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Abstract

The generation of urban digital elevation models from satellite images using
stereo reconstruction techniques poses several challenges due to its precision re-
quirements. In this thesis we study three problems related to the reconstruction
of urban models using stereo images in a low baseline disposition. They were
motivated by the MISS project, launched by the CNES (Centre National d’Etudes
Spatiales), in order to develop a low baseline acquisition model. The first prob-
lem is the restoration of irregularly sampled images and image fusion using a
band limited interpolation model. A novel restoration algorithm is proposed,
which incorporates the image formation model as a set of local constraints, and
uses of a family of regularizers that allow to control the spectral behavior of the
solution. Secondly, the problem of interpolating sparsely sampled images is ad-
dressed using a self-similarity prior. The related problem of image inpainting
is also considered, and a novel framework for exemplar-based image inpainting
is proposed. This framework is then extended to consider the interpolation of
sparsely sampled images. The third problem is the regularization and interpola-
tion of digital elevation models imposing geometric restrictions. The geometric
restrictions come from a reference image. For this problem three different reg-
ularization models are studied: an anisotropic minimal surface regularizer, the
anisotropic total variation and a new piecewise affine interpolation algorithm.

i





iii

Resumen

La generación de modelos urbanos de elevación a partir de imágenes de satélite
mediante técnicas de reconstrucción estereoscópica presenta varios retos debido
a sus requisitos de precisión. En esta tesis se estudian tres problemas vinculados
a la generación de estos modelos partiendo de pares estereoscópicos adquiridos
por satélites en una configuración con baseline pequeño. Estos problemas fueron
motivados por el proyecto MISS, lanzado por el CNES (Centre National d’Etudes
Spatiales) con el objetivo de desarrollar las técnicas de reconstrucción para imá-
genes adquiridas con baseline pequeños. El primer problema es la restauración
de imágenes muestreadas irregularmente y la fusión de imágenes usando un
modelo de interpolación de banda limitada. Se propone un nuevo método de
restauración, el cual usa una familia de regularizadores que permite controlar
el decaimiento espectral de la solución e incorpora el modelo de formación de
imagen como un conjunto de restricciones locales. El segundo problema es la
interpolación de imágenes muestreadas en forma dispersa usando un prior de
auto similitud, se considera también el problema relacionado de inpainting de
imágenes. Se propone un nuevo framework para inpainting basado en ejempla-
res, el cual luego es extendido a la interpolación de imágenes muestreadas en
forma dispersa. El tercer problema es la regularización e interpolación de mo-
delos digitales de elevación imponiendo restricciones geométricas las cuales se
extraen de una imagen de referencia. Para este problema se estudian tres mo-
delos de regularización: un regularizador anisótropo de superficie mínima, la
variación total anisótropa y un nuevo algoritmo de interpolación afín a trozos.
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Chapter 1

Overview

The context. The demand for high resolution remote sensing products on urban
areas has experimented a rapid growth in the last years. In the case of urban Dig-
ital Elevation Models (DEM) and high resolution imagery for civil and defense
applications, not only has grown the precision exigency but also the amount of
data, making impractical any non-extensive and non-automatic technique.

The main sources of information for obtaining digital elevation models are:
cartography and cadastral registers, LIDAR scanning (light detection and rang-
ing or laser imaging detection and ranging), or obtained from aerial images (air-
borne or satellite) by applying stereo reconstruction techniques.

In the case of stereoscopic images, the depth of the objects in a three dimen-
sional scene is computed by comparing two projections taken from two slightly
different positions. The distance between the two projection centers is called
baseline, and the ratio between the baseline and the distance to the scene is the
stereoscopic coefficient. The depth of a point is inversely proportional to its dispar-
ity (the distance between its projections in the two images). A higher disparity
means that the object is near to the cameras. Occlusions are a common artifact
of the stereoscopic reconstruction, they correspond to portions of the images
whose depth cannot be determined because they are only visible from one of
the projections.

Since self-occlusions are common in urban imagery, the best acquisition di-
rection to avoid them is exactly from the zenith (this is also true for the LIDAR
scanning). On the other hand, the accuracy of the measured disparity (and the
depth of the object) depends on the resolution of the images. Thus, to obtain the
maximal precision it is necessary to increase the stereoscopic coefficient. How-
ever a big stereoscopic coefficient means more occlusions.

Interestingly, as it is shown in [Del04, SMA10] the precision of a stereo corre-
lation algorithm does not depend on the stereoscopic coefficient, thus, allow-
ing to compute sub-pixel disparities with small baseline stereo images. The
small baseline assures that there are almost no occlusions, and, being the dis-
tance between the projections is very small, the images obtained are also quasi-
simultaneous. The drawback of stereo correlation is that not all image points can
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Figure 1.1: Digital elevation model acquisition using stereo reconstruction. The
schema represents the processes from the stereo pair to the interpolated and
regularized elevation model, through the restoration and stereo matching. The
initial stereo pair can also be fused into a higher resolution image.

be faithfully matched, and its depth accurately computed, the remaining points
must be interpolated. In that context the challenge is to interpolate sparse data
so that the model fits the geometry of the scene.

On the other hand the stereo pair must be restored before applying any cor-
relation algorithm. Most of the airborne imaging sensors are push-broom scan-
ners. Instead of using a rectangular sensor array, a push-broom sensor acquires
the image progressively by a line of sensors arranged perpendicular to the di-
rection of motion. Because of satellite vibrations the resulting images are non
regularly sampled. So, a regularly sampled pair must be restored from an irreg-
ularly sampled one.

A second issue that must be solved before applying a stereo algorithm is the
alias. To enable super-resolution applications, by design the sensors produce
aliased images. However, stereo correlation algorithms are very sensitive to the
presence of alias in the stereo pair, so the alias must be removed before comput-
ing the disparity [Van06].

Finally, let us mention that since the stereo pair is quasi-simultaneous and
the images are aliased, both images can be merged into a higher resolution one.
In this case the samples of both images must be fused into a single image.

The generation of urban digital elevation models and fused images from
satellite stereo images is schematically summarized in Figure 1.1.

Organization of the thesis. This thesis is organized in three independent
parts, each part has its own introduction where we describe and motivate the
succeeding chapters.

• The first part is devoted to the restoration of irregularly sampled images.
We propose a variational method based on a band limited interpolation
model, and we study the problem of image fusion (super-resolution) as a
restoration from irregular samples.
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• In the second part we explore the use of self-similarity as a prior for in-
terpolating sparsely sampled images (we restrict us to the case where the
samples are at integer positions). We start by introducing a new frame-
work for exemplar based inpainting which we subsequently adapt to the
interpolation of sparsely sampled images.

• The main subject of the third part is the use of anisotropic regularization
applied to the interpolation and regularization of digital elevation models.

Although the three parts cover different topics, they can be understood
within the remote sensing context. The first part is motivated by the problems of
satellite image restoration and fusion of several images into a higher resolution
one. For both of them we use the band limited interpolation model as a prior. In
the second part we use the self-similarity prior for interpolating sparsely sam-
pled images. This permits to increase the resolution of the images by adding
features that are not in the data but are copied from other portions of the same
image (or eventually also from other images). The third part is devoted to the
interpolation of digital elevation models obtained from aerial images using a
geometric regularization prior. Indeed, we consider three anisotropic regular-
ization algorithms for interpolating elevation models which enforce different
smoothness priors: minimal surface, bounded variation and piecewise affine.
The anisotropy embeds the geometric structure extracted from a reference im-
age.

Let us give a detailed description of the contents of each chapter.

Part I. Image restoration for irregularly sampled images

Chapter 2: We introduce the image acquisition model for irregularly sampled
images, and justify the regularization approach taken in Chapter 3 to solve the
restoration problem. Then, we extend the discussion to image fusion and we
point out the limitations of the total variation regularizer when used in an under-
determined restoration problem. We introduce the “spectral projector” which
will be used in Chapters [FAAC09] and 4.

Chapter 3: We propose a restoration algorithm for band limited images that
considers irregular sampling, denoising, and deconvolution. We explore the ap-
plication of a family of regularizers that allow us to control the spectral behavior
of the solution and we incorporate the image acquisition model as set of local
constraints.

Chapter 4: We extend the band limited restoration model to the the problem
of image fusion. Considering some particular types of sampling we propose
two methods for estimating the “spectral projector” for image fusion. Then we
show that the restoration of aliased images with a spectral projector induces a
bias in the noise estimation. This bias is difficult to estimate since it depends on
the statistics of each image, and is still an open problem.
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Part II. Interpolation from sparse samples

Chapter 5: In this chapter we introduce the problem of reconstructing an
image from a set of sparse samples taken on a regular grid. As opposed to
the interpolation methods studied in the previous part, we adopt here a non-
local prior for imposing the regularity on the solution. The proposed exemplar-
based framework is applied to inpainting (Chapter 6) and interpolation prob-
lems (Chapter 7).

Chapter 6: In this chapter we propose and analyze a variational framework
for exemplar based inpainting. From this framework we derive and test three
inpainting algorithms.

Chapter 7: In this chapter we extend the framework proposed in Chapter 6 to
consider the interpolation of sparsely sampled images.

Part III. Digital elevation model interpolation

Chapter 8: We motivate the problem of digital elevation model interpolation
from sparse or incomplete data in the context where a reference image of the
scene is available. In this setting the information provided by the reference im-
age can be incorporated into the regularization by means of different smooth-
ness priors.

Chapter 9: In this chapter we consider an anisotropic minimal surface regu-
larizer. The anisotropy, derived from the reference image, constrains the regu-
larization of the model so that diffusion only occurs along the isophotes of the
image. In this context we considered two data terms based on L2- and L1-norms.

Chapter 10: In this chapter we use an anisotropic total variation as regularizer
for the interpolation of elevation data, and we explore the connections of the
underlying functional with the geodesic active contour segmentation model.

Chapter 11: Finally, we propose a piecewise interpolation algorithm for sparse
data that incorporates geometric information from a reference image by means
of a geodesic distance defined on the image domain. This geodesic distance
allows to compute a Voronoi diagram that respect the edges of the reference
image, and permits to determine a set of neighboring samples for each point of
the image. The neighborhoods are later used to robustly fit a piecewise affine
model for each cell of the diagram. The resulting piecewise interpolation of the
data adapts to the geometric information provided by the reference image.

Chapter 12: This chapter summarizes the conclusions of this thesis and a brief
discussion about the future directions.



Part I

Image restoration for irregularly
sampled images
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Chapter 2

Image restoration and irregular
sampling

In this part we address the problem of image restoration from irregular samples, in par-
ticular we will focus on the restoration of satellite images, where the micro-vibrations
are responsible of the type of distortions we are considering here. In this chapter we
provide some background about the formulation of a restoration problem as an energy
minimization problem and its relation with the Bayesian methods.

2.1 Introduction

The general model of an image acquisition system may be written as:

z(ξi) = (h ∗ u)(ξi) + nξi , ξi ∈ Ξ, (2.1)

where Ξ = {ξi}N2

i=1 ⊆ R2 is a known and finite set of regular or irregular sam-
ples, u is the ideal undistorted image, h is a blurring kernel and n is the usual
Gaussian noise.

We consider the problem of reconstructing the signal u from the set of ob-
servations z(ξk) knowing the sampling geometry Ξ, the blurring kernel h, and
the statistics of the noise n. The problem of recovering u from z arise in several
real-world image acquisition systems. Let us overview three different problems
of interest that arise in practice:

• image restoration under regular or irregular sampling,

• image denoising,

• image fusion posed as a restoration problem from irregular samples.

2.2 The problem of image restoration

For simplicity, let us consider first the restoration problem in the case of regular
sampling. The case of irregular sampling will be discussed in Section 2.2.1.

7
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The problem of recovering u from z is ill-posed. Notice that even assuming
zero noise and an invertible kernel h, the sampling rate of Ξ may be insufficient
to recover the desired details of u. Several methods have been proposed to re-
cover a plausible solution u, most of them impose directly or indirectly some
kind of regularity prior on the solution.

The Bayesian approach to image restoration Let Ω = {1, ..., N}2 be a discrete
domain. We denote by X the Euclidean space RN×N . The Euclidean norm in X
will be denoted by ‖ · ‖X . An image is represented by a vector (u(x))x∈Ω (we
may also use the notation u(i, j) to denote a pixel of u).

The ingredients of the Bayesian approach for solving the restoration prob-
lems are:

• The image formation model:

z(x) = h ∗ u(x) + n(x) x ∈ Ω, (2.2)

where h is a discrete convolution kernel and n(x) is a white Gaussian noise
with zero mean and standard deviation σ.

• An a priori probability density for “perfect” original signals:

pβ(u) ∝ exp (−βJd(u)), (2.3)

where β > 0, and Jd(u) is an energy density.

Using Bayes rule, the posterior density of u given z is

pβ(u|z) =
1

C(z)
p(z|u)pβ(u), (2.4)

where C(z) is the normalization constant making the mass of pβ(u|z) to be 1.
The conditional distribution of z given u would be a delta at the function h ∗ u
if there were no noise. On the other hand, since the noise statistic is known and
n = z− h ∗ u, then the probability density of z given u is Gaussian:

p(z|u) ∝ exp

(
−‖z− h ∗ u‖2

X
2σ2

)
,

and the posterior probability becomes

pβ(u|z) =
1
C

exp

(
−
(
‖z− h ∗ u‖2

X
2σ2 + βJd(u)

))
. (2.5)

The maximization of the a posteriori density (2.5) or (MAP) is equivalent to
the minimization problem (2.6) provided that βσ2 = λ,

min
u∈X

Jd(u) +
1

2λ
‖h ∗ u− z‖2

X . (2.6)
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The MAP estimator is not the only, nor necessarily the best, choice for com-
puting u. Indeed the image with the highest probability, given by the resolution
of MAP, might be a very rare event. The Conditional Means for instance, pro-
vides an estimation of u that consists in computing the expected value of u given
z:

E(u| f ) = 1
C

∫
RN2

upβ(u|z) du =
1
C

∫
RN2

u exp

(
−‖z− h ∗ u‖2

X
2σ2 − βJd(u)

)
du.

(2.7)
The Conditional Means estimate requires to compute an integral in a high
dimensional space. Lassas-Siltanen [LS04] and Louchet-Moisan [LM08] pro-
pose to approximate this integral with a Markov Chain Monte-Carlo algorithm
(MCMC). However due to the high computational cost of these techniques, it
seems that these approaches are yet not efficient enough for complex restoration
problems.

We notice that the MAP strategy generalizes to the continuous setting
[Cha04], while the Conditional Means does not [LS04].

Regularization approaches In what follows we adopt the MAP strategy. The
MAP formulation provides a justification of the usual regularization approach
to solve ill-conditioned problems [SGG+08]. In this setting the selection of the
regularizer amounts to impose different priors over the reconstructed signal.

Assuming a linear regularization, the solution of (2.2) is estimated by mini-
mizing a functional of the form

Jλ(u) =‖ Hu− z ‖2
X +λ ‖ Qu ‖2

X , (2.8)

which yields the estimate

uλ = (HtH + λQtQ)−1Htz, (2.9)

where Hu = h ∗ u, and Q is a regularization operator. Observe that to obtain uλ

we have to solve a system of linear equations. The role of Q is, on one hand, to
move the small eigenvalues of H away from zero while leaving the large eigen-
values unchanged, and, on the other hand, to incorporate the a priori (smooth-
ness) knowledge that we have on u.

If we treat u and n as random vectors and we select λ = 1 and Q =
R−1/2

s R1/2
n with Rs and Rn the image and noise covariance matrices, then (2.9)

corresponds to the Wiener filter that minimizes the mean square error between
the original and restored images.

One of the first regularization methods consisted in choosing between all
possible solutions of (2.2) the one which minimized the discrete Sobolev (semi)
norm of u

∑
x∈Ω |Du(x)|2 which corresponds to Qu = Du. In the continuous

case it would be the usual Sobolev seminorm
∫

R2 |Du|2dx. Notice that for this
choice of Q the solution of (2.8) given by (2.9) can be expressed as

û(ω) =
ĥ(ω)

|ĥ(ω)|2 + 4λ|ω|2π2/N2
ẑ(ω).
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From the above formula we see that high frequencies of z (which are mostly
attributed to the noise) are attenuated by the smoothness constraint.

This formulation was an important step, but the results were not satisfac-
tory, mainly due to the inability of the previous functional to resolve discontinu-
ities (edges) and oscillatory textured patterns. The smoothness required by the
finiteness of the Dirichlet integral constraint is too restrictive. Indeed, functions
in W1,2(R2) (i.e., functions u ∈ L2(R2) such that Du ∈ L2(R2)) cannot have
discontinuities along rectifiable curves. These observations motivated the intro-
duction of Total Variation in image restoration problems by L. Rudin, S. Osher
and E. Fatemi in their work [ROF92]. The a priori hypothesis is that functions
of bounded variation (the BV model) [AFP00] are a reasonable functional model
for many problems in image processing, in particular, for restoration problems
[ROF92]. Typically, functions of bounded variation have discontinuities along
rectifiable curves, being continuous in some sense (in the measure theoretic
sense) away from discontinuities [AFP00]. The discontinuities could be iden-
tified with edges. The ability of total variation regularization to recover edges is
one of the main features which advocates for the use of this model but its abil-
ity to describe textures is less clear, even if some textures can be recovered, up
to a certain scale of oscillation. An interesting experimental discussion of the
adequacy of the BV-model to describe real images can be found in [GM01].

On the basis of the BV model, Rudin-Osher-Fatemi [ROF92] proposed to
use the Total Variation as regularization. And solve the following minimization
problem

min
u∈X

J(u) +
1

2λ

∑
x∈Ω

|h ∗ u(x)− z(x)|2, (2.10)

where J(u) =
∑

x∈Ω |Du(x)| is the discrete Total Variation regularizer. The typi-
cal constrained formulation of a regularization method [TA77] consists in choos-
ing between all possible solutions of (2.1) the one that minimizes the functional
J(u). We may interpret λ as a penalization parameter which controls the trade-
off between the goodness of fit of the constraint and the smoothness term given
by the Total Variation. In this formulation, a methodology is required for a cor-
rect choice of λ.

Let us mention that the regularization parameter λ in classical variational
or bayesian formulations can be eliminated if we introduce the image model
(2.1) using a constrained minimization approach. Since our information on the
noise is reduced to its mean and variance and we can easily guarantee that the
mean value is preserved, we can write a variational model where the constraint
is expressed as an upper estimate of the noise variance σ2. The constrained
restoration problem becomes

min
u

J(u),

subject to
∑
x∈Ω

|(h ∗ u)(x)− z(x)|2 ≤ N2σ2.
(2.11)
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Again, the regularizer J(u) embodies our a-priori knowledge of the image, spec-
ifying its smoothness properties.

Notice that the image acquisition model (2.2) is only incorporated through
a global constraint. Assuming that h ∗ 1 = 1 (energy preservation), the addi-
tional constraint that

∑
x∈Ω h ∗ u (x) =

∑
x∈Ω z(x) is automatically satisfied by

its minima [CL97].
The problem (2.11) is solved using the method of Lagrange multipliers,

which leads again to the unconstrained formulation (2.10), however the param-
eter λ is adjusted to satisfy the constraint.

The connections between (2.11) and (2.10) were studied by Chambolle and
Lions in [CL97] where they proved that both problems are equivalent for some
positive value of the Lagrange multiplier λ.

2.2.1 Restoration of irregularly sampled images

Several applications in satellite imaging require to restore (or interpolate) an
image from an irregularly distributed grid of samples. Some examples where
irregular sampling grids arise naturally are the following:

Microvibrations. The vibrations of airborne Push-Broom imaging systems,
produce an irregular sampling, which must be taken into account during the
restoration.

Superresolution. Restore a single image by fusing information from several
views of the same scene.

Geophysical potential fields such as the earth’s gravitational field which can
only be measured at sparse locations [Rau98].

In this context a general image acquisition system may be modeled by the
following image formation model

z(ξk) = (h ∗ u)(ξk) + nξk , ξk ∈ Ξ, (2.12)

where Ξ = {ξk}N2

k=1 ⊆ R2 is a finite set of regular or irregular samples, u : R2 →
R is the ideal undistorted image, h : R2 → R is a blurring kernel whose Fourier
spectrum ĥ has most of its energy concentrated in the spectral support of u, z is
the observed sampled image which is represented as a function z : Ξ → R, and
nξk is, as usual, a white Gaussian noise with zero mean and standard deviation
σ.

Even knowing the exact sampling geometry Ξ, the blurring kernel h, and the
statistics of the noise n, the problem of recovering u from z is very ill-posed in
a variety of situations that arise in real-world image acquisition systems. The
main difficulty comes from the fact that perfect reconstruction from irregular
samples can be ensured only if the sampling rate is either much larger than in
the regular case (relative to the bandwidth of h), or is like in the regular case
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but under very constrained sampling geometries that rarely appear in practice.
(See [Alm02, Chapter 2] for a discussion on this problem). In any case, even if
perfect reconstruction is sometimes possible in theory with a relatively small and
realistic sampling rate, it is still very ill posed: This limits its practical interest
whenever noisy measurements are involved.

Again the unavoidable strategy to solve this ill conditioning is regularization.
The typical constrained formulation of a regularization method [TA77] consists
in choosing between all possible solutions of (2.12) the one that minimizes the
functional J(u)

min
u

J(u),

subject to
∑
ξk∈Ξ

|(h ∗ u)(ξk)− z(ξk)|2 ≤ N2σ2,
(2.13)

where the regularizer J(u) embodies our a-priori knowledge of the image, speci-
fying its smoothness properties. In this formulation the image acquisition model
has been incorporated as a single constraint. Indeed, we only know the statis-
tics of the noise, its mean and variance. As in (2.11) the variance knowledge is
formulated as a global constraint.

In [ABCH08] (see also [ACHR06, BCRS03, RO94]), the authors proposed a
restoration model using a local estimate of the noise variance. The local formu-
lation contributes to reducing the unnaturally-looking aspect of images obtained
from global Total Variation based minimization, thus improving the recovery of
textures. Following this proposal we replace the constraint∑

ξk∈Ξ

|(h ∗ u)(ξk)− z(ξk)|2 ≤ N2σ2,

by a set of local constraints

G ∗ |∆Ξ(h ∗ u)− z|2(ξk) ≤ σ2, ∀ξk ∈ Ξ,

where the sampling operator ∆Ξ : C(R2) → `2(Ξ) is given by ∆Ξ(v) =

{v(ξk)}N2

k=1 and G is a discrete convolution kernel such that G(ξ) > 0 for all
ξ ∈ Ξ and

∑
k G(ξk) = 1.

