national d’Études spatiales). The first one is an airborne
pair taken over Toulouse, while the second is a view of the Grand Central Terminal in New
York acquired by the Pléiades satellite. These experiments illustrate that only SGM and
MSMW are able to produce a reasonable disparity map free of artifacts. Both solutions are
very similar for the nadir aerial images in Fig. 14, while MSMW performs better on the slanted
view of Grand Central, Fig. 15, yielding a denser result.

Figure 16 shows an application of the proposed algorithm to compute a digital elevation
model from a tri-stereo dataset. These images have been acquired by the Pléiades satellite
and are courtesy of the CNES and Astrium DS. Two disparity maps are computed forming
nadir-left and nadir-right stereo pairs using the s2p pipeline [13]. Note that the images contain
significant occluded regions in the vicinity of high structures. These occlusions are inevitable
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Table 1
Evaluation of the results. The table below compares the outputs of the proposed algorithm (MSMW without

and with the filling-in post-process) with: the Graph Cuts algorithm (GC) from Kolmogorov and Zabih [30],
Cech and Sara’s [10] Growing Correspondence Seeds (GCS), the 5 regions algorithm (5REG) from Hirschmüller
et al. [26], the Cost-Volume Filtering algorithm (CVF) from Rhemann et al. [39], and SGBM (OpenCV’s
implementation of Hirschmuller’s Semi Global Matching (SGM) [25]). We report the density (D) of the obtained
disparity maps and the mismatches as percentage of pixels yielding errors above one pixel (E1) and above 3
pixels (E3).

GC [30] GCS [10] 5REG [26]
Image D E1 E3 D E1 E3 D E1 E3
Aloe 90.53 14.16 6.52 73.72 4.26 2.24 79.10 2.91 1.26
Wood 87.12 25.83 10.60 73.73 1.72 0.34 75.38 2.21 0.61

Fountain 92.36 36.50 8.88 72.87 6.57 1.36 83.38 4.99 1.22
Rocks 97.61 2.07 0.62 91.89 1.67 0.41 96.32 0.95 0.38
Cones 89.79 9.53 4.72 65.09 4.00 2.02 68.20 3.83 2.33
Art 94.13 11.97 5.13 68.38 5.30 2.80 76.34 4.54 3.59
Dolls 96.93 9.70 1.37 73.59 5.22 1.45 82.11 4.73 2.01
Book 88.80 31.01 1.35 49.80 4.88 1.86 83.43 6.27 1.91

Village2 97.47 0.27 0.22 95.53 0.70 0.44 96.95 0.42 0.39
average 92.748 15.67 4.38 73.84 3.81 1.43 82.36 3.43 1.52

CVF [39] SGBM [25] MSMW MSMW w/fill
Image D E1 E3 D E1 E3 D E1 E3 D E1 E3
Aloe 80.23 2.00 1.08 82.77 1.82 0.98 83.59 1.62 0.78 83.94 1.72 0.80
Wood 78.29 1.74 0.63 82.46 0.99 0.39 83.50 1.20 0.16 84.15 1.26 0.17

Fountain 81.95 5.65 1.34 87.65 4.38 0.94 90.25 5.68 0.76 92.39 6.25 0.81
Rocks 92.92 0.47 0.23 95.75 0.83 0.37 94.64 0.86 0.25 96.38 1.01 0.26
Cones 78.27 1.19 0.90 86.32 2.29 1.64 78.21 4.06 1.66 81.63 4.49 1.73
Art 75.50 1.87 1.52 88.75 3.72 3.02 82.03 3.11 1.85 85.30 3.34 1.94
Dolls 84.74 1.88 0.70 95.53 3.17 1.08 86.08 3.76 1.07 90.72 4.15 1.10
Book 79.22 1.93 0.11 86.87 4.33 0.99 86.51 3.50 0.48 87.52 3.67 0.49

Village2 96.31 0.38 0.38 96.07 0.32 0.2 97.24 0.23 0.14 97.35 0.31 0.14
average 83.05 1.90 0.76 89.13 2.43 1.07 86.89 2.67 0.79 88.82 2.91 0.83

Table 2
Averages of disparity map density (D) and mismatch rates as percentage of pixels yielding errors above

one pixel (E1) and above 3 pixels (E3). These values are computed for all the pixels (ALL), the non-occluded
pixels (NONOCC), and the occluded pixels (OCC) [44]. We compare results of MSMW (without and with the
filling-in post-process) with those of the Graph Cuts (GC) [30], Growing Correspondence Seeds (GCS) [10],
Hirschmüller’s 5 regions algorithm (5REG) [26], the Cost-Volume Filtering algorithm (CVF) [39], and SGBM
(OpenCV’s implementation of Semi Global Matching [25]).

