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ABSTRACT
The benefits of photogrammetry from low baseline stereo
pairs have been increasingly demonstrated in recent years
by engineers at the French Space Agency (CNES) and their
collaborators, thanks to new advances in image restoration
and computer vision. Such an emerging technology re-
quires new tools for generating test data, evaluating and vi-
sualizing results. This article discusses the mathematical,
numerical and computational problems involved in simu-
lating such low baseline stereo pairs with sufficient accu-
racy, as well as in the inverse scenario, where the dispar-
ity map computed from a low-baseline stereo pair has to
be expanded to generate a large baseline stereo pair that
makes visual evaluation of the result by photogrametric ex-
perts easier. The trade-offs that have to be made in order
to obtain accurate results on very large images, with tight
constraints on computer resources are also discussed.
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1 Introduction

Air-borne or satellite earth observation systems usually
take so-called “stereo-pairs” of images of the same part
of the ground with the aim of finding 2D point correspon-
dences between both images, and then deducing the 3D co-
ordinates of such points by triangulation. If the image pair
is rectified to epipolar geometry [5], and if the altitude H
of the camera is much bigger than the altitude h of an ob-
ject in the observed scene, then its height h can be deduced
from the disparity δ between the projected locations of the
object in both images u and ũ via the following expression
[3, 5]:

δ[pixels] =
B

H

1
R

h[meters]

where B is the baseline (distance between both viewpoints)
and R is the size of a pixel projected on the ground.

The classical approach adopted by most algorithms
for photogrammetric digital elevation model (DEM) com-
putation, is to consider that disparities can only be esti-
mated up to pixel precision. Since the resolution R is lim-
ited by hardware constraints, this assumption leads to the
use of relatively large B/H ratios (about 1 ) as the only way
to improve the accuracy in height. This approach presents
several disadvantages, especially in urban areas; Therefore,

engineers at the French Space Agency (CNES) and their
scientific collaborators have recently demonstrated the in-
terest and feasibility of small baseline stereo in urban envi-
ronments [9, 2, 1, 6, 3].

Motivation. In order to quantitatively evaluate automated
small baseline stereo reconstruction algorithms, we need
to compare the estimated disparities with some reliable
ground truth. But due to its emergent technology status,
high quality low-baseline stereo pairs with a correspond-
ingly accurately registered ground truth do not exist and
are quite difficult to build in a consistent manner. For this
reason, there is an urgent need for simulated small-baseline
stereo pairs and their corresponding ground-truth dispari-
ties. These can be built either from a more standard large-
baseline stereo-pair, or from an orthophoto and the corre-
sponding DEM. This paper discusses precisely how such
simulations can be modelled and implemented in practice.
As a second application scenario, interactive large from
small baseline simulations can be used to present these new
results to photogrammetric experts that are both unused and
highly reticent to the small baseline setting. This way, the
message that small-baseline stereo actually works shall be
conveyed to a larger public.

Requirements. The simulation obtained in the first case
will be used as the input for sub-pixel algorithms (small
baseline approach). Thus, the results should be artifact-
free, but also highly accurate.
In the second case the output should be suitable for ex-
ploration by the human eye, so an artifact-free simulation
is still important but geometric and radiometric accuracy
constraints are less significant. On the other hand this ap-
plication scenario introduces real-time (interactivity) con-
straints, and the requirement to allow for interactive nav-
igation (through pan, zoom and altitude change) of very
large datasets. This imposes very tight computational con-
straints (both in terms of CPU time, memory usage, and I/O
operations) far more demanding than similar visualization
applications (like 3D games), where the 3D model can be
drastically simplified in advance by an artist.

2 The effect of baseline on stereo pairs

Let us give here an overview of the different aspects that
have to be taken into account when modelling viewpoint



changes or baseline changes. Numerical simulation details
will be left for the following three Sections.

Geometric distortion The advantage of using stereo pairs
with low B/H values can be formulated more precisely in
the following manner. In the ideal case where B/H → 0,
no occlusions occur. Given an image pair v, ṽ : R2 → R
under these conditions the relation between them is cap-
tured by a simple image deformation model

v(x) = g(ṽ(x + δ(x)︸ ︷︷ ︸
Φ(x)

)) = g ◦ ṽ ◦ Φ (1)

where g : R → R is a (non-decreasing) contrast change,
δ(x) : R2 → R2 is the disparity induced from one image
to the other by the urban surface (i.e. proportional to the
elevation map h(x) as seen before).