2.3 Denoising

A particular and important case contained in the above formulation is the de-
noising problem which corresponds to the case where h = δ, so that the model
(2.2) becomes

z(x) = u(x) + n(x), x ∈ Ω, (2.14)

where n is an additive Gaussian white noise of zero mean and variance σ2.
In this case the MAP model is:

min
u∈X

J(u) +
1

2λ
‖u− z‖2

X .
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As above, the case where J(u) is the discrete Total Variation has been studied in
depth [AVCM04] and has had a strong influence in the development of recent
methods for image denoising.

Recently, nonlocal regularizers have been proposed for image denoising
[PMD+10, PBC09]. They were motivated by a variational formulation of the
nonlocal means filter [BCM05]. The underlying idea of the non local means fil-
ter is to give a probability model for the value of each pixel conditioned by its
neighborhood. Then is pixel is restored by averaging the values of pixels with
similar neighborhoods.

2.4 Image fusion

The fusion problem also fits the irregular sampling model (2.12). The objective of
image fusion (super-resolution) is to recover a super-resolved version of the im-
age using samples from several low resolution images. For the super-resolution
to be effective the samples of each low resolution image must contain alias (i.e.,
must be sampled at a rate below the Nyquist rate corresponding to the highest
frequency contained in h ∗ u). Otherwise, according to the Shannon’s theorem,
a single image would be sufficient to recover the high resolution image.

Although the fusion problem fits our model, the application of (2.13) poses
certain challenges.

For simplicity let us explain these problems in the discrete case, with a regu-
lar sampling omitting h from the model. So, strictly speaking we are not in the
setting of (2.12) because h is not there to limit the bandwidth of the signal u. But,
as a consequence, there is plenty of alias.

In this setting, let us consider a zooming problem where the data z is mod-
eled by the subsampling (of factor k) of the discrete image u ∈ X

z(i, j) = u(k i, k j) + n(i, j) (i, j) ∈ {1, ..., N/k}2.

The objective is to recover an image resembling u. As noted in [MG02], the direct
resolution of (2.13) (with h = δ) using the Total Variation regularizer produces
solutions with “point-like” artifacts at the positions of the samples (see figure
2.1) .

These artifacts are due to the unability of Total variation to impose the val-
ues of the solution on a set of isolated points. The corresponding solutions are
“point-like”. Let us explain intuitively why. By the coarea formula we can in-
terpret the Total Variation as the sum of the perimeters of all the level sets of
the image u. In a delta-like solution these perimeters are very small, while u
still satisfies the restriction. Other interpolations will have level sets with larger
perimeters, and hence higher Total Variation.

The solution proposed in [MG02] to avoid these artifacts is to introduce a
spectral projector in the data term. This amounts to an increase the support of
the restrictions in the spatial domain, which is equivalent to introduce a kernel
P into the restoration model that cuts the frequencies that cannot be represented
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Figure 2.1: Restoration with zoom. From left to right: The original image u, the
subsampled image z (4x) with noise of variance σ = 1. The restoration according
to minu

∫ |∇u| s.t. ‖S4u− z‖2 ≤ σ2 where S4 is the subsampling operator, and
the restoration using the projector minu

∫ |∇u| s.t. ‖S4Pu− z‖2 ≤ σ2.

by the sampling (i.e., it removes the alias frequencies from z)

z(i, j) = (Pu)(k i, k j) + n(i, j).

For regular grids, not even necessarily square, it is possible to the estimate this
antialias projector if we assume certain statistics of the signal u (see [Alm02]).

When we considered in the previous section the restoration from irregular
samples, we did not mentioned any spectral projector. The reason being that we
implicitly assumed that the number of samples is almost the same as the number
of restored pixels, and in that case we do not expect alias.

However, in the case of image fusion (super-resolution), our objective is to
recover a zoomed version of the image by overlying samples from several im-
ages. The geometry of the combined grid may not be regular, and therefore there
may be small and large gaps in the grid. The issue is to deal with the large gaps
so that we avoid the “point-like” artifacts mentioned in the zoom problem.

As before, to cope with the problem of alias, we can use a spectral projector to
remove the ambiguous frequencies from the solution. However since the sam-
pling is irregular, we cannot define the projector in terms of non representable
frequencies. Some heuristics for the estimation of the spectral projector in the
case of irregular sampling are proposed in Chapter 4

On the other hand, even knowing (or after estimating) a spectral projector
for an irregular sampling set, there is still a problem in the definition of the data
term. The inclusion of the spectral projector in the restoration formulation is an
“artifice” that allows us to avoid the artifacts mentioned before, however the
acquisition model is still z(i, j) = u(k i, k j) + n(i, j), so the data term∑

(i,j)∈{1,...,N/k}
((Pu)(k i, k j)− z(i, j))2 ≤ N2

4
σ2

will have a systematic bias in the estimation of the noise’s variance. The bias
corresponds to the noise frequencies that are being eliminated by the spectral
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projector. With the current tools this bias cannot be estimated in general. This
makes the constrained problem less accurate and prone to the apparition of ar-
tifacts due to noise over-fitting. These issues will be discussed in Chapter 4.





Chapter 3

Irregular to regular sampling,
denoising and deconvolution

In this chapter we preset a restoration algorithm for band limited images that considers
irregular (perturbed) sampling, denoising, and deconvolution. We explore the appli-
cation of a family of regularizers that allow us to control the spectral behavior of the
solution. And we incorporate the image acquisition model as set of local constraints.
The experiments we present are focused on the restoration of satellite images, where the
micro-vibrations are responsible of the type of distortions we are considering here.

3.1 Introduction

A general image acquisition system may be modeled by the following image
formation model

z(ξk) = (h ∗ u)(ξk) + nξk , ξk ∈ Ξ, (3.1)

where Ξ = {ξk}N2

k=1 ⊆ R2 is a finite set of regular or irregular samples, u : R2 →
R is the ideal undistorted image, h : R2 → R is a blurring kernel whose Fourier
spectrum ĥ has most of its energy concentrated in the spectral support of u, z is
the observed sampled image which is represented as a function z : Ξ → R, and
nξk is, as usual, a white Gaussian noise with zero mean and standard deviation
σ.

Reconstructing a signal u : R2 → R over an infinite support from a finite set
of samples z(ξk) is not possible without imposing restrictions. As in most works,
in order to simplify this problem, we shall assume that the functions h and u are
periodic of period N in each direction. Let us denote by ΩN the interval [0, N[2

and assume that h, u are functions defined in ΩN . To fix ideas, we assume that
h, u ∈ L2(ΩN), so that h ∗ u is a continuous function in ΩN [GW90] (which
may be extended to a continuous periodic function in R2). Then the samples
(h ∗ u)(ξk), ξk ∈ Ξ, are well defined.

17
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We shall concentrate on the particular case of perturbed sampling and we
shall assume that Ξ is a set of N2 samples, which take the particular form

Ξ = Z2 ∩ΩN + ε(Z2 ∩ΩN), (3.2)

where ε : R2 → R2 is a “smooth and small” perturbation function in the
sense that supp ε̂ ⊆ [− N

Tε
, N

Tε
]2 for some period Tε > 2 corresponding to the

maximum vibration frequency and the mean amplitude of the perturbation
([
∫

ΩN
|ε(x)|2 dx/

∫
ΩN

dx]
1
2 ) is small with respect to 1 pixel (we refer to Section 3.2

for a model (3.7) of this perturbation and also for a general overview of irregular
sampling aspects).

Even knowing the exact sampling geometry Ξ, the blurring kernel h, and the
statistics of the noise n, the problem of recovering u from z is very ill-posed in
a variety of situations that arises in real-world image acquisition systems. The
main difficulty comes from the fact that perfect reconstruction from irregular
samples can be ensured only with either a sampling rate much larger than in
the regular case (relative to the bandwidth of h), or similar to the regular critical
sampling rate but under very constrained sampling geometries that rarely ap-
pear in practice. (See [Alm02, Chapter 2] for a discussion on this problem). In
any case, even if perfect reconstruction is sometimes possible in theory, with a
relatively small and realistic sampling rate, it is still very ill posed, which limits
its practical interest whenever noisy measurements are involved.

A common and unavoidable strategy to solve this ill conditioning is regular-
ization. In its constrained formulation, we choose between all possible solutions
of (3.1) the one that minimizes a regularization functional J(u). Thus, the image
acquisition model (3.1) is introduced as a constraint. In this way, we eliminate
the regularization parameter appearing in classical variational or bayesian for-
mulations.

Since our knowledge of the noise is limited to its mean and variance, the
constraint is expressed as an upper estimate of the noise variance σ2. The con-
strained restoration problem becomes

min
u

J(u),

subject to
∑
ξk∈Ξ

|(h ∗ u)(ξk)− z(ξk)|2 ≤ N2σ2,

where the regularizer J(u) embodies our a-priori knowledge of the image, spec-
ifying its smoothness properties.

One of the first regularization methods consisted in choosing between all
possible solutions of (3.1) the the one which minimized the Dirichlet integral∫

ΩN
|Du|2 dx. This formulation was an important step, but the results were not

satisfactory, mainly due to the unability of the previous functional to resolve
discontinuities (edges) and oscillatory textured patterns, the information corre-
sponding to high frequencies of z being attenuated by it. Indeed, functions in
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W1,2(Ω) (i.e., functions u ∈ L2(Ω) such that Du ∈ L2(Ω)) cannot have discon-
tinuities along rectifiable curves. These observations motivated the introduc-
tion of Total Variation (TV(u) =

∫
ΩN
|Du|) in image restoration problems by

L. Rudin, S. Osher and E. Fatemi in their work [ROF92]. The a priori hypoth-
esis is that functions of bounded variation (the BV model) ([AFP00, EG92]) are
a reasonable functional model for many problems in image processing, in par-
ticular, for restoration problems (see [ROF92]). Typically, functions of bounded
variation have discontinuities along rectifiable curves, being continuous in the
measure theoretic sense away from discontinuities. The discontinuities could
be identified with edges. The ability of total variation regularization to recover
edges is one of the main features which advocates for the use of this model (its
ability to describe textures is less clear, some textures can be recovered, but up
to a certain scale of oscillation).

Due to its strong ability to preserve discontinuities, the total variation may
not be the best choice in the case of satellite images which, in order to look nat-
ural, have to keep some minimal smoothness due to the frequency cut of the
optical system. This characteristic can be modeled by the spectral decay of the
Fourier coefficients in the class of images we are looking for. In the case of satel-
lite images, this spectral behavior can be estimated by statistical measures of the
decay of Fourier coefficients.

We explore in this chapter a family of regularizers that takes into account the
spectral decay of the Fourier coefficients in the class of images we are looking
for. The general class of regularizers we consider is

JA(u) =
∫

ΩN

|A(D)u|, (3.3)

where A(D)u is defined in terms of the coefficients of its Fourier series

F (A(D)u)(ω) = A(iω)û(ω) ω ∈ Z2.

Note that JA(u) < ∞ imposes a frequency penalization according to the profile
A(iω). In practice we choose A(iω) so that |A(iω)| ∼ | 2π

N ω|p for large |ω|,
1 ≤ p ≤ 2. This is in consonance with the approach of Gröchenig and Strohmer
[GS00] that proposes to incorporate an a priori decay in the restoration process
(see Section 3.2).

We also incorporate the image acquisition model as a set of constraints.
As opposed to the use of a single global constraint, in [ABCH08] (see also
[ACHR06, BCRS03, RO94]), the authors proposed a restoration model using a
local estimate of the noise variance. The local formulation contributes to reduc-
ing the unnaturally-looking aspect of images obtained from global Total Vari-
ation based minimization, thus improving the recovery of textures. Following
the mentioned proposal we replace the constraint∑

ξk∈Ξ

|(h ∗ u)(ξk)− z(ξk)|2 ≤ N2σ2,
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by
G ∗ |∆Ξ(h ∗ u)− z|2(ξk) ≤ σ2, ∀ξk ∈ Ξ, (3.4)

where the sampling operator ∆Ξ : C(R2) → `2(Ξ) is given by ∆Ξ(v) =

{v(ξk)}N2

k=1 and G is a discrete convolution kernel such that G(ξ) > 0 for all
ξ ∈ Ξ and

∑
k G(ξk) = 1.

Combining the two ideas described above, the use of a regularizer that takes
into account the spectral decay of images in a certain class (3.3), and the incor-
poration of the image acquisition model as a set of local constraints (3.4), we
propose the following constrained variational model for restoring u

min
u

∫
Ω
|A(D)u|,

subject to
[
G ∗ |∆Ξ (h ∗ u)− z|2

]
(ξk) ≤ σ2 ∀ξk ∈ Ξ.

(3.5)

The constrained formulation (3.5) can be solved using the unconstrained for-
mulation

min
u

max
(λk)≥0

∫
Ω
|A(D)u|+ 1

2

∑
ξk∈Ξ

λk

{[
G ∗ |∆Ξ (h ∗ u)− z|2

]
(ξk)− σ2

}
, (3.6)

where λk ≥ 0 are Lagrange multiplier that have to be chosen so that the con-
straints (3.4) are satisfied. Let us say explicitly that both the blurring kernel h
and the sampling grid Ξ (alternatively the grid perturbation function ε) are as-
sumed to be known exactly and that the only thing known about the noise nξk is
that it is a white Gaussian noise with zero mean and known variance σ2. Several
methods exist to estimate all these parameters [JBFZ02] for a given acquisition
device, and we shall not address this question here.

The case of recovering an irregularly sampled image on a regular sampling
grid was considered in [Alm02], but the blurring kernel h was assumed to be an
ideal window (with Nyquist frequency cutoff), i.e., ĥ = χ[−1/2,1/2]2 . Different
numerical algorithms were tested in [Alm02] in the case where the sampling set
is perturbed according to (3.2) and they worked relatively well only within a low
frequency spectral region R ⊆ [−α, α]2, where α ≈ 1

2 − 1/Tε. When attempting
to recover û in the high frequency band [−1/2, 1/2]2\R serious theoretical and
numerical problems appeared and, actually, restoration errors were most impor-
tant there. Subsequently, the restoration problem (3.5) was studied in [ACHR06]
when J(u) is the total variation and the image acquisition model was incorpo-
rated as a set of local constraints on a partition of the image obtained as a result
of a segmentation. The use of local constraints (3.4) was advocated in [ABCH08]
and we also adopt this technique here.

Let us finally mention that many numerical algorithms have been proposed
to minimize total variation (or similar models) subject to a global constraint as
in (3.5) [ROF92, GR92, VO96, Cha04, CL97, CZC95, CM99, DMR00, BFCAB95,



3.1. INTRODUCTION 21

CBFAB97, SGG+08]. Imposing local constraints in a partition of the image was
proposed in [RO94] and further developed in [BCRS03, ACHR06, ABCH08]. In
[LM04] the authors combined total variation minimization with a set of con-
straints of type |〈h ∗ u− z, ψ〉| ≤ τ where ψ varies along an orthonormal basis
of wavelets (or a family of them) and τ > 0. The aim was also to construct
an algorithm which preserves textures and has good denoising properties. As
we will do here, these constraints were incorporated using Uzawa’s algorithm.
In [GSZ03], the authors proposed to minimize total variation subject to a fam-
ily of local constraints which control the local variance of the oscillatory part of
the signal. The constraints are introduced via Lagrange multipliers with an ap-
proach similar to the one used in [ROF92]. This amounts to adding a spatially
varying fidelity term that locally controls the extent of denoising over image
regions depending on their content. Besides the fact that we use Uzawa’s al-
gorithm and we try to address the problem of deconvolution and denoising of
irregularly sampled images, the work [GSZ03] is quite similar to our approach.
Finally, in [SGG+08], the authors proposed a non-convex data attachment term
with a larger weight (depending on the inverse of the modulus of the gradient)
in flat areas than in textured ones. This goes in the same sense as our model, that
is, to be able to denoise flat regions of the image while keeping the oscillations
in textured areas.

Summary of the contributions of this chapter. Our goal is to propose an al-
gorithm for image denoising and deconvolution. The specificity of the consid-
ered problem comes from the fact that the images we deal with are irregularly
sampled. On the one hand, we carry out a thorough and accurate modeliza-
tion of the problem based on local constraints (3.4), and propose a family of fre-
quency adaptive regularization functionals (3.3) that incorporates a priori image
smoothness model. On the other hand, we prove the convergence of our algo-
rithm. Finally, the study of the local constraint model combined with standard
error propagation allows to derive useful stopping criteria for the algorithm.

Organization of this chapter. In Section 3.2 we introduce the problem of ir-
regular to regular sampling and we discuss the ACT algorithm of Gröchenig
and Strohmer [GS00]. In Section 3.3 we introduce our frequency adaptive vari-
ational restoration model with local constraints in the continuous setting. The
corresponding discrete model is discussed in Section 3.4 along with the adap-
tation of a computational improvement introduced by L. Moisan in [Moi07]. In
Section 3.5 we study the existence, uniqueness and numerical approximation to
the model introduced in the previous section. This study is completed in Sec-
tion 3.6 where we describe a Quasi-Newton algorithm for the solution of the
Euler Lagrange equation corresponding to the energy in (3.6) for fixed values
of the Lagrange multipliers (λk). In Section 3.7 we propose a practical stop-
ping condition for the restoration algorithm for the local constraint model. In
Section 3.8 we display experiments concerning restoration and zooming of ir-
regularly sampled images. Section 3.9 summarizes the main conclusions of this
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work.

3.1.1 Preliminaries and notations

Let us introduce some notation that will be used throughout this chapter.
For any function u ∈ L2(ΩN) (assuming periodicity of period N in each

direction) we denote its Fourier coefficients as

û(p, q) =
1

N2

∫
ΩN

u(x, y)e−2πi (px+qy)
N dx dy for (p, q) ∈ Z2.

As in [MG02], our plan is to compute a band limited approximation to the so-
lution of the restoration problem. To do so, assume for simplicity that M is an
even number and define

BM :={u ∈ L2(ΩN) : û is supported in IM}, where IM :={−M
2

+ 1, . . . ,
M
2
}2.

Notice that since BM is a finite dimensional vector space of dimension M2,
then it can be identified with RM2

by mapping u ∈ BM to the vector ~u =(
u(r N

M , l N
M )
)M−1

r,l=0
. Moreover, if u ∈ BM we may write

u(x, y) =
∑

−M
2 <p,q≤M

2

û(p, q)e2πi (px+qy)
N .

where

û(p, q) =
1

M2

∑
0≤r,l<M

u
(

r
N
M

, l
N
M

)
e−2πi (pr+ql)

M , −M
2

< p, q ≤ M
2

.

Then the values u
(

r N
M , l N

M

)
, 0 ≤ r, l < M, can be recovered as the discrete

inverse Fourier transform of û(p, q). Hence u ∈ BM can also be identified with
the vector of Fourier coefficients û ∈ ICM2

. Note that we shall mainly study
here the critical sampling case M = N, however we will keep two different
symbols M for the bandwidth and N for the domain size in order to simplify the
exposition of certain parts of the algorithm.

We intend to solve the restoration problem in the class of band-limited func-
tions BM. Later on we will comment on this choice. We will also use the operator
notation for the Fourier transform that applied to the function u returns the vec-
tor of its Fourier coefficients: û = Fu. Conversely F ∗û = u denotes the inverse
transform (we may also denote it as û∨) then F ∗F = Id.

3.2 Irregular to regular sampling

Opposed to digital photographs, satellite images are generally not acquired by a
squared array of sensors but by a sweeping bar of sensors known as TDI (Time
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Delay Integrator) [Sch07]. This acquisition geometry called push-broom is widely
applied in aerospace imaging applications and, nowadays, it provides the high-
est resolution in earth imaging applications. As a consequence of this progres-
sive acquisition mode, the micro-vibrations of the satellite together with irregu-
larities in sensors position result in perturbed sampling sets. In most cases, the
knowledge of certain vibration modes and the analysis of acquired images help
to estimate, very accurately, the perturbations in the sampling grid, which can
be modeled [Alm02] by

ε(x) =
q∑

k=1

ak(x)cos(2π〈ωk
N

, x〉+ φk), x ∈ R2, (3.7)

for some q ≥ 1, where ak(x) are smooth modulation functions and the vibra-
tion frequencies ωk are an order of magnitude (or even more) below the Nyquist
frequency of the sampling rate. The bound on the modulation functions is in-
versely proportional to ωk and the number of vibration modes is small. This
results in smooth and small perturbations with |ε(x)| no larger than a few pix-
els, and perturbation slope |∇ε(x)| no larger than about one tenth of a pixel
per pixel. As a consequence these perturbations are hardly noticeable and we
should talk of perturbed sampling rather than irregular sampling in those cases.
Even if the image distortion is not evident from a geometrical point of view it
is very important to correct the perturbations in image registration applications
where a sub-pixel accuracy is necessary.

In order to be less dependent on a particular physical instrument, in our
experiments we used a simplified version of this model which still captures its
main characteristics, namely the perturbation function ε = (ε1, ε2) is simulated
as a discrete colored noise, i.e. for ω ∈ Z2 we define

ε̂i(ω) ∼ N(0, σ̃2) if |ω| ≤ N/Tε,
= 0 otherwise, (3.8)

where σ̃ is chosen in such a way that the standard deviation of εi(x) is A for
i ∈ {1, 2}. This gives σ̃ = ATε

2 (we have taken the Fourier transform as an
isometry). Thus the behavior of the perturbation is characterized by the two
parameters “amplitude” A and maximal vibration frequency N/Tε (or “minimal
vibration period” Tε). The precise values of A and Tε used in our experiments
will be specified in the experiments Section.

There are many works in the literature dealing with the irregular to regular
sampling problem. Let us mention that, according to Kadec’s theorem [Kad64],
we have a perfect recovery of the signal if we consider a perturbed sampling
with small perturbations |ε(x)| ≤ 0.11. Recall also that Beurling-Landau’s the-
orem [Lan67], ensures perfect reconstruction of a function from its samples for
arbitrary stable sampling sets [Lan67], but it requires the (lower) sampling density
to be larger than 1. These conditions are very restrictive and do not hold true for
most of the image restoration applications. For a comparison between several
iterative methods we refer the reader to [AM01, CFH91, Alm02].
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3.2.1 The ACT algorithm

One of the best performing reconstruction methods available for irregular to reg-
ular sampling is the ACT algorithm (for Adaptive-weights Conjugate-gradient
on Toeplitz-matrix) introduced by Gröchenig et. al. in [GS00]. This method rep-
resents a discrete image u as a trigonometric polynomial of order M/2 in each
variable (for simplicity of notation we shall assume that M is an even number)
so that the interpolation at the sampling points Ξ = {ξk}N2

k=1 ⊆ R2 becomes

u(ξk) =
∑

t∈{−M
2 +1,..., M

2 }2

ate
2πi
M 〈t,ξk〉, k ∈ {1, . . . , N2}. (3.9)

Thus, if z represents the irregularly sampled data we may write [GS00]

z = Sa, where S = ((skt)), skt = e
2πi
M 〈t,ξk〉, (3.10)

i.e. S is the Vandermonde matrix associated to the trigonometric polynomial in
(3.9). Note that S maps a ∈ `2({−M

2 + 1, . . . , M
2 }2) to z = {z(ξk)} ∈ `2(Ξ) as

given in (3.9). The bandwidth M of the trigonometric polynomial is chosen to be
M ≤ N, so the system (3.10) is expected to be determined or over-determined.