NONOCC OCC ALL
Method D E1 E3 D E1 E3 D E1 E3
GC [30] 98.11 15.72 3.62 18.83 16.97 13.95 92.75 15.67 4.38
GCS [10] 78.17 3.30 0.92 14.21 13.09 9.44 73.84 3.81 1.44
5REG [26] 87.52 3.04 1.11 12.31 11.19 8.17 82.36 3.43 1.52
CVF [39] 88.66 1.74 0.61 7.50 5.60 3.65 83.05 1.90 0.77
SGBM [25] 94.87 1.92 0.64 12.96 11.94 8.15 89.13 2.43 1.07
MSMW 92.62 2.32 0.47 11.20 10.12 6.33 86.89 2.67 0.79
MSMW w/fill 94.62 2.54 0.49 12.28 11.08 6.61 88.82 2.91 0.83

Averages considering the images: Aloe, Wood, Fountain, Rocks, Cones, Art, Dolls, Book, and Village2.
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GC GCS 5REG CVF SGBM MSMW MSMW w/fill

Figure 12. Comparison of results with Aloe, Wood, and Fountain. Top, from left to right: disparity
and error computed by the graph cut method (GC), the GCS, the 5REG, CostVolume, SGBM (OpenCV’s
implementation of SGM), and the MSMW without and with filling-in postprocess. Below: image error between
computed disparities and ground truth displayed in range [0, 2.5].

in satellite imaging. However since these regions are complementary in the two datasets it is
possible to fuse the models. In order to take advantage of this complementarity, the stereo
algorithm must produce few outliers, favoring correctness over density.

4.3. Evaluation on the KITTI benchmark. We finally compare the algorithms with the
images provided in the benchmark KITTI [21]. These images are taken by the AnnieWAY
autonomous driving platform, which is equipped with a stereo rig and a laser scanner for
capturing accurate ground truth data. Images are captured in a mid-size city and contain
rural areas and highways, including cars and pedestrians. Figure 17 displays a comparison
with one of the KITTI images.

In order to rank methods, the density of disparity maps and the percent of errors over a
certain threshold, typically two or three pixels, are used. A second classification is performed
on the dense disparity maps obtained by applying a standard disparity interpolation to the
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GC GCS 5REG CVF SGBM MSMW MSMW w/fill

Figure 13. Comparison of results with Village2, Book, and Cones. Top, from left to right: disparity
and error computed by the graph cut method (GC), the GCS, the 5REG, CostVolume, SGBM (OpenCV’s
implementation of SGM), and the MSMW without and with filling-in postprocess. Below: image error between
computed disparities and ground truth displayed in range [0, 2.5].

submitted results. More specifically, the disparity is interpolated line by line, and each hole is
filled with the furthest value. The method proposed is this paper is currently ranked in first
position, based on the estimated disparity.

5. Conclusion. We have proposed a multi-window and multi-scale block-matching algo-
rithm for stereo. The proposed method uses oriented windows to minimize the mismatches on
surfaces that don’t verify the fronto-parallel assumption. The oriented windows align with the
3D geometry of the scene and unlike adaptive windows permit to match correctly on slanted
surfaces.

Two sources of mismatches are also identified, namely the ambiguous matches and the
fattening artifacts due to scene discontinuities. Validation criteria have been incorporated
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(a) stereo pair

95.4%

(b) GC

85.1%

(c) GCS

87.9%

(d) 5REG

90.9%

(e) CVF

91.4%

(f) SGBM

89.5%

(g) MSMW

92.0%

(h) MSMW w/fill

Figure 14. Experiments on airborne pair kindly provided by the CNES (Centre national d’études spatiales).
From left to right: the stereo pair, disparity computed by the graph cut method, the GCS, the 5REG, CostVolume,
SGBM (OpenCV’s implementation of SGM), and the MSMW (without and with the filling-in post-process). The
density of each disparity map is indicated in the lower left corner. The disparity range for this pair is [-5, 30].
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(a) stereo pair

94.4%

(b) GC

69.4%

(c) GCS

71.7%

(d) 5REG

76.7%

(e) CVF

83.1%

(f) SGBM

77.7%

(g) MSMW

81.0%

(h) MSMW w/fill

Figure 15. Experiments on satellite stereo pair kindly provided by the CNES (Centre national d’études
spatiales). From left to right: the stereo pair, disparity computed by the graph cut method, the GCS, the 5REG,
CostVolume, SGBM (OpenCV’s implementation of SGM), and the MSMW (without and with the filling-in
post-process). The density of each disparity map is indicated in the lower left corner. The disparity range for
this pair is [-15, 50].

to detect mismatches caused by any of these sources. Extensive evaluation on benchmark
datasets and on real images show that the proposed method has an excellent performance in
terms of density and mismatch rates.

The natural continuation of the present work should, on one hand, explore the combination
of information from windows of various sizes. On the other hand, improve the matching process
by combining oriented windows with image adaptive windows.
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(a) left image (b) right image (c) nadir image

(d) DEM from nadir-left pair (e) DEM from nadir-right pair (f) fused DEM

Figure 16. Tristereo Pléiades satellite images of Melbourne (a-c). In (d) and (e) are shown the digital
elevation models obtained with MSMW by taking image pairs with a fixed reference image (nadir), while (f)
corresponds to the fusion of the two. The models are represented in false color to improve visualization, blue
areas represent rejected pixels.
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Figure 17. Experiments on KITTI benchmark [21]. Top, from left to right: the stereo pair, the disparity
computed by the graph cut method (GC), the GCS, the 5REG, CostVolume, SGBM (OpenCV’s implementation
of SGM), and the MSMW (without and with the filling-in post-process). The density of each disparity map is
indicated in the lower left corner. The disparity range for this pair is [-120, 0].