This model is more and more accurate as B/H → 0.
Even if the images are not taken from the zenith, the small
B/H ensures that no significant change of the occlusion
occurs between both shots, so that they are linked by a sim-
ple “deformation” model like equation (1).

In addition, the fact that both images from the pair are
taken simultaneously implies that no illumination changes
occurred, so that the contrast change g can be well approx-
imated by a linear one, simplifying equation (1):

v(x) = (ṽ ◦ Φ)(x) (2)

This is the ideal case where B/H is extremely small. In
practice we shall be dealing with larger B/H ratios where
occlusion artifacts are more important. We explain how to
deal with such cases in Section 3.

Sampling Now, in reality, an ideal continuous image like v
or ṽ can only exist as a model. An actual acquisition device
will blur, sample and add noise to both shots

u = S1(p ∗ v) + n ũ = S1(p ∗ ṽ) + n (3)

where the noise n is usually modelled as a zero-mean Gaus-
sian and Ss : L2(R2) → `2(sZ2) is the sampling operator
on a discrete regular grid of step s. The convolution kernel
p is dictated by the physical characteristics of the instru-
ment, but we shall assume here that it is a positive ker-
nel with small support which closely approximates the sinc
kernel (sinc(x) = sin(πx)

πx ) at the right scale

p(x) ≈ sincs(x) = sinc(x/s) p ≥ 0

typically a prolate or cardinal spline kernel. This assump-
tion ensures (thanks to Shannon’s sampling theorem) that
the continuous image p ∗ v can be accurately restored from
its samples u, avoiding the introduction in u of ringing or
aliasing artifacts that were not present in v.

Such an assumption does not hold in general for real
systems (except maybe for highly tuned very high quality
systems), but a calibration and restoration procedure [2, 1]
can be used to obtain such a canonical representation for

Figure 1. Problems that appear when inverting a disparity func-
tion δ(x) (left image), the pseudo-inverse of the function Φ(x) =
x + δ(x) that represents correctly the occlusions is shown in the
image of the right.

any image obtained by a known device. This representation
will be consistent across the different viewpoints and scales
that will be simulated for an input image or image pair.

Sampling a deformed image From the equations above
it turns out that in order to simulate a secondary view ũ
from a reference view u and the knowledge of the disparity
map δ (or its associated deformation Φ) we should first de-
convolve and denoise u, to obtain as close a representation
as possible to the original v, and then use equation (3) to
simulate ũ

ũ ≈ S1

[
p ∗ ((p−1 ∗ u) ◦ Φ−1)

]
+ n

≈ S1

[
p ∗ ((sinc ∗u) ◦ Φ−1)

]
+ n.

The deconvolution process is however very ill posed.
In practice, a discrete Wiener deconvolution filter [2] for
p will ( in our canonical setting) be very close to the sinc
kernel, and this is what we use in practice. Section 4 gives
the numerical details on how this is implemented with a
reasonable compromise between lack of artifacts, accuracy,
and computational performance. A second inverse problem
concerns the inversion of the deformation Φ−1, which shall
be dealt with in the next Section 3.

3 Simulating geometric deformations

Equation (1) can be rewritten in terms of the mapping func-
tion Φ:

Φ(x) = x + δ(x) (4)

We can analyze the behaviour of this function in presence
of occlusions and disocclusions (See Figure 1):

occlusion If the function Φ(x) is decreasing then some
parts of the reference image u will not be visible in
the secondary image ũ. When simulating ũ from u we
need to simulate these occlusions. Recall that function
Φ is decreasing in [a, b] if Φ(x)′ < 0 for all x ∈ (a, b),
which leads to δ′(x) ≤ −1.

disocclusion If |Φ′(x)| > 1 (i.e. if δ′(x) ≥ 0) then the
sampling rate of the secondary image ũ will be greater



than in the reference image, which means that more
detail can be represented in ũ than in u. When sim-
ulating ũ from u the problem here is how to ”disoc-
clude” this information missing in u.