Following [GS00], the ACT algorithm recovers the coefficients a of the
trigonometric polynomial by solving the least squares problem

arg min
a
‖
√

W (Sa− z)‖2, (3.11)

where the matrix W = diag({wk}k=1..N2) assigns weights that are inversely pro-
portional to the sampling density at ξk:

wk = area(Vk) where Vk :=
(
{x : |x− ξk| < |x− ξ j|, ∀j 6= k}

)
. (3.12)

If we interpret the discrete samples z(ξk) as a piecewise constant function∑
k z(ξk)χVk , then the weights wk guarantee the isometry between the irregu-

lar sampling on the grid Ξ and its function representation, thus compensating
the local variations in the sampling density. Moreover, by using the weights W,
Gröchenig and Strohmer provide an explicit estimate for the rate of convergence
of the ACT algorithm [GS00].

The system of normal equations associated to (3.11) is

S∗WSa = S∗Wz , (3.13)

where S∗ denotes the adjoint matrix of S (a notation that will be used throughout
this chapter). Observe that the M2 × M2 matrix S∗WS has a Toeplitz structure
[GS00], and thus, S∗WSa is efficiently computed in O(M2 log2(M2)) time using
Fourier methods. Moreover the entries of T := S∗WS and b := S∗Wz can be
approximated using the NFFT [PST01] in O(M2 log2(M2)) time each [GS00].
Finally, (3.13) is solved using a conjugate gradient (CG) method. The following
algorithm summarizes the method.
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Algorithm I: ACT algorithm for a fixed bandwidth M
Requires: N2 irregular samples in vector z.
Ensures: M2 regular samples in vector u.

1. Compute T = S∗WS and b = S∗Wz using the NFFT.

2. Solve Ta = b using conjugate gradients.

3. Compute the regular samples u(i N
M , j N

M ) for (i, j) ∈ {0, . . . , M − 1}2 by
applying the inverse FFT to a.

Let us note that in the more realistic cases where T is not invertible or ill-
conditioned, the CG solver acts as a regularizer and chooses the minimum norm
solution a among those that satisfy (3.13). This is a constrained variational for-
mulation that can be written using a Lagrange multiplier λ > 0 as the uncon-
strained minimization problem

min
a
‖a‖2 + λ‖Ta− b‖2.

This formulation also applies to the following two variants of the ACT algo-
rithm [GS00] that incorporate an a-priori spectral decay rate |û(ω)| ≤ Lφ(ω),
for some L > 0, of the image class to be restored (when available). For satel-
lite images this estimation has been performed by Almansa in [Alm02] and it is
given by φ(ω) = (1 + | 2π

N ω|)−p for some value of p near 1.6.

• The first proposed variant solves CTa = Cb (instead of (3.13)) using the
CG algorithm, where C = diag({φ(ω)}ω∈{−M

2 +1,..., M
2 }2). Notice that we

can write the problem as

(ACTD) min
a
‖a‖2 + λ‖C(Ta− b)‖2, (3.14)

for some λ > 0. Since the weighting matrix C is applied to the residuals
Ta − b, then it affects the relative cost of the errors by shifting the cost
from high frequencies towards the lower ones. This shift is reflected in CG
search directions, altering the intermediate solutions so that they will fit
the low frequency before the higher ones.

• The second ACT variant solves Td = b where a = Cd, using the CG algo-
rithm. Re-writing it as an optimization problem, observe that the weights
appear now in the regularity term

(ACTR) min
a
‖C−1a‖2 + λ‖Ta− b‖2. (3.15)

The spectral weights C−1 are now penalizing the apparition of higher fre-
quencies in the solution a and not in the residual.



26 CHAPTER 3. IRREGULAR SAMPLING IMAGE RESTORATION

In either case, if T is invertible and the CG algorithm converged, then the
solution of both variants coincides with the solution of (3.13). But the CG itera-
tion is truncated before its convergence mainly due to the ill-conditioning of the
operator T. So, the solutions obtained by the above methods differ because of
the different search directions. As it can be observed experimentally, incorpo-
rating the spectral decay indeed reduces the restoration errors, specially when
applied to the regularity term in (3.15) (see Table 3.2 in Section 3.8). In that case,
it amounts to finding a solution in a class of functions with a particular spectral
decay.

Remark 1. (Global constraint & stopping condition) In [GS00] the authors also pro-
posed to extend the ACT algorithm in order to consider the presence of Gaussian
noise n (with standard deviation σ) in the image formation model: Sa + n = z.
This extension is implemented as a stopping condition for the CG algorithm
(Step 2 of Algorithm I)

stop CG if ‖Sa− z‖2 ≤ τN2σ2 with τ ' 1

that is designed to avoid the over-fitting of the solution and hence the amplifi-
cation of the noise. Thus, the ACT with residual-based stop conditions can be
seen as a numerical approximation to the minimization of ‖Ca‖2 subject to the
constraints above.

Remark 2. (Fourier vs. spline models) Notice that the ACT Algorithm is based
on the underlying assumption that the data can be represented by a trigonomet-
ric polynomial. Other interpolation models like the B-Spline have been used in
the literature [ASHU05b]. In this work we will restrict ourselves to trigonomet-
ric polynomials mainly because convolutions are more easily modeled in this
setting, but we intend to explore the use of B-splines in the future.

3.3 A frequency adaptive restoration model with local
constraints

In this section we sketch main elements of the restoration model adopted in this
chapter. To simplify the presentation the model is first defined in a continuous
setting, and the discretization details are deferred to Section 3.4. The proposed
model is inspired from the ideas presented in the previous section on the ACT,
as well as on a recently proposed ACT+TV extension (next subsection), and the
use of local constraints (Subsection 3.3.3) as in [ABCH08].
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3.3.1 The ACT + TV extension

In [ACHR06] the authors proposed to combine the ACT algorithm written as
(3.11) with total variation regularization, i.e.,

min
u

∫
ΩN

|Du|,

subject to ‖
√

W (Sû− z)‖2 ≤ N2σ2.

(3.16)

For convenience, we refer to this model as ACT+TV. As reported in [ACHR06]
(see also Table 3.2 in Section 3.8) we observe an improvement of ACT+TV with
respect to the original ACT algorithm in terms of MSE error, this improvement
is mainly attributed to the edge preserving ability of the TV regularizer.

3.3.2 Frequency Adaptive Regularization (FAR)

Inspired by (3.15) we propose to integrate the spectral weight priors given by
the matrix C into the ACT+TV formulation.

From the ACT+TV formulation we keep: (i) the use of the spatial L1-norm of
a (pseudo)differential operator as a regularizer (instead of the L2-norm ‖C−1a‖
in (3.15)), because of the better edge-preserving capabilities of the L1-norm; and
(ii) the formulation as an optimization problem under constraints, which enables
us to choose automatically the regularization parameter λ in (3.15).

From the ACTR we keep the idea of using a frequency adapted regularizer.
For that we define the function ω ∈ Z2 → A(iω) ∈ IC× IC. We assume that

A(0) = 0,
A(iω) 6= 0 ∀ω 6= 0, (3.17)

and |A(iω)| ≤ L
(

1 +
∣∣∣∣2π

N
ω

∣∣∣∣κ) , ∀ω ∈ Z2, for some L > 0, κ ≥ 0.

If u ∈ C∞(ΩN) can be extended as a smooth and periodic function to R2, we
define A(D)u by its Fourier coefficients

Â(D)u(ω) = A(iω)û(ω) ω ∈ Z2.

We define the regularizer functional

JA(u) =
∫

ΩN

|A(D)u| =
∫

ΩN

|(A(iω)û(ω))∨|.

Notice that JA(u) can be defined for any u ∈ L2(ΩN) such that A(D)u is a
Radon measure. In practice this will not be a problem since we only consider
band limited functions.

The total variation J(u) =
∫

ΩN
|Du| corresponds to the choice A(iω) = 2π

N iω.
Recall that functions with finite total variation are a good model for image
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restoration since they permit to recover the discontinuities of the image. But, in
practice, digital images may exhibit a stronger decay in its Fourier coefficients
than | 2π

N ω|−1 and other functional models can be better suited. The operator
A(D) permits us to penalize the frequencies according to the profile A(iω). No-
tice that

|A(iω)û(ω)| = |Â(D)u(ω)| ≤
∫

ΩN

|A(D)u| =: L

for all ω ∈ Z2, hence

|û(ω)| ≤ L
|A(iω)| .

If |A(iω)| ∼ | 2π
N ω|κ for large |ω|, then |û(ω)| decreases as | 2π

N ω|−κ . In this way
we can favor a specific decay rate of the Fourier coefficients of u as a prior.

Remark 3. In the ACTR algorithm the frequency adaptive regularizer has the
form C−1û = φ−1(ω)û(ω) where φ(ω) = (1 + |2πω/N|)−k, k ≥ 0. In practice
we consider functions A(iω) = 2πiω

N ψ(ω) where ψ(ω) = (1 + |2πω/N|)p, p ≥
0 (p = k− 1 gives the same decay). Then we can write A(D)u = DΨu, where
Ψ̂u = ψû, and A(D)u can be seen as the derivative of Ψu a filtered version of
u. In addition the effect of the new regularizer can be compared, in terms of
frequency decay, to the ACTR preconditioning.

3.3.3 Local constraints

Following [ABCH08] we will interpret the acquisition model as a set of local
constraints (3.4) and we will search for a solution of the restoration problem
that minimizes the frequency adaptive regularizer JA(u) with a data-fitting term
derived from the acquisition model and consisting in a set of local constraints
(as in (3.5)). For convenience we will describe these constraints directly in the
discrete model (see the next section).

3.4 A discrete regularization model

Let us stress here the fact that the regularization functional JA defined in the pre-
vious section is adapted to the restoration of functions with infinite resolution
while its numerical approximation restricts the solution to be in a finite dimen-
sional space. We are going to adopt here the following practical point of view.
Since our data consists of a finite set of samples, we are going to reconstruct
a sampled version of the image and therefore we work in a finite dimensional
space. This reflects the fact that digital images have finite resolution. Usually,
the restored image is modeled as a piecewise constant function (the values given
on the set of pixels), but we consider here images as bandlimited functions with
a finite number frequencies, since this is a reasonable model for restoring digital
images. Moreover this model is adapted to compute convolutions and permits
to include an a priori decay of the Fourier coefficients.
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Based on the above considerations, we propose the following discrete regu-
larization functional, If u ∈ BM, then we define

Jd
A(u) =

1
M2

∑
0≤r,l<M

∣∣∣∣A(D)u
(

rN
M

,
lN
M

)∣∣∣∣ . (3.18)

If A(iω) satisfies (3.17), then JA(u) and Jd
A are seminorms in BM and the only

function u ∈ BM such that JA(u) = 0 (resp. such that Jd
A(u) = 0) is u = constant.

Thus JA(u) and Jd
A are norms in the finite dimensional quotient space BM/R,

hence they are equivalent. Notice that if u ∈ BM and we define Jd,k
A by replacing

M by k in (3.18), then Jd,k
A (u)→ JA(u) as k → ∞. Unless we intend to zoom and

restore the images, we take M = N, where N2 is the number of data.
Assume that the input data (the measurements) consist of N2 samples

{z(ξk)}k, and let σ̄, β > 0, and G ∈ `∞(Z2) be a discrete, positive, normal-
ized convolution kernel such that G(r, l) ≥ 0 and

∑
(r,l)∈Z2 G(r, l) = 1. Then we

propose to minimize the functional

min
u∈BN

Jβ,A(u) :=
∑

0≤r,l<N

√
β2 + |A(D)u (r, l)|2 ,

subject to
[
G ∗ |∆Ξ (h ∗ u)− z|2

]
(ξk) ≤ σ̄2 ∀ξk ∈ Ξ,

and
∑

0≤r,l<N

u (r, l) =
∑
ξk∈Ξ

wkz(ξk) =: zw.

(3.19)

To avoid the non differentiability of Jd
A at 0, it is a common approximation to use

the regularizer Jβ,A instead.
Therefore we will minimize Jβ,A(u) on BN subject to the family of constraints

in (3.19). Notice that we have incorporated the image acquisition model (3.1) as
a set of local constraints. The convolution of G and v ∈ `∞(Ξ) is defined in
the usual way by imposing an arbitrary regular grid structure on Ξ, i.e. (G ∗
v)(ξk) =

∑
l∈Z2 G(l − k)v(ξl). In the case of perturbed sampling this regular

grid structure may be determined by the original unperturbed grid, otherwise it
may be based on a nearest neighbor computation.

Notice that we have used the value σ̄ > 0 as an estimate of the standard
deviation of the noise. We will make tests with σ = σ and also with values of
σ different from σ. Also, the effective support of G must permit the statistical
estimation of the variance of the noise. In Section 3.7 we will come back to the
noise estimation issue and the choice of σ.

In the rest of the chapter, we assume that the blurring kernel h satisfies

h ∈ L2(ΩN), supp ĥ ⊆ [−M
2

,
M
2
]2, and ĥ(0, 0) = 1. (3.20)

If u ∈ BM, then we can compute the convolution h ∗ u using the Fourier trans-
form: ĥ ∗ u (p, q) = ĥ (p, q) û (p, q).
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The last equality constraint in (3.19) fixes the global mean of u to be the mean
of the samples z, weighted by the areas wk (see (3.12)). This constraint is neces-
sary to assure the uniqueness of the solution, since the data fitting is provided
only by inequality constraints, and the solution may be undetermined up to a
constant (in the kernel of the regularizer) in areas where the variance of z is
smaller than σ2 [BCRS03]. The details of the uniqueness proof are given in Sec-
tion 3.5.

Now, our purpose is to prove that the constrained formulation of (3.19) can
be solved using Uzawa’s method once we guarantee that the assumptions of
Uzawa’s method [Fau88] hold. But before that, we comment on a improved
discretization for approximating JA(u).

3.4.1 An improved discretization formula

In this section we follow the proposal made by Moisan in [Moi07] to improve
the discretization of the total variation formula. The basic observation is that,
the computation of the Dirichlet integral in [0, N)2 (

∫
[0,N)2 |∇u|2) cannot be done

accurately unless we previously zoom the image u by a factor of two. The same
argument applies to the case of

∫
ΩN
|A(D)u|2, but not for

∫
ΩN

√
β2 + |A(D)u|2

with β ≥ 0. Indeed, in the last case, an exact computation would involve an
infinite number of samples. However, as Moisan has shown for the TV case
[Moi07], doubling the number of variables leads to a good approximation of the
above integral, being a good compromise between precision and algorithmic
efficiency.

Let us analyze the implications of Moisan’s discretization for our restoration
model. To do so, we need to introduce some notation. For each M ∈ N, we
denote by XM the Euclidean space RM×M. The Euclidean scalar product and the
norm in XM will be denoted by 〈·, ·〉XM and ‖ · ‖XM , respectively, but in absence
of ambiguities we will omit the subindex. XM represents the space of images
BM sampled in the regular grid {0, . . . , M− 1} × {0, . . . , M− 1} (or given by its
Fourier coefficients û ∈ `2(IM). Let us introduce the operator

P : XN → X2N , P {u(k, l)} =
{

ū
(

r
2 , l

2

)}
r,l∈{0,...,2N−1}

,

where {u(r, l)}r,l∈{0,...,N−1} ∈ XN and ū is the function of BN defined by the

samples {u(r, l)}r,l∈{0,...,N−1}. Observe that P̂u(p, q) = 1IN (p, q)û(p, q). So we
may consider the operator A(D) as acting on X2N or as acting on XN . Notice
that if u ∈ XN we may write A(D)Pu = PA(D)u. From now on we will avoid
(except in ambiguous cases) the use of subindexes to specify the function spaces
of norms and scalar products, and the function space should be clear from the
context.
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Thus, our final restoration model is

min
u∈XN

Kβ,A(u) :=
∑

0≤r,l<2N

√
β2 + |A(D)Pu (r, l)|2 ,

subject to
[
G ∗ |∆Ξ (h ∗ u)− z|2

]
(ξk) ≤ σ̄2 ∀ξk ∈ Ξ ,

and
∑

0≤r,l<N

u (r, l) =
∑
ξk∈Ξ

wkz(ξk) =: zw.

(3.21)

3.5 The well-posedness of the model and its numerical
solution

Proposition 1. Assume that (3.20) holds. Then there exists a unique minimum u ∈
XN of (3.21).

Proof. Let um be a minimizing sequence of (3.21). Since A(D)Pum is bounded in
X2N , and ω = 0 is the only vanishing frequency for A(iω) we deduce that vm :=
um − ûm(0, 0) is bounded in XN . Now, since ûm(0, 0) is constrained to be zω, we
have that um is bounded in XN . By extracting a subsequence, if necessary, we
may assume that un → u. It is immediate to see that u satisfies the constraints.
Since Kβ,A is lower semicontinuous, we have that u is a minimum of (3.21).

Now, let u1, u2 be two minima of (3.21). If A(D)Pu1 6= A(D)Pu2, let-
ting u = (u1 + u2)/2, then the strict convexity of Kβ,A proves that Kβ,A(u) <
infu∈XN Kβ,A, a contradiction. Thus A(D)Pu1 = A(D)Pu2 and we have unique-
ness modulo constants, i.e., u1− u2 = c for some c ∈ R. Since û1(0, 0) = û2(0, 0)
we deduce that c = 0, and therefore, u1 = u2.

Remark 4. Proposition 1 is also true if instead of assuming the average con-
straint in (3.21) we assume that infc∈R G ∗ (z − c)2 > σ̄2. This can be proved
as in [BCRS03, CL97]. But in that case, we should also use a different (gradient
descent based) algorithm to minimize (3.21) as described in [BCRS03].

From now on, we assume that the constraints are qualified, that is there is
u ∈ XN such that

û(0, 0) = zw and
[
G ∗ |∆Ξ(h ∗ u)− z|2

]
(ξk) < σ̄2, ∀ξk ∈ Ξ, (3.22)

which implies that the set of functions satisfying the constraints is non-empty.
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We prove that the solution of (3.21) can be computed by adapting Uzawa’s
algorithm. Let µ > 0 and λ = (λk)

N2

k=1 ≥ 0. Define the Lagrangian function

Lµ(u, {λ}) = Kβ,A(u) + µ (û(0, 0)− zw)2 +

+
∑
ξk∈Ξ

λk
2
([G ∗ |∆Ξ(h ∗ u)− z|2](ξk)− σ̄2).

In order to adapt Uzawa’s algorithm we need the following result which can be
proved as in the proof of Proposition 1.

Theorem 2. For each λ = (λk)
N2

k=1 ≥ 0, there is a unique solution u of

min
u∈XN

Lµ(u, {λ}).

Proof. Since Lµ(u, {λ}) is lower semicontinuous in u, it suffices to prove that
any minimizing sequence un is bounded. Since Lµ(um, {λ}) is bounded, we
know that A(D)(um) and (ûm(0, 0) − zw)2 are bounded. The boundedness
of A(D)(um) implies that um − ûm(0, 0) is bounded. Since (ûm(0, 0) − zw)2 is
bounded, then ûm(0, 0) is also bounded.

We solve (3.21) with Uzawa’s algorithm.
Algorithm II: Restoration with local constraints

1. Choose any set of values λ0
k ≥ 0, k = 1, . . . , N2, and µ0 > 0.

Iterate from p = 0 until convergence of λp the following steps:

2. With the values of λp, µp solve:

up = arg min
u
Lµp

(u, {λp}). (3.23)

3. Update µ and λ in the following way:

µp+1 = µp + 1,

λ
p+1
k = max(λp

k + ρp([G ∗ |∆Ξ(h ∗ up)− z|2](ξk)− σ̄2), 0) ∀ξk, (3.24)

where 0 < ρ∗ ≤ ρp ≤ ρ∗.

Proposition 3. Assume that there exists u ∈ XN such that û(0, 0) = zw and z(ξk) =
h ∗ u(ξk) ∀ξk ∈ Ξ. Then Uzawa’s algorithm converges to the solution of (3.21).

To prove Proposition 3 we need to reformulate problem (3.21) as

min
u∈XN

max
λ≥0,α+ ,α−≥0

L(u, {λ}, α+, α−), (3.25)
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where λ = (λk)
N2

k=1, α+, α− ≥ 0,

L(u, {λ}, α+, α−) = Kβ,A(u) +
∑

ξk∈Ξ λk([G ∗ |∆Ξ(h ∗ u)− z|2](ξk)− σ̄2)+

+ α+ϕ+(u) + α−ϕ−(u),

and
ϕ+(u) := û(0, 0)− zw and ϕ−(u) = −û(0, 0) + zw,

so that the equality constraint is written as the two inequalities ϕ+(u) ≤ 0,
ϕ−(u) ≤ 0.

Since, by Proposition 1, problem (3.21) has a solution, the classical existence
result of saddle points (see [Fau88]) proves the existence of a solution of (3.25).
Indeed the following result is classical and can be found, for instance, in [Fau88]
(Theorems 4 and 6, pp. 59-61) or [Cia98] (Theorem 9.3.2).

Theorem 4. Assume that (3.22) holds. Let u be the solution of (3.21). Then there are
({λ}, α+, α−) ≥ 0 such that (u, {λ}, α+, α−) is a solution of (3.25), i. e., a saddle
point of L(·, ·, ·, ·). If (u, {λ}, α+, α−) is a solution of (3.25), then u is a solution of
(3.21).

Since we will need it below, let us compute the gradient of Kβ,A(u). For any
v ∈ XN we have

〈∇Kβ,A(u), v〉XN =

〈
A(D)Pu√

β2 + |A(D)Pu|2
, A(D)Pv

〉
X2N

=

〈
P∗A(D)∗

(
A(D)Pu√

β2 + |A(D)Pu|2

)
, v

〉
XN

for each v ∈ XN vanishing on the boundary of {0, . . . , N − 1}2. Thus, we may
write

∇Kβ,A(u) = A(D)∗P∗
(

A(D)Pu√
β2 + |A(D)Pu|2

)
∈ XN .

Now, we notice that P∗ f is just the restriction operator (subsampling operator)
that considers only the samples of f ∈ X2N in the grid {0, . . . , N − 1}2.

Finally, using this and the last two formulas, we deduce that

A(D)Pu√
β2 + |A(D)Pu|2

· ν{0,...,N−1}2
= 0,

where ν{0,...,N−1}2
is the discrete normal.