In urban terrains (due to the ubiquity of vertical walls)
non-decreasing functions are very unlikely, then the func-
tion Φ(x) will not be invertible. On the other hand if we
want to simulate the secondary image ũ from its relation to
the known data u and Φ (see equations (1) and (3)), then
we may need to compute its values over a regular grid

ũ(x) ≈ u(Φ−1(x)) with x ∈ Z2 (5)

which means interpolating u on the irregular (perturbed)
grid Φ−1(Z2).

These observations lead to the need of inverting the
(not always invertible) function Φ(x), and in order to solve
the problem we propose to compute a pseudo-inverse of
this function such that the occluded areas are correctly rep-
resented. An occlusion occurs when the same point in the
second image (the vertical axis in Figure 1) corresponds
to more than one point in the reference image (horizon-
tal axis), the computation of the pseudo-inverse must solve
this ambiguity. The solution consists in keeping the high-
est point value in the areas where the inverse has multiple
functional values, as expressed in equation (6) and shown
in Figure 1. That is, from all x that satisfy Φ(x) = y, we
define the pseudo-inverse Φ+ of y to be the maximum of
those x:

Φ+(y) = max{x : Φ(x) = y} (6)

Another problem related to the simulation is the dis-
occlusion. Here we opted for the simplest solution, which
does not search to fill-in any unknown information, but just
interpolate and filter. This results in a blurring effect since
the last known value is dragged along the disoccluded area.
A more visually pleasing (but not necessarily more accu-
rate) result would be obtain by “inpainting” disoccluded ar-
eas by iterative copy-paste techniques like the one proposed
by the seminal work of Efros-Leung [4] and the variations
that followed.

Simulation of altitude changes The previous discussion
dealt with the simplest application scenario where we want
to simulate a secondary image ũ from a known reference
image u and a disparity map δ. We turn now to the more
complex problem of changing the B/H ratio of a given
stereo pair u, ũ. The first step will be to estimate the dis-
parity δ between both images in the pair if it is not already
known.

The B/H ratio can be increased by either enlarging B
or reducing H . We chose the second option here. Chang-
ing the satellite altitude introduces two modifications to the
scene that we must incorporate to our model in order to
obtain an accurate simulation. There is a scale change on
both images by a zoom in or a zoom out, depending on
whether the satellite moves up or down the scene. Second,

a geometric change also takes effect, that deforms the im-
ages, even occluding or desoccluding some of the original
structures present on the scene.

More precisely, and recalling equation (7), to simulate
a reduction by a factor of k of the satellite’s altitude H
while keeping the same baseline B we simply divide the
altitude by the factor we want:1

δ′[pixels] =
B

H

1
R

kh[meters] (7)

Using both equations we obtain a relation between the orig-
inal disparity (or deformation) values and the new ones:

δk := δk Φk(x) := (x + kδ(x)) (8)

Thus, if we have a disparity map δ with an altitude of H ,
the last equation states that we can obtain the disparity map
with an altitude H/k simply multiplying the original dis-
parity map by k.

Here we assume that the ideal reference image v of
the stereo pair is taken from the zenith in nadir orientation.
This means that an altitude change does not affect the ref-
erence image but only the secondary image ṽk

v(x) = ṽ(Φ(x)︸ ︷︷ ︸
y

) and v(x) = ṽk(Φk(x)︸ ︷︷ ︸
z

)

Note that we could proceed from the second equation as
in the previous Section, by computing the pseudoinverse of
Φk and applying it to v in order to obtain ṽk. But this pro-
cedure would be based only on v, ignoring the information
in ṽ which is closer to ṽk than v. A more sensible approach
would simulate ṽk directly from ṽ. This amounts to com-
puting (via x) the link between z and y.

z− y = Φk(x)− Φ(x) = (k − 1)δ(x)
⇒ z = y+(k−1)δ(x) ≈ y+(k−1)δ(y) = Φk−1(y)

The last approximation is based on the fact that x
and y are close, and that δ is small and regular. Note that
this approximation justifies the interpolation that we use in
practice, namely

ṽk ≈ ṽ1 ◦ Φ+
k−1

4 Applying deformations and scale-change

The equation (5) describes how to simulate a new view ũ
from u by applying the pseudo-inverse Φ+ : R2 → R2 to
the original sampling of u, but this perturbed sampling is
generally not equispaced. Therefore simulating ũ entails
an interpolation of u.

As explained in Section 2, u can be reconstructed
from its samples with the sinc interpolation according to

1We must be careful not to use a very large reduction factor k because
equation (7) relies on a parallel projection model that is valid only as long
as H

k
¿ h. For larger values of k more complex perspective deforma-

tions should be taken into account.



the Shannon’s sampling theorem. It is customary for the
interpolated function u and the kernel k, to be considered
as periodic functions (of period N in each direction and
sampled with step 1). So that they are determined by a
finite number of Fourier coefficients (denoted û(ω), x ∈
Z2 ∩ [0, N)2 and efficiently computed with the FFT: Fast
Fourier Transform) or by the same number of samples that
are also denoted u(x), x ∈ Z2∩ [0, N)2. For this setup the
interpolation of u reduces to the evaluation of the trigono-
metric polynomial:

u(x) =
∑

ω∈{0,··· ,N−1}2
û(ω)e2πixω/N x ∈ R2 (9)

When x ∈ Z2, the sampling (9) is efficiently computed by
the inverse FFT using a divide and conquer approach. The
FFT’s approach reduces the number of floating point opera-
tions fromO(N4) for a naı̈ve evaluation, toO(N2 log N2).
However, in the case of nonequispaced sampling it is no
longer possible to apply the FFT’s srtategy.

The NFFT (Nonuniform Fast Fourier Transform) [8]
is a C subroutine library for computing the nonequispaced
discrete Fourier transform (NDFT), that allows to approx-
imate (9) in O(N2 log N2). In a nutshell, the principle
behind the NFFT’s efficiency is its memory/computation
tradeoff. NFFT pre-computes and stores a zoomed version
of the signal (let’s say that the zoom factor is C, then the
cost is O(C2N2 log N2) ). Then the value of each sample
is approximated over the zoomed signal by a high order B-
spline interpolation (with a cost comparable to the one of
the FFT zoom).

When simulating a new view, the re-sampling of u
leads to the apparition of alias in the simulated image ũ.
Alias may appear when the deformation Φ+ induces a sub-
sampling of u, and under this circumstance the result will
be an aliased texture.

A realistic simulation of ũ should not present alias.
Indeed the generation of a new view involves not only

the re-sampling of u but also the simulation of the entire
acquisition system

ũ(x) ≈ (p ∗ ((sinc ∗u) ◦ Φ+))(x) x ∈ Z2 (10)

where Φ+ stands for a continuous distortion function to be
applied to u.

Recall that u can be interpolated from its samples, but
the samples of ũ may not be sufficient to recover it because
some areas of the image may not respect the Nyquist band-
limit/sampling constraint any more. To adequately simu-
late ũ we will proceed as follows: First compute a zoomed
version of u ◦Φ+ so that no alias will be present in it, then
apply the filter p to remove the high frequencies appeared
due to the deformation and lastly subsample.

For the first step we zoom by zero-padding u ◦ Φ+

using a zoom factor depending on the maximum slope of
Φ+. For simplicity suppose that this slope is 2, meaning
that the samples are moving apart (like in a subsampling),
then the zoom factor should be 2. Notice that the distortion

map Φ+(x) should be interpolated as well, this is done by
a linear interpolation of the original map (6). The oversam-
pling will provide the necessary spectral room to represent
the new high frequencies that may appear due to the defor-
mation.

The last step of the simulation involves the simula-
tion of the acquisition system by convolving with the fil-
ter p (performed in frequency domain) –this will smooth
out the frequencies responsible for the alias– followed by a
sampling of a factor 2.

5 Performance-accuracy trade-offs

A real-time simulation of the stereo pair requires a fast
navigation between the different altitudes, which entails a
zoom for the reference image and the simulation of a new
secondary image. It is clear from the previous Section that,
it is not possible to accurately simulate the secondary im-
age in real-time scenarios.

The two main bottlenecks of the schema outlined in
Section 4 are the computations of FFT’s, NFFT’s, and
pseudo-inverses. To avoid most of the FFT’s cost we re-
moved the zero-padding zooms, trading it for some mi-
nor aliasing artifacts. And to avoid the re-estimation of
the pseudo-inverse we will pre-compute it at some coarse
scales, and interpolate them on-line to obtain the spatial co-
ordinates of each pixel at the target altitude.