As usual, we denote by ‖v‖q =
(∑N2

i,j=1 |v(i, j)|q
)1/q

for any v ∈ XN , 1 ≤ q <

∞. We denote ‖v‖∞ = max(i,j)∈{1,...,N} |v(i, j)|. And for simplicity in the cases
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where there is no ambiguity, we shall omit the subindexes for the L2-norm, then
‖u‖2=‖u‖.
Proof of Proposition 3. Let us write Q(u) = (û(0, 0)− zw)2, R(u) = G ∗ |∆Ξ(h ∗
u) − z|2. To adapt the convergence proof of Uzawa’s method to our case, we
need to prove that
(a) If U is a bounded subset of XN then there is a constant α > 0 such that

〈∇Kβ,A(u)−∇Kβ,A(v), u− v〉+ µ〈∇Q(u)−∇Q(v), u− v〉 ≥ α‖u− v‖2

for all u, v ∈ U.
(b) R(u) is Lipschitz on bounded sets of XN and
(c) the sequence up constructed in Step 2 of the above algorithm is bounded in
XN .
To prove (a) we use the inequality [Tru09]〈

ξ√
β2 + |ξ|2

− ξ ′√
β2 + |ξ ′|2

, ξ − ξ ′
〉
≥ β2 |ξ − ξ ′|2

(β2 + |ξ|2 + |ξ ′|2)3/2 ∀ξ, ξ ′ ∈ Rk

with k = 2 and we compute

〈∇Kβ,A(u)−∇Kβ,A(v), u− v〉 ≥

≥
∑
(r,l)

|A(D)Pu(r, l))− A(D)Pv(r, l)|2
(β2 + |A(D)Pu(r, l)|2 + |A(D)Pv(r, l)|2)3/2

≥ α
∑
(r,l)

|A(D)Pu(r, l)− A(D)Pv(r, l)|2,

where (r, l) ∈ {0, 1, . . . , 2N − 1}, the constant α > 0 depends on the bound for
U, and

〈∇Q(u)−∇Q(v), u− v〉 = 2(û(0, 0)− v̂(0, 0))2.

Then (a) follows as a consequence of the two previous inequalities.
(b) Assume that U ⊆ XN is a bounded set. Let u, u ∈ U. Since ‖G‖1 ≤ 1, we
have

‖R(u)− R(v)‖ ≤ ‖G‖1‖(h ∗ u− z)2 − (h ∗ v− z)2‖
≤ 2‖z‖∞‖h ∗ (u− v)‖+ ‖h ∗ (u + v)‖∞‖h ∗ (u− v)‖
≤ C‖u− v‖,

where C is a constant depending on the norms of h and z and on the bound for
U.
(c) To prove that {up}p is bounded we observe that

Lµ(up, {λp}) ≤ Lµ(u, {λp}), ∀u ∈ XN , (3.26)
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for all p. Choosing u ∈ XN such that û(0, 0) = zw and z = ∆Ξ(h ∗ u), we obtain
that

Kβ,A(up) + µpQ(up) ≤ Kβ,A(u),

hence {up}p is bounded in XN .
Now, we can adapt the proof of Uzawa’s method to our case (see Theorem 5

in [Fau88], Sect. 3.1). Since up satisfies (3.26) then ∀u ∈ XN we have

〈∇Kβ,A(up), u− up〉+ µp〈∇Q(up), u− up〉+ 〈λp, R(u)− R(up)〉 ≥ 0. (3.27)

Let u∗ be the solution of problem (3.21). Since, by Theorem 4, we have

L(u∗, {λ}, α+, α−) ≤ L(u, {λ}, α+, α−) ∀u ∈ XN ,

we also have

〈∇Kβ,A(u∗), u− u∗〉+ 〈λ, R(u)− R(u∗)〉+
+ α+(ϕ+(u)− ϕ+(u∗)) + α−(ϕ−(u)− ϕ−(u∗)) ≥ 0 (3.28)

for all u ∈ XN . Since u∗ is a solution of (3.21), we have that

∇Q(u∗) = 0,

and we can add µp〈∇Q(u∗), u− u∗〉 to the inequality (3.28). Taking u = up in
this form of the second inequalities, and u = u∗ in (3.27) and adding both of
them we obtain

〈∇Kβ,A(up)−∇Kβ,A(u∗), up − u∗〉+
+ µp〈∇Q(up)−Q(u∗), up − u∗〉−
− α+(ϕ+(up)− ϕ+(u∗))− α−(ϕ−(up)− ϕ−(u∗))+

+ 〈λp − λ, R(up)− R(u∗)〉 ≤ 0.

Since

〈∇Kβ,A(up)−∇Kβ,A(u∗), up − u∗〉 ≥ α‖A(D)Pup − A(D)Pu∗‖2

and

µp〈∇Q(up)−Q(u∗), up − u∗〉−
−α+(ϕ+(up)− ϕ+(u∗))− α−(ϕ−(up)− ϕ−(u∗))

= 2µp(ûp(0, 0)− û∗(0, 0))2 − (α+ − α−)(ûp(0, 0)− û∗(0, 0))

≥ µp(ûp(0, 0)− û∗(0, 0))2

for p large enough, we have

〈λp − λ,R(up)− R(u∗)〉 ≤
≤ −α‖A(D)Pup − A(D)Pu∗‖2 − µp(ûp(0, 0)− û∗(0, 0))2

≤ −α0‖up − u∗‖. (3.29)
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Now, the proof follows in a standard way. Let us give the details for the sake of
completeness. Using (3.24), we have

‖λp+1 − λ‖≤‖λp − λ + ρp(R(up)− R(u∗))‖.

Taking squares, we have

‖λp+1 − λ‖2≤‖λp − λ‖2 + 2ρp〈λp − λ, R(up)− R(u∗)〉+ ρ2
p‖R(up)− R(u)‖2.

Using (3.29) and (b), we have

‖λp+1 − λ‖2 ≤ ‖λp − λ‖2 − 2α0ρp‖up − u∗‖2 + ρ2
pL2‖up − u∗‖2.

for some L > 0. If we choose ρp such that

2α0ρp − L2ρ2
p ≥ γ > 0,

that is, 0 < ρ∗ ≤ ρp ≤ ρ∗, we have

‖λp+1 − λ‖2 ≤ ‖λp − λ‖2 − γ‖up − u∗‖2.

Then we deduce that ‖λp − λ‖ is decreasing and, thus, has a limit ` ≥ 0. Then
letting p→ ∞ we have that ‖up − u∗‖ → 0.

3.6 A Quasi-Newton algorithm for the solution of (3.23)

The purpose of this section is to explain the algorithm used to solve problem
(3.23) in Algorithm II. For convenience, let us denote the convolution and irreg-
ular sampling operators, as Su = ∆Ξ(h ∗ u) for any u ∈ XN .

Observe that the Euler-Lagrange equation corresponding to (3.23) is

A(D)T

(
P∗

A(D)Pu√
β2 + |A(D)Pu|2

)
+ 2µ(û(0, 0)− zw) + S∗(G ∗ λ)(Su− z) = 0.

(3.30)
To shorten our expressions, let us define the following operators:

Mu = (
√

G ∗ λ )Su, so that M∗u = S∗(
√

G ∗ λ u),

N u = û(0, 0), b = S∗((G ∗ λ)z) + 2µzw,

A[v](u) = A(D)T P∗
(

A(D)Pu√
β2 + |A(D)Pv|2

)
and

T [v](u) = A[v](u) + 2µN u +M∗Mu.

where u, v ∈ XN .
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We want to solve (3.30) with a fixed point iteration:

A[ut](ut+1) + 2µN ut+1 +M∗Mut+1 = b. (3.31)

The rest of this section is devoted to show that such a fixed point algorithm
converges to the minimizer of (3.23). Notice that a proof based on convex anal-
ysis (the half-quadratic regularization approach) can be found in [CL97] in the
continuous case, or in [CBFAB97, AK06] for the discrete case. Further analysis
can be found in [AV94, DV97, VO96]. Here, we will extend the proof proposed
by Chan and Mulet in [CM99]. The advantage of such an approach is that only
basic algebra is needed. Moreover, the linear convergence rate of this algorithm
can be shown explicitly. The difference with the approach in [CM99] relies on
the fact that the operatorM is not assumed to be invertible. In our case the pres-
ence of the mean constraint µN permits to prove the same convergence result
as in [CM99], without an invertibility hypothesis onM.

Remark 5. Note that computingM∗M in (3.31) entails the computation of an
operator with a Toeplitz structure. As in the ACT algorithm (Section 3.2.1) this
is efficiently computed in O(N2 log2 N2) steps.

Remark 6. As mentioned in Remark 3, we may write A(D)u = DΨu. This per-
mits to use the change of variables v = Ψu and write the constrained restoration
problem (3.21) in terms of v. Then the regularizer coincides with the total varia-
tion applied to v. The solution of (3.21) can be recovered as u = Ψ−1v. This has
no effect on the developments of this chapter so we keep the notation A(D)u.

3.6.1 Existence of ut and its boundedness

The sequence ut will be defined iteratively using (3.31).

Proposition 5. The equation (3.31) has a unique solution ut+1 ∈ XN which is the
minimizer of

E(u) =
∥∥∥∥∥ A(D)Pu

(β2 + |A(D)Put|2)1/4

∥∥∥∥∥
2

+
1
2
‖Mu− z′‖2 + µ‖N u− zw‖2, (3.32)

where
∥∥∥∥ A(D)Pu
(β2+|A(D)Put |2)1/4

∥∥∥∥2
=
∑

(r,l)

∣∣∣∣ A(D)Pu(r,l)
(β2+|A(D)Put(r,l)|2)1/4

∣∣∣∣ and z′ =
√

G ∗ λ z.

Proof. It is standard that (3.32) admits a unique solution ut+1 ∈ XN . Moreover,
(3.31) is the Euler-Lagrange equation associated to (3.32) and solutions of (3.31)
are minimizers of (3.32).

Proposition 6. (i) There exists K0 > 0 such that

‖A(D)Put‖ ≤ K0.
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(ii) T [ut] is a bounded coercive operator. Indeed we have

〈T [ut]u, u〉 ≥ α‖u‖2 (3.33)

for some α > 0 independent of t.
(iii) The sequence ut is uniformly bounded.

Proof. Since ut+1 is a minimizer of E(u), we have E(ut+1) ≤ E(0) = 1
2‖z′‖2 +

µ‖zw‖2, and thus:

∥∥∥∥∥ 1

(β2 + |A(D)Put|2)1/4 A(D)Put+1

∥∥∥∥∥
2

≤ E(0) = 1
2
‖z′‖2 + µ‖zw‖2.

We have ∣∣∣∣∣ A(D)Put+1

(β2 + |A(D)Put|2)1/4

∣∣∣∣∣
2

≥
∣∣A(D)Put+1

∣∣2
‖
√

β2 + |A(D)Put|2 ‖∞

Thus ∥∥∥A(D)Put+1
∥∥∥2
≤ E(0)

∥∥∥∥√β2 + |A(D)Put|2
∥∥∥∥

∞

≤ E(0)
√

β2 + ‖A(D)Put‖2
∞ .

But since we deal with finite dimensional spaces, there exists L > 0 which does
not depend on ut such that ‖A(D)Put‖∞ ≤ L‖A(D)Put‖. Hence we deduce
that ∥∥∥A(D)Put+1

∥∥∥2
≤ E(0)

√
β2 + L2‖A(D)Put‖2 .

Assume that
∥∥A(D)Put

∥∥ ≤ K. Using (3.6.1), to get that
∥∥A(D)Put+1

∥∥ ≤ K,
it is sufficient to choose K > 0 large enough so that

E(0)
√

β2 + L2K2 ≤ K2.

(ii) The boundedness of T [ut] is immediate and we omit its proof. Let us prove
that Tt is a coercive operator. Using the bounds in Step (i), we have〈

1√
β2 + |A(D)Put|2

A(D)Pu, A(D)Pu

〉
≥ 1√

β2 + L2K2
0

‖A(D)Pu‖2.

Hence
〈A[ut]u, u〉 ≥ 1√

β2 + L2K2
0

‖A(D)Pu‖2 ≥ α0‖u0‖2,
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where we wrote u = u0 + c, with c = N u and N u0 = 0, and we used the fact
that A(D)P is a linear operator whose kernel are the constants. UsingA[ut]c = 0
and 〈u0, c〉 = 0, we get

〈T [ut](u0 + c), u0 + c〉 ≥ 〈A[ut](u0 + c), u0 + c〉+ 2µ〈N (u0 + c), u0 + c〉
≥ 〈A[ut]u0, u0〉+ 2µc2

≥ α0‖u0‖2 + 2µc2.

Thus, we deduce (3.33).
(iii) From (3.33), we know that 〈T [ut]ut+1, ut+1〉 ≥ α‖ut+1‖2. But from (3.30),
we know that 〈T [ut]ut+1, ut+1〉 = 〈b, ut+1〉 ≤ ‖b‖‖ut+1‖. We deduce that
‖ut+1‖ ≤ ‖b‖α .

3.6.2 Convergence of the fixed point algorithm

For simplicity, given λ = (λk)
N2

k=1, we write L(u) = Lµ(u, {λ}). Recall that

∇uL(u) = T [u](u)− 2µzw −M∗z′.

Let us finally define

G(v, u) = L(u) + 〈v− u,∇uL(u)〉+
1
2
〈v− u, T [u](v− u)〉.

Proposition 7. The following inequality holds for any u, v ∈ XN :

L(v) ≤ G(v, u). (3.34)

Proof. We follow the proof in [CM99]. Since

G(v, u)−L(v) = L(u)−L(v) + 〈v− u,∇uL(u)〉+
1
2
〈v− u, T [u](v− u)〉,

standard computations lead to

G(v, u)−L(v) =
∑
(r,l)

(
a− a +

1
2a

(a2 − a2)

)

with a =
√

β2 + |A(D)Pu(r, l)|2 and a =
√

β2 + |A(D)Pv(r, l)|2 , where (r, l) ∈
{0, 1, . . . , 2N − 1}. Since a, a > 0, and a− a + 1

2a (a2 − a2) = (a−a)2

2a ≥ 0, we have
that G(v, u)−L(v) ≥ 0.

Proposition 8. (i) The function ut+1 defined by (3.31) is such that:

ut+1 = argminvG(v, ut) (3.35)

i.e.: 0 = ∇uL(ut) + T [ut](ut+1 − ut).
(ii) We have limt→+∞ ‖ut+1 − ut‖ = 0.
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Proof. (i) Let us denote by ū = argminvG(v, ut). We thus have 0 = ∇uL(ut) +
T [ut](ū− ut). And this last equation is precisely equation (3.31), which implies
that ū = ut+1.
(ii) From (3.34) and (3.35), we have L(ut+1) ≤ G(ut+1, ut) ≤ G(ut, ut) ≤ L(ut),
i.e. (L(ut)) is decreasing. Now, from (3.34) and (3.35), we have:

L(ut+1) ≤ G(ut+1, ut)

= L(ut) + 〈ut+1 − ut,∇uL(ut)〉+ 1
2
〈ut+1 − ut, T [ut](ut+1 − ut)〉

= L(ut)− 1
2
〈ut+1 − ut, T [ut](ut+1 − ut)〉

Using (3.33), we deduce: 1
2 α‖ut+1 − ut‖2 ≤ 1

2 〈ut+1 − ut, T [ut](ut+1 − ut)〉 ≤
L(ut)−L(ut+1) and (ii) follows.

We are now in position to state a convergence result.

Theorem 9. The sequence ut defined by (3.31) converges to the solution of (3.23).

Proof. From Proposition 6.(iii), we know that ut is uniformly bounded. There
exists u such that we can extract a convergent subsequence, which we still de-
note by ut, with ut → u as t→ +∞. From Proposition 8.(ii) , we know that ut+1

is also convergent and ut+1 → u as t→ +∞. Letting t→ +∞ in equation (3.31),
we deduce that u is the solution of (3.30) (and thus of (3.23)). By uniqueness of
the solution of (3.23), we conclude that the whole sequence ut converges to u,
solution of (3.23).

We end this section by stating a result about the convergence rate. We denote
by ũ the solution of Problem (3.23). We use the following notations:

γt :=
G(ũ, ut)−L(ũ)

1
2 〈ũ− ut, T [ut](ũ− ut)〉

and
ζ := 1− λmin(T [ũ]−1∇2

uL(ũ))
where λmin(M) denotes the smallest eigenvalue of the matrix M; in particular if
M is positive definite then λmin(M) > 0

Proposition 10. 1. L(ut+1)−L(ũ) ≤ γt(L(ut)−L(ũ)).

2. ζ < 1 and 0 ≤ γt ≤ ζ, for t sufficiently large. In particular, L(ut) has a linear
convergence rate of at most ζ.

3. ut is r-linearly convergent with a convergence rate of at most
√

ζ .

Proof. We refer the interested reader to the proof of Theorem 6.1 in [CM99] which
can easily be extended to our case.
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(1−α)σ

β (1+α)σ

β

t

Figure 3.1: The relaxed optimization problem allows solutions within a band.
From the depicted sequence of solutions ut

p (black dots) the ones that are truly
satisfying the constraints are those inside the dotted ring, since it accounts for
the approximation error η. S stands for the irregular sampling and convolution
operators, Sut

p is also a sequence defined over the irregular samples and not over
the solution space.

3.7 Band constraints and stopping conditions

Coming back to the optimization problem (3.21), since both the functional
Kβ,A(u) and the constraints are convex, and the constraint’s feasible set V does
not contain the absolute minimun of Kβ,A(u), then the solution lies in the bound-
ary of V. In practice, computing a solution in ∂V is not only computation-
ally too expensive (due to the size of the problems), but also unnecessary be-
cause of the noise. Since we rely on noise estimates that have a certain ac-
curacy, exceeding this accuracy in the data fitting is useless (as we will see
later in this section). Moreover, as it has been observed in all numerical ex-
periments [BFCAB95, Cha04, CL97, CZC95, CM99, CBFAB97, DMR00, GR92,
AG06, GSZ06, ROF92, VO96], using total variation as regularizer in denoising
or restoration generally carries some loss of texture and it is not desirable to
compute the solution that (absolutely) minimizes the TV but to keep a solution
with a slightly higher TV value in order to avoid the loss of textures.

As a consequence, to avoid this degradation, the rule of thumb has been ever
since to remove less noise than noise is actually present in the image. Gilboa
studied this in [AG06] and concluded that in terms of SNR the optimal selection
of σ̄ is between 0.7 and 0.8 times the value of σ. In what follows we will modify
the constraints to account for this change[

G ∗ |∆Ξ (h ∗ u)− z|2
]
(ξk) ≤ σ̄2 ∀ξk ∈ Ξ ,

where σ̄ < σ. That is, in order to keep more texture in u we do not remove all
noise and we could rewrite the acquisition model as z = S(u0 +S−1(n− n̄))+ n̄
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where n̄ is a noise with variance σ̄2 and we identify u0 + S−1(n− n̄) with u.
Motivated by this observation and by the fact that, due to noise, there is

always some uncertainty in the surroundings of ∂V, we will avoid the compu-
tational overhead of getting exactly to ∂V by stopping the algorithm as soon as
the solution is close to it. This is the notion behind the band constraint

(1− α)σ̄2 ≤
[
G ∗ |∆Ξ (h ∗ u)− z|2

]
(ξk) ≤ (1 + α)σ̄2 ∀ξk ∈ Ξ, (3.36)

with α > 0. The constraint described by equation (3.36) is clearly non-convex,
and therefore it cannot be integrated in the method presented here. But since
Uzawa’s algorithm always pushes the solution towards the boundary of the fea-
sible set, then (at least in practice) it can be used to stop Uzawa’s loop by testing
if (3.36) is fulfilled.

In what follows we will see that even considering relaxed constraints like
(3.36), imposing all of the local constraints simultaneously is not statistically
correct, since each constraint’s estimator behaves as a random variable. Then we
will see how this relaxation of constraints is used to early stop Uzawa’s iterations
and how this helps to improve the efficiency of our implementation.

In our experiments, we have chosen σ̄ = 0.8σ and α such that 0.8(1+ α) < 1.

3.7.1 Expected number of satisfied band constraints

Let us summarize the arguments of [ABCH08] and adapt them to the case of
band constraints. Each local constraint relies on a local estimate of the residual
variance of the form

SG(ξk) =
[
G ∗ |∆Ξ (h ∗ u)− z|2

]
(ξk) =

[
G ∗ |n̄|2

]
(ξk) , (3.37)

where G is a Gaussian or uniform window centered at the interest point and nk
denotes a zero mean Gaussian noise and variance σ̄2 (recall that we are going to
remove only a noise of variance σ̄2 < σ2). Since SG is a random variable itself,
the number of satisfied constraints is estimated by the probability P[SG ≤ (1 +
α)σ̄2] in the case of the ball shaped constraint, or P[(1− α)σ̄2 ≤ SG ≤ (1 + α)σ̄2]
for the band constraint. Observe that a constraint of the type SG = σ̄2 (that is
in practice imposed when solving exactly (3.21)) was already doomed to failure
since it has zero probability to occur P[SG = σ̄2] = 0.

Using the Central Limit Theorem gives only a loose estimate of the proba-
bility distribution of SG. To improve the estimation of the expected number of
satisfied constraints let us simplify SG. By approximating the discrete convolu-
tion with G (of standard deviation r̃) by a mean over a disk I of radius r = 2r̃ we
can define a simpler estimator SI =

1
|I|
∑

k∈I n̄2
k .

Then, for the case of the ball constraint, the expected number of satisfied
constraints is the number of pixels times the following probability

P[SI ≤ (1 + α)σ̄2]= P

[
1
|I|
∑
k∈I

n̄2
k ≤ (1 + α)σ̄2

]
= P

[∑
k∈I

(
n̄k
σ̄

)2
≤ (1 + α)|I|

]
.
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Figure 3.2: Relation between the expected number of satisfied constraints and
the radius r of the disk used for the local noise estimation. The graph shows the
curves computed for different widths of the band α.

Notice that in the rightmost equation
∑

k∈I

(
n̄k
σ̄

)2
is a sum of |I| squared nor-

malized Gaussian random variables, so it follows a chi-square distribution with
|I| degrees of freedom (χ2(|I|)). And the probability can be computed using the
incomplete gamma function Γ(a, x) =

∫ ∞
x ta−1e−tdt

P[SI ≤ (1 + α)σ̄2] = P
[
χ2(|I|) ≤ (1 + α)|I|

]
= Γ

(
(1 + α)|I|

2
,
|I|
2

)
.

In the case of the band constraint the expected number of satisfied constraints
N(α, r) is the number of pixels times the following probability

P
[
(1− α)σ̄2 ≤ SI ≤ (1 + α)σ̄2

]
= Γ

(
(1 + α)|I|

2
,
|I|
2

)
− Γ

(
(1− α)|I|

2
,
|I|
2

)
.

(3.38)
Equation (3.38) expresses the expected proportion of satisfied constraints as a
function of the radius of the disk r (|I| = πr2) and the width of the band α. We
plot in Figure 3.2 this function, for different values of α to give an intuition of
its behavior. Notice that the expected number of satisfied constraints decreases
as we reduce the band width α or the radius r. This permits to determine one
parameter as a function of the other two, i.e. using a disk of radius r = 13
(or a Gaussian with standard deviation 7.0) and defining a band of width 0.2σ̄2

(α = 0.1) gives 89% of satisfied constraints. In practice, either we specify α, r and
then the expected number of satisfied constraints is N(α, r), or we give α and Nα

and we compute r so that N(α, r) = Nα. We have taken the second option in the
experiments displayed in Section 3.8.

Remark 7. Observe that in (3.37) the estimation of the noise variance cor-
responds to the case when the mean of the random variable is zero. In-
deed, the global mean is enforced to be zero in (3.21). We should also im-
pose that the local means are zero with a new set of constraints, otherwise
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Figure 3.3: Truncation of the Quasi-Newton method. The first sequence shows
the error evolution along the Quasi-Newton iterations, without applying the
stopping condition for the CG algorithm. The second sequence was obtained
stopping the CG with the empirical bound, observe that the two sequences are
indistinguishable. The third sequence depicts the estimated error used to effec-
tively stop the Quasi-Newton iterations, as soon as the desired error is achieved.

Table 3.1: Relation between the width of the constraint band and the restoration
time. Reducing the width of the band increases the computational cost of the
restoration algorithm. In the table the value of η was selected according to the
rule η = 1

3 (
√

1 + α σ̄−
√

1− α σ̄), and σ̄ = 1. All the reported times correspond
to experiments ran on a 1.6Ghz CPU restoring a 256× 256 pixels image.

Band Width Effective Band Total
parameter: α

√
(1− α) σ̄ + η

√
(1 + α) σ̄− η running time

0.60 0.84 1.05 3 min 3 sec
0.34 0.93 1.04 3 min 37 sec
0.22 0.96 1.03 4 min 58 sec
0.10 0.98 1.02 18 min

SG will be an overestimation of the noise variance. The local mean constraint∑
ξk∈Ξ |G ∗ (∆Ξ(h ∗ u)− z)|2(ξk) = 0 can be added in (3.21), and the formalism

developed in this chapter fits the new formulation. But to avoid the compu-
tational overhead of its implementation, and since the overestimation plays in
favor of the relaxation arguments presented earlier in this section, we will not
include it in the present formulation.

3.7.2 Practical stopping conditions for an efficient implementation

Using (3.38) we may derive a practical rule to stop Uzawa’s loop. Indeed, the
user specifies α and the proportion of constraints Nα/N that must lie within the
band of width α, and the algorithm deduces the radius r of the kernel G such
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that N(α, r) = Nα. Then we iterate the Uzawa’s loop in Algorithm II until the
number of pixels that satisfy the constraint (3.38) is at least Nα.

The truncation error of the Quasi-Newton has three sources: (i) truncation of
the Quasi-Newton iterations themselves, (ii) truncation of the nested CG loop,
and (iii) propagation of the CG error along QN iterations. Here we summa-
rize how to estimate and control the combination of the three errors for a given
(global) target error bound on the QN result ‖up − ut

p‖2 ≤ η/‖S‖. Using stan-
dard error propagation analysis [DB03] and the knowledge that QN is at least
linearly convergent we can estimate the global error determining (ii) and bound
the inverses of the operators T [ut] and their dependence on ut. In our case
these bounds are estimated empirically, and the CG error is approximated by its
residual. Figure 3.3 shows that this procedure is quite effective in practice. First
our CG stopping condition makes the truncated QN sequence indistinguishable
from the non-truncated QN sequence (i.e. the one with CG iterated until ex-
act convergence is reached, and thus not affected by CG truncation errors (ii)
and their propagation (iii)). This is because the actual QN truncation error (with
either CG truncated or not) is considerably over-estimated by our error propa-
gation analysis as shown in Figure 3.3. This also means that the desired error is
achieved much faster than predicted by the our error bounds.

Let us now take into account the truncation error of the Quasi-Newton
method in the determination of the band constraints. Assume that we are com-
puting the Quasi-Newton solution up and that we have controlled the errors
‖Sup − Sut

p‖ ≤ ‖S‖‖up − ut
p‖ ≤ η, where ut

p denotes the solution obtained
at the t-th iteration of the method. Then we may erode the band by η as seen
in Figure 3.1. In this way we ensure that if we stop the Quasi-Newton solution
with the criterion ‖S‖‖up − ut

p‖ ≤ η, then the truncated solution up satisfies
(3.38). Clearly η must satisfy the inequality η < 1

2 (
√

1 + α σ −
√

1− α σ) and
we have taken η := 1

3 (
√

1 + α σ−
√

1− α σ), which equalizes the widths of the
three bands in Figure 3.1. Figure 3.1 illustrates the band and its reduced version
for a single constraint.

Finally, we notice that the computational complexity of the algorithm in-
creases as we reduce the width of the band. Indeed, taking α → 0 makes it
harder to satisfy the constraints. And to illustrate this we display in Table 3.1
the computation times corresponding to different values of α.

3.8 Experiments

We will test the proposed algorithm in three contexts, first in the irregular to reg-
ular sampling and denoising task, then in Subsection 3.8.2 we add the deconvo-
lution, and finally in Subsection 3.8.3 we consider the full restoration problem,
with deconvolution, denoising, and zooming.

We compare the results obtained by the ACT Algorithm [GS00] (when ap-
plicable), the algorithm described in [ACHR06] (ACT+TV), and the proposed
algorithm discussing different choices of A(D) in each context. In addition we
will also consider a re-formulation of our local constraint algorithm based on
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(a) Reference Image.
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(b) Mean Fourier coefficient amplitude
for the reference image.

(c) Noisy and irregularly
sampled image.

Figure 3.4: Image used in the denoising experiment. At left: the reference im-
age is non-aliased, and it has 149× 149 pixels. It was multiplied by a smooth
window vanishing on the borders in order to avoid periodization artifacts (not
shown). In this image the mean Fourier coefficient amplitudes decay like
(2πω/N)−1.9 (center). At right, is shown the perturbed sampled image. The
perturbations have an amplitude of A = 0.88 pixels (standard deviation of ε(x)),
and were simulated according to (3.8) as colored noise with the spectral content
inside [−0.5/Tε, 0.5/Tε]2 for Tε = 10.

the minimization of the L2-norm of the pseudo-differential operator A(D). The
L2-norm formulation is faster and leads to a linear system (which is solved di-
rectly with Conjugate Gradient, avoiding the need of a fixed point loop), and it
is derived by replacing the regularizer KA,β in (3.21) by

LA(u) :=
∑

0≤r,l≤2N

|A(D)Pu(r, l)|2. (3.39)

All the experiments were performed with simulated images. The pertur-
bations ε(x) were generated according to the model (3.8), with an amplitude
A = 0.88 (standard deviations of ε(x)), and where supp ε̂ ⊆ [− 0.5

Tε
, 0.5

Tε
]2 for

Tε = 10. The perturbed samples z were computed very accurately (usually
10−8) by approximating the irregular sampling formula (3.9) with the trans-
posed NFFT [PST01]. Finally, we added a white noise of standard deviation
σ to the irregular samples. In the experiment displayed here, we have taken
σ = 1 gray levels (i.e.the noise power is 890 times smaller than the image power,
SNR = 29.5dB). The perturbed image shown in Figure 3.4, which corresponds
to the denoising experiment, was simulated according to this procedure.

To quantify the errors we adopt the classical root mean squared error mea-
sure RMSE(u, u0) = ( 1

N ‖u− u0‖2)1/2 against the ground truth image (denoted
as u0), and the method noise for a qualitative analysis. The method noise was
originally aimed at comparing denoising algorithms. It consists in subtracting
the restored image to the noisy one, and studying the remaining noise. In our
context assuming an image formation model like (3.1) and denoting u the image
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Table 3.2: Comparison of the algorithms in the irregular to regular sampling and
denosing task. These results correspond to the restoration of the image shown
in Figure 3.4, corrupted by a white Gaussian noise with standard deviation σ =
1. The error column is obtained by comparing the restored image u with the
ground truth u0, where RMSE(u, u0) = ( 1

N ‖u − u0‖2)1/2. Its values evidence
that all the algorithms achieve errors similar to the noise variance. In all the
experiments the power of the removed noise was set to be 1

N ‖Su− z‖2 ∼ 0.908,
a little below the noise level σ2 = 1, but this allows to improve both the result’s
RMSE and the visual quality of the restored images.

Algorithm Regularizer RMSE
ACT [GS00] or (3.11) 1.354
ACTD (3.14) residual preconditioning 1.121
ACTR (3.15) regularity preconditioning 1.049
ACT+TV [ACHR06] or (3.16) 0.961
QN+TV |A(iω)| = | 2π

N ω|
Kβ,A(u) eq. (3.21)

0.874
QN+FAR |A(iω)| = | 2π

N ω|1.6 0.776
QN+FAR |A(iω)| = | 2π

N ω|1.9 0.757
L2-norm of the gradient LA(u) eq. (3.39) 0.880
L2-norm of A(D)u with |A(iω)| = | 2π

N ω|1.9 0.773

obtained by a restoration algorithm, the method noise becomes (z−Su), where
z are the noisy samples and S stands for the irregular sampling and convolution
operators. Since the restoration is expected to recover the original image u ' u0,
the method noise should be as similar to a white noise as possible. In addition,
since we would like the original image u0 not to be altered by the restoration
method, the method noise should not exceed the actual noise variance, which
justifies our local constraints approach.

3.8.1 Denoising

Observe in Table 3.2 that the proposed algorithm outperforms (in terms of
RMSE) the ACT and ACT+TV [ABCH08] algorithms, in the denoising experi-
ment. Also notice in Figure 3.5 how the method noise of the proposed algorithm
retains less structure, meaning that the method removes just the noise with less
alteration of the texture.

The variants of the algorithm based on the minimization of an L2-norm
(3.39), give results that are comparable with the ones obtained with the FAR
regularizer, and in both reported cases the L2 results are indistinguishable from
the ones obtained by FAR. This observation advocates for the local formula-
tion of the constraints and it can be justified by the density of the samples in
this denosing experiment, and by the lack of both deconvolution and zoom. We
can conclude that, for the denoising (without either deconvolution nor zoom)
the advantage of a nonlinear regularizer over the L2 one is marginal, mostly be-
cause no spectral extrapolation is needed. However minimizing the L2-norm
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(a) ACTR
eq. (3.15) regularizer
precondition
RMSE= 1.049

(b) ACT+TV
eq. (3.16)
RMSE= 0.961

(c) QN+TV
eq. (3.21) with
|A(iω)| ∼ | 2πω

N |1
RMSE= 0.864

(d) QN+FAR
eq. (3.21) with
|A(iω)| ∼ | 2πω

N |1.9

RMSE= 0.757

Figure 3.5: Method noise of the different algorithms in the experiment of irreg-
ular to regular sampling plus denoising. The images in the first row display the
method noise (z − Su) for different methods, less visible structure indicates a
better reconstruction. The images display the grayscale range [−3, 3] scaled to
[0, 255] (the full grayscale range of the image z is [0, 155]). In the second row we
show the corresponding Fourier transforms, the spectrum highlights the struc-
tures that are barely visible in the spatial domain.

is not expected to perform well in tasks that entail a spectral extrapolation like
deconvolving or zooming.

The imposition of the spectral profile produces a consistent improvement in
all the cases (| 2π

N ω| vs. | 2π
N ω|1.6 vs. | 2π

N ω|1.9), and imposing the profile cor-
responding to the coefficient decay of the reference image (Figure 3.4) produces
the best results. We can study the performance of the spectral profiles by analyz-
ing the frequency distribution of the errors of the restored images with respect
to the reference image (GT), shown in Figure 3.6. There we can see that using
the linear profile (total variation), the low frequencies are heavily penalized and
most of the errors come from them, but imposing the profile corresponding to
this image (| 2π

N ω|1.9) we reduce the errors in the low frequency range.
Finally, let us spend a word to note the impact of the practical stopping con-

ditions proposed in Section 3.7, since they allow a significant speed up of the
algorithm reducing the execution time from 200 sec (stopping after 50 Uzawa’s
iterations) to 30 sec for images of size 149× 149 pixels.
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(b) Errors in the restored images.

Figure 3.6: Denoising experiments with different selections of spectral profiles
A(iω). Using the spectral profile that fits the model for the ground truth image,
reduces the error, especially in the mid-low frequencies.

(a) Reference Image. (b) Noisy, blurred and irregularly sampled
image.
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(c) Fourier coefficient decay of the reference
image.

Figure 3.7: Image used in the deconvolution experiment. The Fourier co-
efficients’ amplitudes in the reference image (257 × 257 pixels) decay as
(2πω/N)−1.1.
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Table 3.3: Comparison of the algorithms in the irregular to regular sampling and
deconvolution task.

Algorithm Regularizer RMSE
ACT+TV [ACHR06] 9.035
QN+FAR |A(iω)| = | 2π

N ω|1.6

Kβ,A(u) eq. (3.21)

8.751
QN+TV |A(iω)| = | 2π

N ω|1 8.542
QN+FAR |A(iω)| = | 2π

N ω|0.4 8.779
QN+FAR |A(iω)| ∼ | 2π

N ω|0.4 for |ω| ≥ N
4 8.337

and |A(iω)| = | 2π
N ω|1 for |ω| <= N

4
regular QN+FAR |A(iω)| = | 2π

N ω|1.1 Kβ,A(u) eq. (3.21) 8.393
L2-norm of the gradient LA(u) eq. (3.39) 9.112
L2-norm of A(D)u with |A(iω)| ∼ | 2π

N ω|0.4 for |ω| ≥ N
4 9.044

and |A(iω)| = | 2π
N ω|1 for |ω| <= N

4

3.8.2 Denoising and deconvolution

We consider in this section the denoising and deconvolution of irregularly sam-
pled images. For that we include in our image formation model the MTF corre-
sponding to SPOT 5 HRG (High Resolution Geometric) satellite with Hipermode
sampling [HML94]. Shortly, Hipermode is a push-broom acquisition mode that
uses two shifted bars of sensors to sample on a double-density grid. The MTF
associated to this system is modeled by

ĥ(p, q) = sincπ

(
2p
N

)
sincπ

(
2q
N

)
e−β1| p

N |︸ ︷︷ ︸
sensor integration blur

e−
α1
N

√
p2+q2︸ ︷︷ ︸

optics & aper-
ture diffraction

sincπ

( p
N

)
,︸ ︷︷ ︸

motion blur

− N
2

< p, q ≤ N
2

,

where α1 = 3.73 , β1 = 1.75, and where sincπ(x) = sin(πx)
πx if x 6= 0 and

sincπ(x) = 1 if x = 0. This function has its first zero crossing at frequency
N/2 = 1/2Hz, while at frequency 1/4Hz the power of the MTF is only 1%,
meaning that outside the spectral support [−N/2, N/2]2 (or [−1/2, 1/2]2 Hz)
of the filter there is almost no information. To simulate a blurred, noisy and ir-
regularly sampled image with N × N samples we start by applying the MTF ĥ
to the image u0 ∈ XN . The samples z (Figure 3.7) are then obtained by sampling
h ∗ u0 on the irregular grid and adding the noise.

In Figure 3.8 and Table 3.3 we report the results of the restoration exper-
iments corresponding to deconvolution with the Hipermode MTF. The small
variability in the results is an indicator that the MTF ĥ makes the restoration
harder per-se, this is also confirmed by restoring a regularly sampled image
and observing that in that case the error is similar to the irregular one (see
Table 3.3). Anyway, the proposed algorithm outperforms ACT+TV [ACHR06]
mainly thanks to the local formulation of the constraints (see Figure 3.9).
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Global Constraint (RMSE=9.035) Local Constraints (RMSE=8.542)

Figure 3.8: Restoration with deconvolution computed with ACT+TV [ACHR06]
(left), and with the proposed algorithm (right) that solves (3.21) . In the first row
are shown the restored images. In the second row, the method errors, that are
re-scaled from [-5,5] (the range of the image is [0,255]). The third row is shown
the Fourier transform of the method noise (it should resemble the white noise).



52 CHAPTER 3. IRREGULAR SAMPLING IMAGE RESTORATION

Figure 3.9: Two details of images deconvolved using total variation and L2-norm
of the gradient as regularizers, both with local and global constraints. From left
to right is shown the result of the proposed algorithm (3.21), ACT+TV [ACHR06]
(global constraint), the L2-norm with local constraints and with a global con-
straint. Note that the last two results are more blurred that the total variation
ones, and as seen in Table 3.3 have a higher RMSE.
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Figure 3.10: Deconvolution experiments with different selections of spectral pro-
files A(iω). Using the spectral profile that fits the model for the ground truth
image, reduces the error.
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TV result (RMSE=6.079) L2-norm result (RMSE=6.270)

Figure 3.11: Deconvolution and zoom using TV and the L2-norm of the gradient
as regularizers. The images show a detail of the zoomed images and its spec-
trum. Note that the L2 regularizer recovers the low frequencies but is unable to
extrapolate to higher ones.

We observed that manipulating the spectral profile A(D) does not produce
improvements consistent with the denoising case (see Figure 3.10). This is due,
on one hand, to the fact that the reference image has a spectral decay different
from the target image class (| 2π

N ω|1.6). Indeed the Fourier coefficients of the
reference image decay as (| 2π

N ω|1.1), which explains the good performance of
the total variation (see Table 3.3). On the other hand, in Figure 3.10(b) we see
that the total variation controls the error in the low frequency range, but in the
high frequency range it is too conservative and does not promote the spectral
extrapolation.

The previous observation motivates the following experiment, building a
profile that combines, the decay of the total variation in the low frequency range,
with a decay similar to | 2π

N ω|0.4 in the high frequency range. The result of this
experiment is shown in Table 3.3 and its profile is depicted in Figure 3.10(b),
there we can confirm the desired effect.

Remark 8. The results exhibited in Tables 3.3 and 3.4 confirm that the regular-
izers based on the minimization of L2-norm, are not adequate to restore images
with deconvolution and/or zoom, due to the inability of this type of regulariz-
ers to extrapolate the spectrum. This difference is also illustrated in Figure 3.9
and in Figure 3.11 for the case of deconvolution and zoom.

3.8.3 Extension to zooming

Zooming requires to interpolate and restore the image while preserving and en-
hancing the shapes, this can be seen as a spectrum extrapolation problem. The
basic idea is to fit in as much as this is possible, the low frequency components
of the restored and zoomed image to the original data, and to extrapolate the
spectrum to the rest of the frequency domain by means of the regularization
functional. The regularization allows to recover some high frequencies, which
is indeed much more convenient than just filling them with zeros, a technique
which is known to produce ringing.
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Since the FAR regularizer allows to control the spectral behavior of the so-
lution, in particular the extrapolated part, it will allow to improve the zoom
results. Let us first extend the formulation (3.21) to consider the restoration of
irregularly sampled images with a zoom of factor n

min
u∈XnN

Kn
β,A(u) :=

∑
0≤r,l<2nN

√
β2 + |A(D)Pu (r, l)|2 ,

subject to
[
G ∗ |∆Ξ (h ∗ p ∗ u)− z|2

]
(ξk) ≤ σ2 ∀ξk ∈ Ξ

and
∑

0≤r,l<nN

u (r, l) =
∑
ξk∈Ξ

wkz(ξk).

(3.40)

The zoomed and restored image u is a vector of size nN × nN (we recall that
the size of z is N × N), and p is a spectral projector (e.g. p̂ = χR or a prolate
function) on a low-band region R which depends both on the MTF and the sam-
pling set. In the context we are considering here, p̂ will be different from zero in
the frequency band corresponding to the resolution of the data [−1/2, 1/2]2 and
the constraint is saying that the data is explained by the lower frequency part
h ∗ p ∗ u of h ∗ u. The regularization functional Kn

β,A(u) penalizes the oscillations
that may appear when we extrapolate the high frequencies in the spectral region
[−n/2, n/2]2 \ [−1/2, 1/2]2. Let us mention that, as discussed in [Alm02] in the
context of regular sampling, the right choice of the spectral region R permits to
reduce the aliasing effects, but we shall not consider this problem here. For us,
if we want to restore and zoom the image u by a factor n, p̂ will be different
from zero on the region R = [−1/2, 1/2]2 and zero on [−n/2, n/2]2\R . This is a
way to impose that the restored image fits the data z at low frequencies and the
high ones are extrapolated via the minimization of Kn

β,A(u). This minimization
problem (3.40) with p̂(ω) = 1IN (ω) is a direct extension of the oversampling
and denoising method introduced by Malgouyres and Guichard [MG02] to the
more general case of irregular to regular sampling, deconvolution, denoising
and oversampling.

The experiments shown here correspond to a 2X zoom, the images were sim-
ulated using the procedure described for the deconvolution case, with a filter
ĥ extended with zeros up to a double size, and where the irregular sampling
is performed at a double spacing. The resulting image is shown in Figure 3.12.
Since the restored image and the reference image u0 have the same size, they can
be directly compared. In Figure 3.12 are shown the distorted and the reference
image as well as two restorations.

Let us first comment on the stair-casing effect that is noticeable in the bottom
left image of Figure 3.12. It is a common observation that the total variation in-
troduces a staircasing effect in the restored images, but let us point out that in our
case where the derivatives are computed analytically this effect may not appear.
It appears in the bottom left image of Figure 3.12 due to the poor discretization
of the total variation. Notice that the same image processed with a finer approx-
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Table 3.4: Deconvolution denoising and 2X zoom experiments.

Algorithm Regularizer RMSE
ACT+TV [ACHR06] 6.236
QN+FAR |A(iω)| ∼ | 2π

N ω|1.6 for |ω| > N
4

Kβ,A(u) eq (3.21)
5.957

QN+TV |A(iω)| = | 2π
N ω|1 5.965

QN+FAR |A(iω)| ∼ | 2π
N ω|0 for |ω| > N

4 5.996
and |A(iω)| = | 2π

N ω|1 for |ω| <= N
4

L2-norm of the gradient LA(u) eq. (3.39) 6.270
L2-norm of A(D)u with |A(iω)| ∼ | 2π

N ω|1.6 for |ω| ≥ N
4 6.270

and |A(iω)| = | 2π
N ω|1 for |ω| <= N

4

imation as proposed in section 3.4.1 does not exhibit this artifact; see bottom
right image in Figure 3.12. As we mentioned above, this effect is a product of
the coarse discretization of the total variation and was negligible in the cases of
restoration without zoom. But when zooming it is important to avoid this effect
since it produces unnatural looking images in spite of the fact that the RMSE
errors of both images are similar.

Since the spectrum is extrapolated, the quality of the zoomed image is not
affected by the penalty in the frequencies imposed by the regularization term.
In Table 3.4 we display the results obtained with different penalization profiles.
Notice that the results are better in the case of L1-norm than L2-norm.