Thus, we need not only the pre-computed disparity
maps but also maps of deformed image coordinates at vary-
ing B/H ratios. These are summarized in the following
preprocessing (offline) steps.

1. Given the original disparity map δ, the primary and
secondary images u, ũ and the original height H , di-
vide the altitude interval to be simulated in L steps
H = H1 > · · · > HL À 0.

2. For each altitude Hl compute the ratio k = H
Hl

≥
1 and the corresponding rescaled disparity map
δk−1(x) = (k − 1)δ(x), and the pseudo-inverse
Φ+

k−1(x), as in equations (6) and (8). Store its inte-
ger values in Tl : i 7→ Φ+

k−1(i), for i ∈ Z2 ∩ [0, N)2

The secondary image ũsim is then simulated (on the fly) at
the desired altitude Hsim

1. (Init) Let (Hl and Hl+1) be the two pre-computed
maps so that: Hsim = aHl + (1 − a)Hl+1 with
(0 ≤ a ≤ 1)

2. (Blending) The value of Tsim is then computed as

Tsim(i) = aTl(i) + (1− a)Tl+1(i).

3. (Resampling) Use Tsim to sample the values of ũsim

using the equivalent of equation (10) for variable
B/H:

ũsim = S1[p ∗ ((ũ ∗ sinc) ◦ Tsim)]. (11)



4. (Zoom) Apply to u and ũsim a zoom factor of
H/Hsim to simulate the change of altitude.

the 1st, 2nd and 4th steps have all linear complexity (linear
with the number of pixels), whereas the 4th is a fast zoom
that can be done by the graphic card. Step 3 is more expen-
sive, and can be performed in the following ways (which
are variants of the algorithm)

1. The highest accuracy (v1.3) for step 3 implies four
steps: (i) a zoom ×s of ũ by zero-padding (FFT);
(ii) zoomed reinterpolation to obtain ṽsim(i) :=
((ũ ∗ sinc) ◦ Tsim) (i) for i ∈ (Z/s)2 (NFFT); (iii)
low-pass filtering p ∗ ṽsim to avoid aliasing; (iv) sub-
sampling ũsim(i) := (p ∗ ṽsim)(i) for i ∈ Z2. In
addition we should compute Tsim = Φ+

k−1(x) exactly
for k = H

Hsim
instead of using the blending in step 2.

The main performance penalty comes from the NFFT
interpolation O(N2logN2).

2. A faster, but still pretty accurate way (v1.2), will
compute Tsim by blending, limit the zoom in step
3.i to s = 2, use 2nd order splines instead of the
slower FFT for the zoom, low-pass-filtering and sub-
sampling steps, and approximate the zoomed NFFT
in step 3.ii by bilinear interpolation (ṽsim(i) :=(
(ũ ∗ β1) ◦ Tsim

)
(i)). The costs of all these opera-

tions are still O(N2) but with a fairly large constant.

3. The fastest way (v1.1) is to apply a linear interpolation
instead of the NFFT in step 3.ii and drop the zoom,
low-pass-filtering and subsampling steps completely.
This option keeps the cost of the algorithm in O(N2)
(recall that N is the number of lines of the image).
But the absence of zoom will result in the emergence
of some aliasing artifacts.

v1.1 v1.2
Steps Seconds Steps Seconds

Blending < 0.01 Blending 0.01
Resampling... Resampling...

Zoom 2x 0.95
Linear Interp. 0.09 Linear Interp. 0.36

Low-pass filt. 0.57
Sampling 0.01

Total 0.1 Total 1.99

Table 1. Execution Times.

Table 1 gives a break-down of the execution times into
steps for the proposed algorithms, when applied to a 512×
512 pixels image on a Pentium 4. As we can see, both
methods can be considered real-time. Although v1.2 is
close to the acceptable limit for an interactive applica-
tion. So, our solution consists in running both algorithms
as parallel threads. v1.1 finishes first and gives a first
low-quality approximation to preserve interactivity. When

(a) Reference (b) Secondary (c) GT

Figure 2. A stereo pair, taken with a baseline/altitude ratio of
B/H = 0.045 and the corresponding ground-truth.