In contrast with the previous applications, in the present case, not removing
all the noise leads to some artifacts. The noise is defined over the original grid
(be either regular or irregular), but any residual of the original noise becomes a
low frequency colored noise in the zoomed image that is visible as artifacts.

3.9 Conclusions

We have proposed a model for the restoration of band limited images that con-
siders irregular (perturbed) sampling, denoising, and deconvolution. In addi-
tion, a theoretically sound discretization of this model and an algorithm that
solves the resulting discrete optimization problem efficiently using automati-
cally optimized thresholds and stopping conditions for a prescribed output pre-
cision level are presented.

An experimental evaluation (which actually requires all three modeling, dis-
cretization, and algorithmical elements) shows that our restoration model, and
its accurate discrete approximation, actually improves the performance of pre-
vious methods in terms of both signal to noise ratio (Tables 3.2, 3.3 and 3.4) and
adequacy of the statistical properties of the computed solution with respect to
the assumed image acquisition model. As we can see from Figures 3.5 and 3.8
our approach permits to recover part of the structure lost with a global con-
straint leading to a method noise that resembles more the postulated gaussian
white noise. As observed by Nikolova in [Nik07], most denoising methods tend
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Reference image Irregular samples

Zoomed with QN+FAR using (3.19) Zoomed with QN+FAR using (3.21)

Figure 3.12: Deconvolution denoising and zoom. We display the QN+FAR re-
sults using a spectral decay like ( 2πω

N )1.6, which coincides with the decay of the
reference image. The staircasing effect in (c) (RMSE: 6.003) is due to the poor
discretization of the regularizer in (3.19). In (d) (RMSE: 5.957) we observe the
result obtained with a finer discretization of the regularizer (3.21).
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to produce a method noise with a distribution which largely differs from the
postulated Gaussian white noise hypothesis.

The key ingredients that make our restoration model (Section 3.3) produce
good results are the combination of

1. the modeling of the image acquisition system through local constraints as
in [ABCH08, ACHR06],

2. the use of a special kind of frequency adapted regularization in the spirit of
the ACT algorithm proposed by H.G. Feichtinger, K. Gröchenig, M. Rauth
and T. Strohmer [GS00], and

3. the minimization of an L1-norm (instead of L2-norm) of a frequency-
adapted pseudo-differential operator. However the L2-norm produces
competitive results in the case of denoising without deconvolution nor
zoom (see Table 3.2).

All three aspects together collaborate to provide a better model of both, image
acquisition and a priori image regularity, that leads to better accordance of the
statistical properties of our solution with respect to the postulated models and
the reference image. An accurate discrete approximation to this model (Sec-
tion 3.4), both allows the use of convenient and efficient numerical algorithms
(Section 3.6), and leads to well-behaved solutions (Section 3.5). Finally, the study
of the local constraints (Section 3.7) leads to a trade-off between the precision of
the noise estimation and the number of constraints that can be ensured, that is
used to derive the stopping criterion for the different stages of the algorithm.

Experiments (Section 3.8) highlighting the importance of the modeling and
discretization aspects described earlier are presented, namely: the quality boost
provided by the local formulation of the constraints (Figure 3.5), the importance
of the discretization of the regularizer (Figure 3.12) and the usefulness of the
frequency adapted regularizer in favoring certain spectral behaviors of the solu-
tions (Figure 3.5 and 3.8).

Our prospects for future work include adapting our algorithm for using
splines as the underlying interpolation model, and the introduction of anti-
aliasing filters to handle the case of aliased data. The exploitation of self-
similarity proporties of most natural images would also be useful to increase
resolution while reducing noise and aliasing effects.





Chapter 4

Open issues related to image fusion

In this chapter we discuss some issues related to the application of the restoration tools
developed in Chapter 3 to the the problem of image fusion. We will explain the need
of a “spectral projector” for restoring aliased images, and we will propose methods for
computing spectral projectors in a couple of cases. With the spectral projector we can
formulate the restoration of aliased images, where we show that the noise estimation is
biased by the presence of the spectral projector. This bias is difficult to estimate since it
depends on the statistics of each image, and is still an open problem.

4.1 From irregular sampling to image fusion

In the previous chapter we have studied the problem of restoring an irregularly
sampled image in an alias free case. It remains the problem of restoring an ir-
regularly sampled image in presence of alias. This situation may appear in the
context of image fusion, where several images are registered so that samples can
be combined into a single grid. The distortions of each grid can be an affine,
projective or depth dependent, in any case, the resulting combined grid will not
regular in general. Also, for the fusion to be effective, the images must contain
alias, so we face exactly the type of problem we mentioned: irregular sampling
restoration in the presence of alias.

As we will see next, the restoration techniques developed for irregular sam-
pling may not be directly applicable to the case of grid fusion. In the case of mi-
crovibrations, the sample density (and therefore the resolution) of the acquired
images is known and it is the same as in the restored image. But in the case
of image fusion the objective is to increase the resolution of the restored image,
therefore the final resolution must be estimated.

We will distinguish three types of sampling geometries, resulting from image
fusion: 1) Two shifted grids; 2) Locally constant shift: If one of the grids suffers
a smooth and low frequency distortion, then the effect of the distortions can
be approximated locally by a constant shift; and 3) Completely irregular. This
can be the result of superimposing grids distorted by an arbitrary of projective
transformation

59
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Figure 4.1: Grid Superposition (from left to right): two shifted grids, two grids
smoothly distorted, two affine transformed grids, and two random grids. Notice
how the sample spacing becomes more unpredictable as we move to right.

The Figure 4.1 illustrates the effect of combining different types of grids ac-
cording to the previous cases.

Reducing the problem to restoration from irregular samples

Let us consider the model

z(ξi) = (h ∗ u)(ξi) + nξi , ξi ∈ Ξ, (4.1)

where the sampling Ξ is not sufficient to recover h ∗ u from z (we say that z is
aliased). The difference with the model (3.1) is that the sampling Ξ does not
satisfy the Nyquist criterion. This means that, the sampling may be not enough
for capturing the high frequency components of h ∗ u and these may appear as
artifacts, which are called “aliasing” in the regular sampling case.

The direct application of the restoration functional (3.5) to this problem leads
to the apparition of artifacts in the solution due to the aliased data. As seen in
Chapter 2, if the support of the solution u is overestimated, then the restoration
may present artifacts at places where the sampling presents large gaps. This
is the case of image fusion, since after combining the samples of the aliased
(low resolution) images the resulting sampling grid may contain small and large
gaps. The difficulty is to deal with the large gaps so that we avoid the “point-
like” artifacts mentioned in Chapter 2 for the zoom problem.

Given the sampling Ξ, we call spectral projector the low-pass filter p such that
p̂ keeps only the un-aliased portion of the spectrum and these frequencies can be
recovered without ambiguity from z. The notion of spectral projector is useful in
two related problems: a) Zooming in case of regular sampling; b) Image fusion.
Both require a spectral projector adapted to the sampling grid and/or to the
expected alias levels.

When we considered the restoration from irregular samples in Chapter 2, we
did not mention the need of a spectral projector for the alias. The reason was
our assumption that the irregular sampling was sufficient to recover h ∗ u with
no alias.
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In [Mal00] (and also in section 3.8.3) the authors consider the zoom case in
absence of alias, by solving:

min J(u) s.t.
∑
ξ∈Ξ

|(p ∗ h ∗ u)(ξ)− z(ξ)|2 ≤ |Ξ|σ2,

where Ξ is a regular sampling grid that verify the Nyquist criterion for the im-
age z, u is the zoomed image (thus, of higher resolution) and p̂ is an spectral
projector onto the part of the spectrum that is representable with the samples
(note that since there is no alias then ẑ = p̂ẑ). The interest of this method lies in
its ability to extrapolate the spectrum in region complementary to p̂ (q̂ := ( p̂)c),
thanks to the total variation regularizer.

In [ADR04] the authors considered the restoration problem with regular sam-
pling but in presence of alias. They proposed the use of the spectral projector p̂
for removing the aliased frequencies whose expected power is smaller than its
alias power, and solved:

min J(u) s.t.
∑
ξ∈Ξ

|(p ∗ h ∗ u)(ξ)− (p ∗ z)(ξ)|2 ≤ |Ξ|b2,

where the value of b2 is manually chosen to obtain a reasonable restoration.

Generalizing the previous formulation to the case of an irregular sampling,
we can incorporate the spectral projector p into an image restoration functional
by means of global constraints:

min
u

J(u), s.t.
∑
ξ∈Ξ

[(p ∗ h ∗ u) (ξ)− z(ξ)]2 ≤ |Ξ|(σ2 + Bias). (4.2)

Observe that since z is a set of irregular samples, we cannot use the spectral
projector p as in the regular case, so we must modify the constraint to consider
the energy contribution of the alias which is integrated as a bias in the noise
estimation. The bias is formulated as:

Bias :=
∑
ξ∈Ξ

|(q ∗ h ∗ u)(ξ)|2 − 2((h ∗ u− z)(ξ)(q ∗ h ∗ u)(ξ),

where q̂ := ( p̂)c. This bias accounts for to the error in the modeling of the noise
in (4.2) due to the introduction of the spectral projector. The value of the bias
depends on the image being restored, and will in general lead to an underes-
timation of the noise to be removed. Indeed, replacing (h ∗ u − z) = n in the
definition of Bias we observe that when u is the ideal undistorted image then
Bias ≥ 0 (because the noise is non correlated with (q ∗ h ∗ u)). However in prac-
tice u is obtained from z which is in turn related to the noise, so this condition
may not be satisfied and should be enforced. But imposing the non correlation of
the noise residual with (q ∗ h ∗ u) as a constraint leads to a non convex problem.
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As a workaround to avoid the non convexity associated to the previous
model we propose to solve it for each possible value of Bias > 0 without impos-
ing the non correlation constraint between the noise residual with (h ∗ q ∗ u). Let
us denote the solution of the previous problem by ub. If Bias is too small then
ub may not exist (i.e., the solution ub cannot attain the desired noise statistics).
On the other hand a big value leads to an over-relaxation of the problem and,
therefore, to an over-smoothed result. The idea is to look for the smallest value
of Bias > 0 for which the problem has a solution that satisfies the genuine noise
residual constraint

∑
ξ∈Ξ [(h ∗ u)(ξ)− z(ξ)]2 ≤ |Ξ|σ2.

Still remains the problem of determining the alias-free part of the spectrum
for a given sampling and a given class of images. In the following sections we
will address this problem. For that we consider two types of grids: the union
of two translated grids, and an irregular grid. The first case corresponds to a
generalization of the Supermode acquisition geometry, in this case the under-
lying sampling geometry is regular and we can accurately estimate the spectral
support of the solution. In the second case the geometry of the grid is unknown,
so we resort to an heuristic argument to determine the spectral support of the
solution. We verify that in the case of a regular grid, our heuristic produces
reasonable results. In Section 4.4 we will display some restoration experiments
obtained using the spectral projectors computed with the proposed methods.

4.2 Computing the spectral projection in Generalized
Supermode: fusion of translated grids

Consider two aliased observations z1 and z2 of the same scene taken with a small
fronto-parallel camera translation. Our objective is to restore the scene u with
the highest possible resolution. We assume that the two images are acquired
with two sampling grids which are translated by a vector s = (a, b)t (see Figure
4.2(a)), that is:

Λ1 = 2Z2

Λ2 = Λ1 + (a, b)t.

The signal u is assumed to be band limited with its spectrum entirely con-
tained in R = supp(û) as depicted in Figure 4.2(a) (or at least with negligible
higher frequency contributions). If the reciprocal cells D∗i of the sampling grids
Λi are contained in R (as shown in Figure 4.2(b)), then the sampling process can
be modeled by:

z1 = ΠΛ1 u + n1 (4.3)
z2 = ΠΛ2 u + n2,

where ni is the usual zero mean additive gaussian white noise. By abusing the
1D notation of the Fourier transform, the same process can be re-written in terms
of the Fourier coefficients û (we denote ω = 2π k

N ):



4.2. GENERALIZED SUPERMODE 63

ab

1

2

(a) Sampling Grids configura-
tion.

− 



D1
∗

supp  u

Z 2

(b) Spectral support and aliases. ω̃
is the alias of the frequency ω.

Figure 4.2: Fusion in the case of two shifted grids.

z1(x) =
1
N

N−1∑
k=0

û(ω)eiωx + n1 ∀x ∈ 2Z2, (4.4)

z2(x) =
1
N

N−1∑
k=0

û(ω)eiωseiωx + n2 ∀x ∈ 2Z2.

Since supp(û) ⊃ D∗1 , most of the frequencies ω inside the cell D∗1 will be
aliased (see Figure 4.2). But there will be only one alias contribution ω̃ per fre-
quency since the spectrum of u is contained in the diamond shaped region re-
gion R in Figure 4.2(b). And the alias corresponding to each frequency will be a
function of the quadrant. Let us define

γ ∈
{(

0
π

)
,
(

0
−π

)
,
(

π
0

)
,
( −π

0

)}
as the vector such that, for a given frequency ω, it determines the location of its
first alias ω̃ = ω + γ. Its value will depend on the quadrant containing ω (see
Figure 4.2(b)).

The alias can be expressed in terms of the Fourier coefficients of zi (recall
that z is undersampled). This relation is given, for each pair ω and ω + γ, by the
following linear system:[

ẑ1(ω)
ẑ2(ω)

]
=

[
1 1

eiωs ei(ω+γ)s

]
︸ ︷︷ ︸

Aω

[
û(ω)

û(ω + γ)

]
+

[
n̂1(ω)
n̂2(ω)

]
. (4.5)

Our ability to recover the frequencies û(ω) and û(ω +γ) will depend on the val-
ues taken by the vector s and the power of the noise. For instance, if s = (0, 0)t
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the matrix Aω will not be invertible, because eiωs = ei(ω+γ)s = 1. Observe
that this is the case where the two sampling grids coincide (s = (0, 0)t), so
it is impossible to recover both frequencies. This situation repeats for s ∈
{(2, 2)t, (0, 2)t, (2, 0)t}. The best case corresponds to s = (1, 1)t, then the ma-
trix becomes Aω =

(
1 1

eiω −eiω

)
and the system can be solved with a condition

number κ(Aω) = 1 ∀ω.

4.2.1 Computing the spectral projector

We have seen that we cannot solve the system for all displacements s. Our ob-
jective in this section is to determine when it is worth to solve (4.5) to recover
û(ω) and û(ω + γ); sometimes the best option is to discard one frequency (zero
padding) or maybe both (ω and ω + γ).

For each pair of frequencies ω and ω + γ, let us define the random vectors
n := (n̂1, n̂2)

t and u := (û(ω), û(ω + γ))t. Then the samples are given by z :=
(z1(ω), z2(ω))t = Aωu + n. For a matrix Q we define the restoration as ũ = Qz,
and the residual with respect to the original vector as u− ũ. Ideally, in absence
of noise Q should be the inverse of Aω. To study the quality of the restoration,
we introduce the expected approximation error for the frequencies ω and ω + γ
as:

H(ω) = tr(cov(u− ũ, u− ũ)).

Replacing the definitions of ũ and z, and using independence of the vectors u
(the ideal solution) and n (the noise), we get:

H(ω) = tr(Q(AωE{uu∗}A∗ω + E{nn∗})Q∗ − 2E{uu∗}A∗ωQ∗) + E{uu∗}, (4.6)

where X∗ denotes the adjoint matrix (conjugate transpose) of X. The com-
putation of H(ω) depends on the a-priori information about the statistics of
n and u. For the noise E{nn∗} = diag(σ2, σ2) is the variance of the gaus-
sian noise. As for the statistics of the undistorted image u, the spectral de-
cay of û(ω) is known for the class of images we are dealing with (see [Alm02,

pg. 29]), that is E{|û(ω)|2} =
(

1
ε+|ω|1.6

)2
=: F(ω) and therefore E{uu∗} =

diag(F(ω), F(ω + γ)).

We will consider three possible ways to recover ũ:

1. inverting the matrix Aω: in this case QS = A−1
ω and we denote HS(ω) the

corresponding error as computed with (4.6),

2. discarding the alias frequency ω + γ: then QZ =
(

0.5 0.5
0 0

)
and the error is

HZ(ω),

3. or discarding both frequencies: then QD =
(

0 0
0 0
)

and the error is

HD(ω) = E{|∆û(ω + γ)|2}+ E{|∆û(ω)|2} = F(ω + γ) + F(ω).
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For each pair of frequencies ω and ω + γ, we will opt for the operation that
produces the least expected approximation error (i.e., that minimizes H(ω)). So
our definition of the alias-free cell will be:

RC = {ω, ω + γ : HS(ω) < min(HZ(ω), HD(ω))} ∪ {ω : HZ(ω) < HD(ω)} .

In section 4.4 we show an example of a projector computed according to this
criterion.

4.3 Pessimistic Reciprocal Cell: arbitrary grid case

When the sampling is not regular then the estimation of the spectral support
is not easy since the concept of Fourier transform is not well defined. In this
section we propose a heuristic for estimating a spectral projector that seeks to
guarantee the invertibility of the irregular sampling operator. For simplicity we
perform the following development in one dimension.

Suppose that u(x) is given by the trigonometric polynomial with coefficients
ûk:

u(x) =
N−1∑
k=0

ûke
2πi
N kx x ∈ [0, 1].

Let Ξ = {ξn} be a set of sample locations taken in the interval [0, 1]. The eval-
uation of the trigonometric polynomial at arbitrary locations permits to sample
the band limited function u. We denote the sampling operator as a matrix S:

S =


e

2πi
N 0ξ1 . . . e

2πi
N (N−1)ξ1

... . . .
...

e
2πi
N 0ξN . . . e

2πi
N (N−1)ξN

 s.t. Sû = z.

If we suppose that the function u is band limited, then it is possible to de-
termine the coefficients ûk from a set of N regularly spaced samples of u by
computing its Fourier transform

ûk =

∫ 1

0
u(x)e−

2πi
N kxdx, k ∈ {0...N − 1}.

But when the sampling is irregular one could only approximate the previous
integral by the Riemann sum:

ũk =

|Ξ|∑
n=1

u(ξn)e−
2πi
N kξn ∆n, k ∈ {0...N − 1},

where ∆n is the area of the n-th cell in the Voronoi diagram induced by the sam-
ples (but restricted to the domain [0, 1]). The matrix associated to this operation
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involves the adjoint of the matrix S:

S∗W =


e
−2πi

N 0ξ1 . . . e−
2πi
N 0ξN

... . . .
...

e
−2πi

N (N−1)ξ1 . . . e−
2πi
N (N−1)ξN


 ∆1 . . . 0

... . . .
...

0 . . . ∆N

 .

Let us call the operator S∗W pseudo Fourier transform. The quality of the ap-
proximation of this transform depends on the sampling grid and on each partic-
ular frequency; being better at low frequencies. In particular, if the samples are
taken at regular intervals, this approximation coincides with the discrete Fourier
transform.

The properties of the discrete Fourier transform are distorted in this approx-
imation. For instance, the orthogonality is lost, so the response of a sinusoidal
signal is no longer a delta, instead it is spread across many frequencies. Still we
can ask questions like: how well it approximates the real DFT ?, is it possible
to reconstruct a signal from it ? and up to which frequency? Figures 4.3 and 4.4
show images where a image with a single frequency is analyzed. Observe that in
both figures the peak of the pseudo Fourier transform corresponds to the main
frequency of the original image, but the transform also contains many nonzero
responses (“aliases”) at other frequencies.

4.3.1 Grid Potential

A natural question to ask is whether it is possible to undo this alias. Let us
substitute z = Sû into the pseudo transform of S∗Wz to obtain:

Dû := S∗WSû = ũ.

The matrix D ∈ CN×N :

D(l, k) =
|Ξ|∑

n=1

e
2πi
N lξn e−

2πi
N kξn ∆n =

|Ξ|∑
n=1

e
2πi
N (l−k)ξn ∆n l, k ∈ {0...N − 1}

characterizes the response of the sampling Ξ to the different frequencies l. In
other words, it tells us the way each frequency of û is represented by the pseudo
Fourier transform. We call this matrix grid potential. Inverting D permits to
recover û from ũ = S∗Wz. But unfortunately the inversion of D is generally
ill-posed.

4.3.2 The pessimistic reciprocal cell

We propose to analyze the matrix D to determine the frequencies of û that can
be recovered (without alias), thus stabilizing the inversion of D. To perform the
analysis we suppose that the spectral decay of the target images û is known. For
natural images it is commonly accepted that the spectral decay is 1/|k| (where k
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Figure 4.3: Reconstruction of a randomly sampled image using the pseudo
Fourier transform. In the first row from left to right: the samples from the orig-
inal image, the image reconstructed using the pseudo Fourier transform (that
is, F−1S∗Wz), the reconstruction obtained by projecting half the frequencies (be-
cause the maximal gap of the sampling is 2), and the restoration obtained with
the ACT algorithm. In the second row from left to right: the Fourier transform
of the original image before sampling, the remaining images correspond to the
pseudo Fourier transforms (S∗Wz) of the corresponding image in the first row.

is the frequency), we take a slightly different decay of the expected value of the
energy E{|û(k)|2} = φ(k)2 =

(
(1 + |k|)−1.6)2. Assuming independence of the

frequencies, the total energy of the signal will be:

E =
∑

k

φ(k)2.

Now, if we consider the pseudo Fourier transform ũ such that ũ = Dû, then we
can express each pseudo Frequency as:

ũ(l) = D(l, l)û(l) +
∑
k 6=l

D(l, k)û(k).

When the sampling is regular then D = DFT ◦ IDFT so D(l, l) = 1 and D(l, k) =
0 ∀k 6= l. But for an irregular sampling the sum

∑
k 6=l D(l, k) 6= 0, and carries

the alias contributions coming from other frequencies.
We propose the following heuristic for determining the alias-free frequen-

cies: the frequency l is recoverable if its expected alias energy
∑

k 6=l D(l, k) is
“less" than the expected energy in the l-th component, that is

C2(l) = H

τ‖D(l, l)‖2φ(l)2 −
∑
k 6=l

‖D(l, k)‖2φ(k)2

 ,
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Figure 4.4: Reconstruction of an image acquired with a perturbed sampling us-
ing the pseudo Fourier transform. In the first row from left to right: the samples
of the original image, the image reconstructed using the pseudo Fourier trans-
form (that is, F−1S∗Wz), the reconstruction obtained by projecting half of the
frequencies (because the maximal gap of the sampling is 2), and the restora-
tion obtained with the ACT algorithm. In the second row from left to right: the
Fourier transform of the original image before sampling, the remaining images
correspond to the pseudo Fourier transforms (S∗Wz) of the corresponding im-
age in the first row.

Where H(·) is the Heaviside step function, τ = 1 and φ2(k) is the expected
power of the frequency k. Computing C2 for all the frequencies results in a bi-
nary matrix which tells us when the sampling is insufficient for a certain fre-
quency. In Figure 4.5 we show some examples of projectors C2 obtained with
several types of samplings. Although this procedure is not theoretically justi-
fied, we observe that the obtained projectors C2 are sound for all the samplings
considered in Figure 4.5.