GUI-interaction slows down for a while v1.2 has enough
time to finish and render a medium quality approximation.
A third thread can also be added for the final very high
quality rendering of the simulation v1.3.

I/O issues The real-time visualization tool is expected to
handle large images efficiently, and the architecture should
contemplate these issues. The biggest problem is that due
to the size of the images, we could not load them com-
pletely into memory. Some critical I/O operations are re-
lated to: the loading of a spatial region of the image for
visualization and the loading of zoomed or degraded ver-
sions of the image. These operations are fully implemented
in JPEG2000 and JPIP standard [7]. Using the JPEG2000
format we have a scale- and space-indexed multiresolution
representation that can be used directly to perform most of
the operations described before, without the need of per-
forming zero-padding zoom since they are efficiently pre-
calculated and stored in JPEG2000 as wavelet coefficients.

6 Experiments

For the experiments we used a real stereo pair of aerial im-
ages taken at a B/H factor of 0.045. This 512×512 and the
corresponding ground-truth was kindly provided by CNES.
For display purposes in Figure 2 is shown a 125×335 crop
of this data set.

To validate the accuracy of the simulated images we
start by computing precalculated simulations ũk (for k =
2, 6, 10) of altitude changes (H/k). The results are shown
in Figure 3. In this experiment, the disocclusion areas were
replaced by a linear interpolation between non-occluded
adjacent points, which generates the artifact that we can
see at the junction of the football field and the building.

Given the simulations obtained before, the next ex-
periment is to compute the disparity map using a few algo-
rithms for highly accurate subpixel disparity map compu-
tation [6]. Since we have the ground-truth, we can perform
quantitative measurements of the results, that are listed in
Table 2.



(a) ũ2 (b) ũ6 (c) ũ10

Figure 3. Precalculated reinterpolations shown as anaglyphs, us-
ing ũ in the red channel and ũk in green and blue channels.

(a) v1.3 (b) v1.2 (c) Difference

Figure 4. v1.3 vs v1.2. The images have a graylevel range
[0, 256] while the depicted errors have a range of [−32, 37].

The most important of these results is that we can ob-
tain better disparity maps when we use the simulated im-
ages as secondary image. This does not mean that larger
baselines are better (in a real situation larger baselines im-
ply –among other things– illumination changes that affect
accuracy and that we are not simulating), it only indicates
that the simulation is very accurate, since it allows to re-
trieve the original disparity. So our algorithm (in its most
accurate version) is not only well suited for visualization,
but also for building stereo-pairs and testing stereo recon-
struction algorithms at several B/H settings that may not
be available among the real data.

Finally, in Figures 4(a) and 4(b) we show the simu-
lation of ũ6.5 using v1.3 and v1.2. As we can see, both
images look very similar to the naked eye. So this is an ex-
ample that the real-time algorithm v1.2 is valid to simulate

Stereo Algorithm ũ ũsim ũ2 ũ3

MARC[3] 0.438 0.317 0.259 0.230
MERGE-NFA[6] 0.438 0.319 0.302 0.276

Table 2. Disparity Maps Errors using L1.

a navigation between the different altitudes. In order to see
better the areas where the algorithm is less accurate, in Fig-
ure 4(c) we show an image that is the difference between
Figures 4(a) and 4(b).

7 Conclusions and Future Work

In this work we have covered all the stages needed for
simulating stereographic image pairs from a given low-
baseline one. We considered two different scenarios: sim-
ulating high baseline from a low-baseline pair and simulat-
ing new low-baseline pairs from an original low-baseline
one. We have explained the mathematical framework
needed to derive the simulation algorithms, and given the
details of the overall architecture for a real-time visualiza-
tion application. In both cases we have developed the al-
gorithms and the software architecture to obtain both real-
time simulations or highly accurate simulations.

Many improvements are still possible. In terms of
quality, most simulation errors occur near discontinuities
and disocclusions, where the deformation model is less ac-
curate. Filling in those regions with a synthesized texture
will greatly improve the visual quality of the results. Com-
putational performance can also be greatly improved by
implementing most of the time consuming operations di-
rectly on the GPU. Further improvements are also possible
by optimizing the data transfers between hard-disk, RAM
and GPU-RAM.
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