As a final experiment we apply the projector C2 to stabilize the restoration
with the ACT algorithm (described in Section 3.2.1) when the sampling is insuf-
ficient:

C2S∗WSC2û = C2S∗Wz.

In Figure 4.6 we show the restorations obtained using the ACT algorithm with
the C2 projector.

4.4 Image fusion experiments

To illustrate the use of the spectral projectors in an image fusion problem we
present here a simple application: the fusion of a regularly sampled image with
a second image that was sampled on a shifted grid.
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Figure 4.5: Examples of empirical cell C2. We show some cells for some sam-
plings grids: squared, quinconx, hexagonal, superposition of two squared sam-
plings, perturbed and random sampling. The samplings are shown zoomed 4
times, while the cells are computed in the domain [−2π, 2π]2, corresponding to
a zoom of factor 2.
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Figure 4.6: Restoration using the empirical cell C2. From the first row to the last:
sample positions, result of the classical ACT algorithm performing a 2x zoom,
the computed projector C2 (τ = 1) and the result of the modified ACT using the
C2 projector. The experiment of the first column used∼ 5000 perturbed samples
for restoring a 149× 149 image , the second column ∼ 8100 random samples
for restoring a 129× 129 image, and the third column shows a sampling grid
(∼ 8100 samples) formed by the union of two regular grids used to restore a
129× 129 image.
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(a) Reference Image (b) Left sub-sampled image

Figure 4.7: Fusion experiment: reference image (257× 257 pixels) and the sim-
ulation of a subsampled (2x) image corrupted by gaussian additive white noise
with SNR = 20 (or 10% of the signal power ).

Generalized supermode. The objective of the first experiment is to compare the
performance of the generalized supermode fusion (described in Section
4.2) against the original supermode proposed by Latry and Rougé [LR00].
To do so, we simulated an ill posed case of image fusion where the two
grids 2Z2 are relatively translated by a vector v = (1, 0.05)t, which re-
sults in an insufficient vertical sampling. In addition, the simulated im-
ages are also corrupted by a gaussian additive white noise of 10% of the
signal power (SNR = 20) (see Figure 4.7).

In Figure 4.8 we compare the results of restoring the image using the su-
permode projector and the adapted projector of generalized supermode
described in Section 4.2. The later allows to remove high frequency arti-
facts associated to the poor vertical sampling, see Figure 4.8.

Pessimistic reciprocal cell. A restoration computed with the pessimistic recip-
rocal cell is shown in Figure 4.10. We used the same images as in the pre-
vious experiment (see Figure 4.7).
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Figure 4.8: Supermode spectral projector (left) and the generalized supermode
projector corresponding to two shifted grids with a relative translation v =
(1, 0.05)t and considering a signal to noise ratio of SNR = 20 (right).

(a) Fusion using the supermode projec-
tor. (MSE = 19.7)

(b) Fusion using the spectral projector
computed with the generalized super-
mode. (MSE = 21.0)

Figure 4.9: Fusion results obtained by applying the restoration model (4.2) using
the spectral projectors of Figure 4.8.
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(a) Pessimistic reciprocal cell. (b) Fused image using the pessimistic
RC. (MSE = 16.5)

Figure 4.10: Fusion using the pessimistic reciprocal cell. Notice that some de-
tails are more blurred with respect to the result obtained using the generalized
supermode.





Part II

Interpolation from sparse samples
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Chapter 5

Non local methods for interpolation
of sparsely sampled images

In this part we consider the problem of reconstructing an image from a set of sparse
samples taken on a regular grid. We will address this problem using an exemplar-based
variational approach which exploits the self-similarity of the image. For that we first
propose and analyze a framework for exemplar based inpainting, and then generalize it
to handle interpolation problems.

5.1 Introduction

We consider the problem of image reconstruction from a set of sparse samples.
The samples may form a subgrid of the regular grid or be a random subset of it
(see Figure 5.1). In the first case, the problem can be considered as a zooming
problem. The case of samples taken on a non-integer grid will not be considered
in this document.

Let Ω be the standard regular grid, and let Λ ⊆ Ω be the set of given samples.
We want to reconstruct the image u ∈ Ω from the data given on Λ. Let us remark
that when we refer to a sparse set of samples Λ we implicitly assume that the
samples are spread uniformly across the domain Ω.

Existing interpolation approaches consider priors based on smoothness or
regularity assumptions, which can be imposed by restricting the solution to be,
for instance, band limited [GS00], of bounded variation [CS01], expanded over a
basis of functions (e.g. splines [ASHU05a], radial basis functions [She68a]), or as
the result of anisotropic diffusion process [GWW+08], among others. All these
approaches are local in the sense that only the neighboring pixels influence the
interpolation at a given point.

Recently, non-local techniques applied to general image restoration tasks
have gained considerable attention in the image processing community. As op-
posed to local methods, these non-local techniques use information from other
parts of the image or even other images. Its recent development was triggered
in part by the texture synthesis works of Efros and Leung [EL02] and Wei and
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Figure 5.1: Example of different samplings. From left to right, a regular sub-
grid corresponding to a zoom, a random subset (interpolation from irregular
samples) and a subgrid that forms a connected component (inpainting).

Levoy [WL00] using non-parametric sampling techniques. Non-local regular-
izers, as the one proposed [PBC09], model the set of image patches with their
similarity relations as a weighted graph and the interpolation is done by im-
posing regularity in this graph [LEB07, GO07a]. Other non-local techniques are
based on the sparseland model [CW08, AEB06]. According to this model the
regularized image has a sparse representation in an overcomplete basis or dictio-
nary [MSE08, AEB06, ESQD05]. The dictionary is learned from the same image
or from a training set, and the regularity is imposed by sparsity over the dictio-
nary.

The advances on texture synthesis of [EL02, WL00] also influenced the more
related field of image inpainting. The objective of inpainting is, as in the case
of interpolation, to obtain a visually plausible interpolation of the missing data,
the difference is the organization of the known data. Applying the local regu-
larity priors mentioner before does not produce plausible results, since the in-
terpolated areas become visually apparent as texture-less artifacts. This is why
texture synthesis approaches are so relevant to this application. The priors used
for inpainting are generally founded upon structure propagation [BSCB00] and
copy of exemplars from the same image [CPT04]. Exemplar-based methods are
the quite successful since they also incorporate to some extent the propagation
of structures.

5.2 Overview

In this part we will address the problem of image interpolation from non-
uniformly sparsely sampled data using an exemplar-based variational approach
which exploits the self-similarity of the image. In particular our formulation can
be regarded as a non-local regularizer for sparsely sampled data. For that, we
first present and analyze a framework for exemplar based inpainting, and then
generalize it to handle interpolation problems.

Note that in the context of exemplar-based methods, the main difference
between the inpainting and interpolation is the organization of the available



5.2. OVERVIEW 79

data: sparse samples for interpolation and large regions in the case of inpainting
(Figure 5.1). Indeed in an usual inpainting problem the inpainting domain or
“hole” (denoted as O ⊂ Ω) is generally a region of the image. The exemplars
(patches) that are used for completing the hole O are extracted from its comple-
ment Oc = Ω \ Oc, which is composed by large known regions of Ω. In the
interpolation case, on the other hand, the image is known only at some isolated
positions Λ ≡ Oc distributed across the image, this corresponds to a very big
inpainting domain O.

For the inpainting problem we propose an energy that promotes the self-
similarity of the image u ∈ Ω ⊂ RN×N , which is unknown at O and known at
Oc = Ω \O. The functional is:

E(u, w) :=
1
h

∑
x∈O

∑
x̂∈Oc

w(x, x̂)‖pu(x)− pu(x̂)‖2 +
∑
x∈O

Hw(x), (5.1)

where Hw(x) :=
∑

x̂∈Oc log(w(x, x̂))w(x, x̂), pu(x) denotes a patch of u cen-
tered at x and ‖ · ‖ denotes the L2 norm of a patch. The similarity weight func-
tion w : O×Oc → R is an auxiliary variable that accounts for the similarity of
the pair of patches pu(x) and pu(x̂). The selectivity parameter h is generally set
h → 0 in the inpainting problem. The energy (5.1) contains two terms, the first
one measures the coherence between patches centered in the unknown region
O and those centered in the known part of the image Oc. This term permits the
estimation of the image u from the weights w. The second term allows us to com-
pute the weights w given the image u. The trivial minima of (5.1) when w = 0 is
avoided by constraining w(x, ·) to be a probability:

∑
x̂∈Oc w(x, x̂) = 1 ∀x ∈ O.

The minimization of (5.1) is carried out by alternate minimization of u and w.
Let us observe that for a fixed image u the minimization of E(u, w) with respect
to w yields exponential weights w(x, x̂) ∝ exp( 1

h‖pu(x) − pu(x̂)‖2), assigning
higher weight to very similar patches. These are the familiar non-local weights
used in denoising algorithms [BCM05, AW06]. And, for a fixed w, the minimiza-
tion on u induces a non local averaging of patches (attention, it is an averaging
of patches not of pixels as in non-local means). In conclusion, model (5.1) incor-
porates in an elegant way a sort of non-local means iteration both for the image
and the weights update. Moreover, the model (5.1) can easily be extended to
other patch norms such as L1 or norms of gradients. These extensions will be
studied in the case of inpainting.

To deal with the interpolation of sparsely sampled images we generalize the
inpainting model (5.1). The assumption that there are complete patches pu(x̂)
contained in Oc is false in the case of sparse samples interpolation, since the
known samples may not be aggregated. In order the cope with this situation, we
tailor the data attachment term to consider only the known pixels of one or both
patches under comparison. Additionally to avoid bad local minima, we propose
a coarse to fine scheme that progressively reduces the selectivity parameter h.

In Chapter 6 we describe a variational framework for non local image in-
painting. The variational formulation of self-similarity proposed in that frame-
work will be the basis for our energy formulation of the interpolation of sparsely



80 CHAPTER 5. NON LOCAL METHODS FOR INTERPOLATION

sampled images. This will be the subject of Chapter 7, where we introduce the
interpolation model, explain its properties, develop an optimization algorithm
for solving it, and present the results of some experiments.



Chapter 6

A Variational Framework for
Exemplar-Based Image Inpainting

Non-local methods for image denoising and inpainting have gained considerable atten-
tion in recent years. This is in part due to their superior performance in textured images,
a known weakness of purely local methods. Local methods on the other hand have demon-
strated to be very appropriate for the recovering of geometric structures such as image
edges. The synthesis of both types of methods is a trend in current research. Variational
analysis in particular is an appropriate tool for a unified treatment of local and non-
local methods. In this chapter we present a variational framework for non-local image
inpainting. This framework relates to previous inpainting schemes, and also allows to
derive novel ones.

6.1 Introduction

Image inpainting, also known as image completion or disocclusion, is an active re-
search area in the image processing field. The purpose of inpainting is to obtain
a visually plausible image interpolation in a region in which data are missing
due to damage or occlusion. Usually, to solve this problem, the only available
data is the image outside the region to be inpainted. In addition to its theoret-
ical interest, image inpainting has applications to image and video editing and
restoration.

Most inpainting methods found in the literature can be classified into two
groups: geometry- and texture-oriented methods. We now briefly review the
developments in both types of approaches, with emphasis in texture-oriented
methods. This review will be helpful for motivating the proposed formulation.

Geometry-oriented methods. Images are modeled as functions with some de-
gree of smoothness, expressed for instance in terms of the curvature of the level
lines or the total variation of the image. The interpolation is performed by
continuing and imposing this model inside the inpainting domain, usually by
means of a partial differential equation (PDE). Such PDEs can be derived from
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variational principles, as for instance in [BBC+01, CKS02, CS01, ES02, Mas02,
MM98], or inspired by physical processes [BSCB00, BM07, TD05]. These meth-
ods show good performance in propagating smooth level lines or gradients, but
fail in the presence of texture. They are often referred to as structure or cartoon
inpainting.

Geometry-oriented methods are local in the sense that the associated PDEs
only involve interactions between neighboring pixels on the image grid. An
implication of this is that, among all the data available from the image, these
methods only use the information around the boundary of the inpainting do-
main.

Texture-oriented methods. Texture-oriented inpainting was born as an appli-
cation of texture synthesis, e.g., [EL02, IP97]. Its recent development was trig-
gered in part by the works of Efros and Leung [EL02] and Wei and Levoy [WL00]
using non-parametric sampling techniques (parametric models have also been
considered, e.g. [LZW03]). In these works texture is modeled as a two dimen-
sional probabilistic graphical model, in which the value of each pixel is condi-
tioned by its neighborhood. These approaches rely directly on a sample of the
desired texture to perform the synthesis.

In practice these methods work progressively by expanding a region of syn-
thesized texture. The value of a target pixel x is copied from the center of a
(square) patch in the sample image, chosen among those that best match the
available portion of the patch centered at x. This philosophy has been exten-
sively used for inpainting [BVSO03, BLLC02, CPT04, DCOY03, EL02, PGB04].
As opposed to geometry-oriented inpainting, these so-called exemplar-based ap-
proaches, are non-local: To determine the value at x, the whole image may be
scanned in the search for a matching patch.

Since these texture approaches are greedy procedures (each hole pixel is vis-
ited only once), the results are very sensitive to the order in which pixels are pro-
cessed [CPT04]. This issue was addressed in [KT07, WSI07] where the inpaint-
ing problem is stated as a probabilistic inference problem in a graphical model.
In both cases, the image is modeled using a pair-wise Markov Random Field
(MRF). In [KT07] an energy considering the overlap error of adjacent patches
is minimized using belief propagation. The method in [WSI07] can be seen as an
approximated Expectation-Maximization (EM) method. Finally, the iterative al-
gorithm explored in [KSY09] corresponds to a particular case of our framework.

A different variational justification for texture-based methods was proposed
in [DSC03], where the inpainting problem is reformulated as that of finding
a correspondence map Γ : O → Oc, O being the inpainting domain and Oc its
complement w.r.t. the image domain. Denoting the image by u, the inpainted
value at position x ∈ O is then given by u(x) = u(Γ(x)). The authors proposed a
continuous energy functional in which the unknown is the correspondence map
itself:

E(Γ) =
∫

O

∫
Ωp

(u(Γ(x− y))− u(Γ(x)− y))2dy dx,



6.1. INTRODUCTION 83

where Ωp is the patch domain (centered at (0, 0)). Thus Γ should map a pixel
x and its neighbors in such a way that the resulting patch is close to the one
centered at Γ(x). This model has been the subject of further analysis by Aujol
et al. [ALM10], where extensions are proposed and the existence of a solution
in the set of piecewise roto-translation maps Γ is proved. These approaches are
theoretical and no numerical optimization scheme is available so far.

Let us finally note that the texture synthesis works [EL02, WL00] have also
influenced the development of non-local methods for other applications, such as
denoising [AW06, BCM05], superresolution [PETM09] and regularization of in-
verse problems [GO07b, PBC09]. As opposed to the case of inpainting, in these
contexts the estimation of a pixel value may involve many locations in the im-
age. The resulting correspondence is not one-to-one, but rather one-to-many,
usually encoded as a weight function w : Ω×Ω → R, with Ω being the image
domain. For each x, w(x, ·) weights the contribution of each image location to
the estimation of x.

Exemplar-based methods provide excellent results in recovering textures
and repetitive structures. However, their ability to recreate the geometry with-
out any example is limited and not well understood. Therefore, different
strategies have been proposed which combine geometry and texture inpainting
[BVSO03, CGMP09, DCOY03, JT04]. These methods usually decompose the im-
age in some sort of structure and texture components. Structure is reconstructed
using some geometry-oriented scheme, and this is used to guide the texture in-
painting.

Contributions. Despite these combined methods, geometry and texture in-
painting are still quite separate fields, each one with its own analysis and im-
plementation tools. Variational models as the one introduced in this paper can
provide common tools allowing a unified treatment of both trends. We therefore
propose a variational framework for non-local image inpainting as a contribu-
tion to the modeling and analysis of texture-oriented methods.

Like the non-local means denoising algorithm [AW06, BCM05] we encode the
image redundancy and self-similarity (measured as patch similarity) as a non-
local weight function w : O ×Oc → R. This function serves as a fuzzy corre-
spondence, and differs from the works [ALM10, DSC03], although a (eventually
multivalued) correspondence map can be approximated as a limit of our model.
The proposed formulation is rather general and different inpainting schemes
can be derived naturally from it, via the selection of the appropriate patch simi-
larity criterion. In this work we present three of them, patch NL-means, -medians
and -Poisson, corresponding to similarity criterions based on L2- and L1-norms
between patches and L2-norm of their gradients. A fourth inpainting scheme
(patch NL-gradient medians) is obtained by taking the L1-norm of the gradients as
patch similarity criterion. Although it fits our framework, we will not discuss
this method in this chapter, we refer to [AFCS10] for details.

The patch NL-means is related to the method of [KSY09, WSI07, KEBK05]. In
the context of texture synthesis, the authors of [KEBK05] also proposed a func-
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tional that incorporates the gradient of the patch. For inpainting the gradient of
the patch, as used in Patch NL-Poisson, permits to combine the exemplar-based
interpolation with PDE-based diffusion schemes. This results in a smoother con-
tinuation of the information across the boundary and inside the inpainting do-
main and better propagation of the structures. We provide an comprehensive
empirical comparison on real and synthetic problems, showing the benefits and
limitations of each model.

Although the focus of this work lies on inpainting, the framework we are in-
troducing can be adapted for its application to other contexts. In particular, it is
related to graph-based non-local regularizers. Inspired by graph regularization
techniques [ZS05], these approaches model the image as a graph characterized
by the similarity weights [GO07b, LEB07]. Recently, our formalism [ACS09] was
extended by Peyré et al. in [PBC09] to provide a variational justification to the
case in which the graph is adaptive. On the other hand the patch NL-means
scheme provides a model for an iterative version of the non-local means algo-
rithm with adaptive similarity weights. Similar approaches have been applied
to denoising [AW06, PMD+10], super-resolution [PETM09], texture denoising
[BKC08], and demosaicing [BCMS09] among others. We will discuss the rela-
tion with these models in the text.

The rest of this chapter is organized as follows. In Section 6.2 we introduce
the proposed variational framework, together with the derivation of the differ-
ent inpainting schemes. These are analyzed and compared in Section 6.3. The
links with related work are discussed in Section 6.4. In Section 6.5 we present
and discuss the multiscale approach. And in Section 6.6 we present experimen-
tal results on real images allowing to compare our results with the state of the
art. Concluding remarks and future work is discussed in Section 6.7.

Notation. Images are denoted as functions u : Ω → R, where Ω denotes the
image domain, usually a rectangle in R2. Pixel positions are denoted by x, x̂,
z, ẑ or y, the latter for positions inside the patch. A patch of u centered at x is
denoted by pu(x) = pu(x, ·) : Ωp → R, where Ωp is a rectangle centered at
(0, 0). The patch is defined by pu(x, y) = u(x + y), with y ∈ Ωp. O ⊂ Ω is the
hole or inpainting domain, and Oc = Ω \O. We still denote by u the part of
the image u inside the hole, while û is the part of u in Oc: û = u|Oc . Additional
notation will be introduced in the text.

6.2 Variational framework

6.2.1 Preliminaries

Our variational framework is inspired by the non-local functional

Fw(u) =
∫

O

∫
Oc

w(x, x̂)(u(x)− û(x̂))2 dx̂ dx, (6.1)

where w : O×Oc → R+ is a weight function that measures the similarity be-
tween patches centered in the inpainting domain and in its complement.
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Let us assume for the moment that the weights are known. The minimum
of (6.1) should have a low pixel error (u(x) − û(x̂))2 whenever the similarity
w(x, x̂) is high. In this way the similarity weights drive the information transfer
from known to unknown pixels. A similar functional was proposed in [GO07a]
as a non-local regularization energy in the context of image denoising. It models
the non-local means filter [AW06, BCM05] when the weights are Gaussian

w(x, x̂) ∝ exp
(
−1

h
‖pu(x)− pû(x̂)‖2

)
,

where ‖ · ‖ is a weighted L2-norm in the space of patches and h is a parameter
that determines the selectivity of the weigths w.

In [GO07a] the weights w are considered to be known and remain fixed
through all the iterations. While this might be appropriate in applications where
they can be estimated from the noisy image, in the image inpainting scenario
here addressed, the weights are not available and have to be inferred together
with the image (as in [PBC08, PETM09]). One of the novelties of the proposed
framework is the inclusion of adaptive weights in a variational setting.

6.2.2 The proposed formulation

For this reason, we will consider the weight function w as an additional un-
known. Instead of prescribing explicitly the Gaussian functional dependence of
w w.r.t. u, we will do it implicitly, as a component of the optimization process.
In doing so, we obtain a simpler functional, avoiding to deal with the complex,
non-linear dependence between w and u. In our formulation, w(x, ·) is a prob-
ability density function, and can be seen as a relaxation of the one-to-one corre-
spondence map of [ALM10, DSC03], providing a fuzzy correspondence between
each x ∈ O and the complement of the inpainting domain.

In this setting, we propose an energy which contains two terms, one of them
is inspired by (6.1) and measures the coherence between the pixels in O and
those in Oc, for a given similarity weight function w. This permits the estimation
of the image u from the weights w. The second term allows us to compute the
weights given the image. The complete proposed functional is

E(u, w) =
1
h

F̃w(u)−
∫

Õ
Hw(x) dx, (6.2)

subject to
∫

Õc
w(x, x̂) dx̂ = 1 ∀x ∈ Õ,

where
F̃w(u) =

∫
Õ

∫
Õc

w(x, x̂)ε(pu(x)− pû(x̂)) dx̂ dx, (6.3)

ε(·) is an error function for image patches, and

Hw(x) = −
∫

Õc
w(x, x̂) log w(x, x̂) dx̂,



86 CHAPTER 6. EXEMPLAR-BASED IMAGE INPAINTING

is the entropy of the probability w(x, ·).
We take Õ, the extended inpainting domain, as the set of centers of patches

that intersect the hole, i.e. Õ = O + Ωp = {x ∈ Ω : (x + Ωp) ∩ O 6= ∅}.
Thus, patches pû(x̂) centered at x̂ ∈ Õc are entirely outside O (Figure 6.1). Ac-
cordingly, we consider that the weight function w is defined over Õ × Õc and∫

Õc w(x, x̂) dx̂ = 1. For a simplified presentation, we assume that Õ + Ωp ⊆ Ω,
i.e.every pixel in Õ supports a patch centered on it and contained in Ω. Analo-
gously, we also shrink Õc to have Õc + Ωp ⊆ Ω.

Let us now make some additional comments on the functional. We observe
that the term (u(x)− û(x̂))2 in (6.1), that penalizes differences between pixels,
is substituted in (6.3) by the patch error function ε(pu(x) − pû(x̂)). This has
two consequences. First, minimizing (6.3) with respect to the image will force
patches pu(x) to be similar to pu(x̂) for each pair x, x̂ such that w(x, x̂) is large.
The other implication has to be understood together with the inclusion of the
second term, which integrates the entropy of each probability w(x, ·) over Õ.
For a given completion u, and for each x ∈ Õ, the optimum weights minimize
the mean patch error for pu(x), given by∫

Õc
w(x, x̂)ε(pu(x)− pû(x̂)) dx̂,

while maximizing the entropy. For instance taking ε as the squared L2-norm
of the patch, then the resulting weights are Gaussian. This can be related to
the principle of maximum entropy [Jay57], widely used for inference of probability
distributions. The parameter h controls the trade-off between both terms and
is also the selectivity parameter of the Gaussian weights. The trivial minima
of E with w(x, x̂) = 0 everywhere is discarded by restricting w(x, ·) to be a
probability.

The patch error function. Patches are functions defined on Ωp, and the error
function ε : RΩp → R+ is defined as the weighted sum of pixel-wise errors
e : R→ R+

ε(pu(x)− pû(x̂)) :=
∫

Ωp

ga(y)e(u(x + y)− û(x̂ + y)) dy, (6.4)

where the intra-patch weight function ga is a Gaussian centered at the origin
with standard deviation a. We will consider the L1- and the squared L2-norms
as particular cases of ε(·), with e(·) = | · | and e(·) = | · |2 respectively.

We will also consider a patch error function involving the gradient of the
image. As an abuse of notation we will denote the gradient’s patch and pixel-
wise error functions as ε : R2Ωp → R+ and e : R2 → R+, respectively. It will be
clear from the argument which case is intended, as in this example ε(p∇u(x)−
p∇u(x̂)) :=

∫
Ωp

ga(y)e(∇u(x + y)−∇û(x̂ + y)) dy.
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Figure 6.1: Patch-wise non-local inpainting. The value at z ∈ O is computed
using contributions from all the patches that overlap it, these are patches cen-
tered at x ∈ Õ such that z = x + y with y ∈ Ωp. The influence function m(z, ẑ)
accumulates all the contributions w(z− y, ẑ− y) from patches centered at ẑ− y
to z− y.

As in [KSY09] we can modify the patch error function to account for the
distance between the patch centers ϕ(x− x̂) just by adding it to the patch error
function εd(pu(x)− pu(x̂), x, x̂) = ε(pu(x)− pu(x̂)) + ϕ(x − x̂), so that the use
of distant patches is penalized. We will not consider this modification in the
present document.

As it will be discussed below, the patch error function determines not only
the similarity criterion but also the image synthesis, and thus is a key element in
the proposed framework.

6.2.3 Minimization of E

We have formulated the inpainting problem as the constrained optimization

(u∗, w∗) = arg min
u,w

E(u, w) (6.5)

subject to
∫

Õc
w(x, x̂) dx̂ = 1 ∀x ∈ Õ,

where E is the inpainting energy defined in (6.2).
To minimize the energy E, we use an alternate minimization algorithm. At

each iteration, two optimization steps are solved: The constrained minimization
of E with respect to w while keeping u fixed; and the minimization of E with
respect to u with w fixed. This procedure yields the following iterative scheme:

In the weights update step, the minimization of E w.r.t. w yields:

wk(x, x̂) =
1

q(x)
exp

(
−1

h
ε(puk (x)− pû(x̂))

)
, (6.6)

where q(x) =
∫

Õc exp
(
− 1

h ε(puk (x)− pû(x̂))
)

is a normalization factor that
makes w(x, ·) a probability. For patch NL-poisson the weight update equation is
analogous to (6.6) replacing the patch error function with ε(p∇uk (x)− p∇û(x̂)).
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Algorithm 1 Alternate minimization of E(u, w).
Require: Initial Condition u0(x) with x ∈ O.

1: repeat
2: Update Weights: wk = arg minw E(uk, w),

s.t.
∫

Õc w(x, x̂) dx̂ = 1.
3: Update Image: uk+1 = arg minu E(u, wk).
4: until Stop Criterion: ‖uk+1 − uk‖ < tolerance.

The parameter h determines the selectivity of the similarity. If h is large,
maximizing the entropy becomes more relevant, yielding weights which are less
selective. In the limit, when h→ ∞, w(x, ·) becomes a uniform distribution over
Õc. On the other hand, a small h yields weights which concentrate on the patches
similar to pu(x). When h → 0, we compute the weights as limh→0 w(x, x̂) =

1
|n(x)| δ(x̂ − n(x)), where n(x) ⊆ Õc is the set of nearest neighbors of x, defined
as

n(x) = arg min
x̂∈Õ

ε(pu(x)− pû(x̂)).

That is w(x, ·) can be considered as an approximation to a multivalued corre-
spondence. For simplicity, in practice we assume that |n(x)| = 1, i.e.the nearest
neighbor is unique.

The image update step deserves more attention and is described next.

Image update step

In this section we present the derivation of the image update step corresponding
to the three patch error functions mentioned earlier. First we will present the
cases when image patches are compared using the squared L2-norm and the L1-
norm. We refer to the resulting algorithms as patch-wise non-local means (patch
NL-means), and medians (patch NL-medians). Then we consider a functional
involving the the squared L2-norm of the gradients of the patches, which will be
referred as patch-wise non-local Poisson (patch NL-Poisson).

Before moving to the derivation of the these schemes, let us remark that with
the change of variables z = x + y, ẑ = x + y′, the image energy term can be
expressed as an accumulation of pixel-wise errors:

F̃w(u) =
∫

Õ

∫
Õc

w(x, x̂)
∫

Ωp

ga(y)e(u(x + y)− û(x̂ + y)) dy dx̂ dx

=

∫
O

∫
Oc

m(z, ẑ)e(u(z)− û(ẑ)) dẑ dz + C, (6.7)

where C is a constant term. We have introduced the pixel-wise influence weights
m : O×Oc → R+ defined as

m(z, ẑ) :=
∫

Ωp

χÕc(ẑ− y)ga(y)w(z− y, ẑ− y) dy. (6.8)
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The function χÕc takes the value 1 on Õc and 0 on Õ. An analogous expression
can be computed for gradient patch error functions. This rewriting simplifies the
following derivations and provides some insights on the implications of using
patch-wise errors.

For each pair of pixels (z, ẑ) ∈ O×Oc, m(z, ẑ) weights the effective contribu-
tion of the pixel-wise error between u(z) and û(ẑ) in the total value of the energy.
The quantity m(z, ẑ) is computed by integrating the similarity w(z − y, ẑ − y)
between all patches that overlap ẑ and those that overlap z in the same relative
position (shown in Figure 6.1). It tells us how much evidence there is supporting
a correspondence between the locations z and ẑ. Also observe that for each z,∫

Oc m(z, ẑ)dẑ = 1, then m(z, ·) can also be interpreted as a probability density
function. Note that the energy (6.7) corresponds to (6.1), with the patch similar-
ity weights w being substituted with the pixel-wise influence weights m, a sort
of spatial convolution of w with kernel ga.

Patch non-local means

If we use a weighted squared L2-norm as a patch error function ε(pu(x) −
pû(x̂)) :=

∫
Ωp

ga(y)|u(x + y)− û(x̂ + y)|2dy in (6.3) then the image energy term
(6.7) is quadratic on u, and its minimum for fixed weights w can be computed
explicitly as a non-local average:

u(z) =
1

c(z)

∫
Oc

m(z, ẑ)û(ẑ) dẑ, (6.9)

for z ∈ O, where the normalization constant c(z) :=
∫

Oc m(z, ẑ)dẑ. Although
c(z) = 1 with the current definition of w and ga, we will keep a generic notation
in the following derivations.

The formal similarity with the non-local means equation hides some impor-
tant differences, which are a direct consequence of the use of a patch error func-
tion in the image energy term. To obtain more insight about this let us expand
m to obtain:

u(z) =
1

c(z)

∫
Ωp

ga(y)
∫

Õc
w(z− y, x̂)û(x̂ + y) dx̂ dy.

There are two averaging processes involved in the synthesis. The outer integral
goes through all patches pu(z − y) overlapping the target pixel z. Each patch
suggests a value for z resulting from the inner sum: A non-local average of the
pixel at position y in all patches pû(x̂) in Õc. This sum is weighted by the simi-
larity between the patch pu(z− y) and each pû(x̂).

Therefore, we can distinguish two types of pixel interactions. Interactions
due to the patch overlap of nearby pixels in the image lattice and non-local in-
teractions driven by the similarity weights. The latter can be controlled by the
selectivity parameter h, but the extent of the overlap interactions is given by the
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patch size. In particular when h→ 0 Equation (7.12) yields

u(z) =
∫

Ωp

ga(y)û(n(z− y) + y) dy

(recall we are assuming a unique nearest neighbor). For each x ∈ Õ, the nearest
neighbor of pu(x) is centered at x and all these patches are averaged according to
ga. This blending may cause some blur, which leads us to consider the L1-norm
in the search of a more robust image synthesis.

Patch non-local medians

The L1-norm patch error function in the image energy term corresponds to tak-
ing e(x) = |x| in (6.7). The Euler equation for u, given the influence function m,
can be formally written as

[δu F̃w(u)](z) =
∫

Oc
sign[u(z)− û(ẑ)]m(z, ẑ) dẑ 3 0.

This expression is multivalued, since sign(r) = r/|r| if |r| > 0 and sign(r) ∈
[−1, 1] if r = 0. Its solution for each u(z), z ∈ O is obtained as a weighted
median of the pixels of the complement Oc, with weights m(z, ·).

Both schemes presented so far perform inpainting by transferring (by aver-
ages or medians) known gray levels into the inpainting domain. As we will see
next, using a patch error function based on the gradient of the image yields a
method which transfers gradients and compute the resulting image as the solu-
tion of a PDE. This results in better continuation properties of the solution, in
particular at the boundary of the inpainting domain.

Patch non-local Poisson

The squared L2-norm of the gradient in the image energy term (6.3) corresponds
to taking e(·) = ‖ · ‖2 in (6.7), where ‖ · ‖ is the Euclidean norm in R2. The
energy term becomes

F̃w(u) =
∫

O

∫
Oc

m(z, ẑ)‖∇u(z)−∇û(ẑ)‖2 dẑ dz. (6.10)

For this problem we will consider Dirichlet conditions at the boundary between
the inpainting domain and the image, and Neumann conditions at the boundary
of the image, i.e.u(x) = û(x) in ∂O \ ∂Ω and ∇u(x) · n(x) = 0 for x ∈ ∂O ∩ ∂Ω.
The Euler equation w.r.t. u is given by a non-local Poisson equation, i.e.a Poisson
equation with non-local coefficients:

∇ · [c(z)∇u(z)] = ∇ · [c(z)v(z)], (6.11)

for all z ∈ O, where c(z) =
∫

Oc m(z, ẑ)dẑ and the field v : O→ R2 is given by

v(z) =
1

c(z)

∫
Oc

m(z, ẑ)∇û(ẑ) dẑ. (6.12)
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Observe that the solutions of (6.11) are minimizers of∫
O

c(z)‖∇u(z)− v(z)‖2 dz.

Therefore, u is computed as the image with the closest gradient (in the L2 sense)
to the guiding vector field v: a non-local weighted average of the gradients in
the complement. See [PGB03] for further uses of the Poisson equation in image
editing and [SJZ05] for an application to exemplar-based inpainting.

Patch NL-Poisson computes the similarity weights w based only on the gra-
dients (and thus also the pixel-wise influence weights m). In most cases how-
ever, the gradient is not a good feature for measuring the patch similarity, and it
would be desirable to consider also the gray level data.

We can use the gradient-based energy in conjunction with the patch NL-
means energy by considering a linear combination of both patch error functions.
This yields

F̃λ(u) =
∫

O

∫
Oc

m(z, ẑ)[(1− λ)‖∇u(z)−∇û(ẑ)‖2 + λ|u(z)− û(ẑ)|2] dẑ dz,

(6.13)

where the parameter λ ∈ [0, 1] controls the mixture. When λ ∈ (0, 1) the re-
sulting algorithms update the weights w considering both the intensity and the
gradient, therefore improving their selectivity. Notice that (6.13) can be rewrit-
ten as

F̃λ(u)∝
∫

O

∫
Oc

m(z, ẑ)‖∇u(z)−∇û(ẑ)‖2 dẑ dz +
λ

1− λ

∫
O

c(z)|u(z)− f (z)|2 dz,

where f (z) = c(z)−1 ∫
Oc m(z, ẑ)û(ẑ) dẑ is the solution of the patch NL-means

image update step. Thus we see that the combination with the squared L2 patch
error function translates into a patch NL-means attachment term.

The Euler equation w.r.t. u becomes:

∇ · [c(z)∇u(z)]− λ

(1− λ)
c(z)u(z) = ∇ · [c(z)v(z)]− λ

(1− λ)
c(z) f (z), (6.14)

which is linear and can be solved with a conjugate gradient scheme.

6.3 Comparison of the proposed schemes

Let us advance some results on synthetic problems to highlight the main charac-
teristics of the proposed methods. First we consider the inpainting of a regular
texture (shown in Figure 6.2) with two different mean intensities, where the in-
painting domain hides all patches on the boundary between the dark and bright
textures. With this example we can test the ability of each method to create an
interface between both regions. Situations like these are common in real inpaint-
ing problems, for instance due to inhomogeneous lighting conditions. We have



92 CHAPTER 6. EXEMPLAR-BASED IMAGE INPAINTING

Figure 6.2: Inpainting of a synthetic texture. The initial condition is shown
in the first column. The other three columns show a zoom (region in the red
rectangle) of the results of patch NL-means, -medians and -Poisson. Top row,
h = 0, bottom row h = 200, h = 14 and h = 400, respectively. The intra-patch
weight kernel ga is shown in the bottom right corner of the initial condition, it
has a standard deviation a = 5 and the patch size is s = 15.

also added Gaussian noise with standard deviation σ = 10 to show the influence
of the selectivity parameter h. Each column of Figure 6.2 shows the results of the
three methods described in the previous section. We have tested each method
with h = 0 (top row), and h > 0, chosen approximately to match the expected
deviation of each patch error due to the noise.

The first notorious difference is on how the methods handled the transition
between the dark and bright textures. Patch NL-means produces a smooth tran-
sition whereas a sharp step is obtained with the patch NL-medians. On the
other hand, both gradient based methods yield a much smoother shading of the
texture. This is due to the fact that the image update step is computed as the
solution of a PDE which diffuses the intensity values present at the boundary
of the inpainting domain. These PDEs are driven by a vector field estimated
non-locally and therefore combine non-local exemplar based inpainting with lo-
cal interpolation PDEs. For the case of patch NL-Poisson this interpolation is
linear, since this is a solution of the homogeneous Poisson equation (i.e.Laplace
equation).
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Figure 6.3: Profiles of the results in Figure 6.2. The profiles are taken from an
horizontal line going between the circles in Figure 6.2. Left: results with h = 0
and right: results with h > 0.

As expected, the results using a higher h show some denoising, since for
larger h the patch similarity weights are less selective. This effect can be better
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appreciated in the profiles shown in Figure 6.3, which depict the image values
for a horizontal line between the circles. In the usual context of inpainting, in
which the available data is not perturbed by noise, this denoising translates into
an undesirable loss of texture quality. For that reason we use h = 0.

Figure 6.4: Inpainting of random texture. From left to right: initial condition
(the gray square is the hole); images of the local variance superimposed with the
boundaries between copy regions (red curves) for patch NL-means, -medians
and -Poisson. Notice the attenuation of the variance over the red curves, spe-
cially for L2-based methods.

Figure 6.5: Inpainting of structured texture. From left to right: Initial condition,
result of patch NL-means, -medians and -Poisson. Results with s = 15, a = 5
and h = 0. The treatment of color images is described in Section 6.6.1.

Recall that in the limit when h = 0, the weights w(x, x̂) converge to a Dirac’s
delta function at the set n(x) of nearest neighbors of pu(x). Even if we assume
that the nearest neighbor is unique, the value of a pixel is still computed from a
population obtained from those nearest neighbors of all patches that overlap the
pixel. In the case of periodic patterns, once the minimization has reached a stable
state, all values in the population will be basically the same: patches surround-
ing a pixel agree on its value, and in this case all schemes behave similarly. Dif-
ferences arise when neighboring patches cannot agree on their suggested values.
Such is the case of the step in Figure 6.2. For non-periodic patterns and random
textures this disagreements will be common, which may affect the perceptual
similarity of the synthesized texture with the original.

Transitions

Figure 6.4 studies this effect. The first image consists of Gaussian noise, and the
remaining images show an estimate of the local variance (computed by smooth-
ing the image of the squared differences w.r.t. the mean) for the completion with
the different methods. The red curves require a brief explanation. Following
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[BSFG09], we use the term Nearest Neighbor Field (NNF) to refer to the vector
field n(x)− x, defined over Õ, where n(x) ∈ Õc is the position of the (assumed)
unique nearest neighbor of pu(x). In Figure 6.4 we show in red the boundaries
of the regions with constant NNF. In those regions patches are translated rigidly
from somewhere in the complement. We can observe that, for all inpainting
schemes, the resulting completion consists basically of a patchwork of large re-
gions of rigid translation. The interior of these regions, away from their bound-
aries (red curves), reproduces an exact copy of the source, and thus the variance
is preserved. The variance decreases along the red curves, where pixel values
are synthesized using incoherent contributions. Both for the intensity models
or the gradient models, the L2-norm causes a higher decay of the variance than
with the L1-norm. This effect can also be observed in Figures 6.2 and 6.3, where
it can be seen that patch NL-medians and -GM preserve more of the Gaussian
noise than the methods based on L2-norms. We will refer to the regions of con-
stant NNF as copy fronts. Recall however that copy occurs only away from their
boundaries.

In Figure 6.5 we show results on a non-periodic, structured texture. We can
see that patch NL-means and -Poisson show some smoothing, whereas patch
NL-medians obtained sharper results. Both intensity based methods show dis-
continuities at the boundary of the inpainting domain. Notice also that for the
patch NL-medians algorithm it is easy to identify the regions in the complement
that have been replicated. Where two copy fronts meet a seam is produced.
With the patch NL-means the spatial averaging of overlapping patches creates a
smooth blending of the copy fronts.

Figure 6.6: Linear combination of patch NL-Poisson with patch NL-means. First
image starting from the left: Initialization. The gray rectangle is the inpainting
domain. Only patches centered outside the red area are available. Second image:
Result obtained with patch NL-Poisson, using λ = 0. Details: From left to right,
top to bottom: results with patch NL-Poisson using λ = 0.01, 0.05, 0.1, 1 (the
latter corresponds to patch NL-means).
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Combined schemes

Patch NL-Poisson produces smooth interpolations and enforces the continuity
of the image at the boundary of the inpainting domain, which are generally de-
sirable features. For this to be done variationally the similarity weights w must
be computed using patches of the gradient, which in most cases does not pro-
vide a reliable measure of patch similarity. In practice better results are obtained
by combining it with patch NL-means, allowing to take the image values into
account for the computation of the patch error, and to synthesize the image with
a diffusion PDE. This adds a parameter λ, which controls the mixture.

In Figure 6.6 we show some results corresponding to the combination of
patch NL-Poisson with patch NL-means while varying the mixture coefficient
λ. The image shows a periodic pattern with an illuminance gradient. Most of
the dark exemplars are incomplete, and thus only bright exemplars from the
bottom of the image are available. The small images on the right show results
of both gradient methods with different values of λ. One of the details corre-
sponds to the result of patch NL-means: the image has been completed using
bright patches and presents a discontinuity on the upper side of the hole.

The value of the mixing parameter λ should be carefully selected since it
mixes two different magnitudes (norms of gradients and gray levels), with λ ∼
0.1 some of the good continuation properties are preserved and enough color
information is added to the patch comparison criterion.

In general one would like to synthesize the image using gradients and to
compute the patch similarity using only intensity. Since this is not feasible
within our variational framework we had to introduce these schemes that com-
bine both gradient and intensity patch error functions. However one can still
envision a broader family of non variational methods in which the patch com-
parison criterion can be chosen independently from the synthesis method. Al-
though these new algorithms do not have a variational justification, some of
them result useful in practice, as explored in [PMD+10] and [AFCS10].

Geometric interpolation

To evaluate the ability of each method to continue the geometry of the structures
at the boundary of the inpainting domain, we consider a very simple image with
a gap (shown in Table 6.1). The inpainting region is initialized with the back-
ground color. For this evaluation we fix the size of the patch and increase the
width of the gap. For narrow gaps, the method will be able to join both ends
of the green vertical line. When increasing the gap, at a certain width the gray
initialization prevails and the method is no longer capable of recovering the ver-
tical line. The first column of Table 6.1 shows the maximum width in pixels that
produces a good reconstruction. Observe that the combined schemes propagate
the line through wider gaps, and that the optimal mixing parameter λ for this
purpose is around the values that we have proposed in the previous section.
Basically these schemes have two propagation mechanisms: A local one, by dif-
fusion of the intensity values by the PDE, and a non-local one by transference
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Method GAP GAP (tc = 5)

patch NL-Poisson with λ = 0 13 40
patch NL-Poisson with λ = 0.1 16 46
patch NL-Poisson with λ = 0.5 11 34
patch NL-Means 9 29
patch NL-Medians 7 42

Table 6.1: Geometric interpolation. The inpainting domain is shown in white
and the patch in the lower right corner (9 × 9 pixels). The table reports the
maximum gap width (measured in pixels) for which the algorithm is capable
of recovering the vertical line. The rightmost column shows the maximal gaps
obtained with the use of a confidence masks with decay tc = 5 (see Section 6.3.1).

of gradients from Oc. When λ > 0 these mechanisms reinforce each other: the
diffused values allow a better estimation of the weights, and therefore the trans-
ference of more appropriate gradients, which will help to diffuse the intensity
values further. On the other hand, intensity based methods depend only on the
iteration of weights computation and image update to propagate information.

The second column of Table 6.1 shows the results obtained by incorporating
the confidence mask later described in Section 6.3.1. An alternative way to pro-
long the geometric structures is to increase the patch size as will be discussed in
Section 6.5.

6.3.1 Extensions

Color images. An energy for color images can be obtained by defining a patch
error function for color patches as the sum of the error functions of the three
scalar components:

ε(pu(x)− pû(x̂)) =
3∑

i=1

ε(pui (x)− pûi (x̂)),

where u : Ω → R3 is the color image, and ui, with i = 1, 2, 3, its components
(analogously for gradient-based errors). Given the weights, each channel is up-
dated using the corresponding scheme for scalar images. All channels are up-
dated using the same weights.

Confidence mask. For large inpainting domains, it is useful to introduce a
mask κ : Ω → (0, 1] which assigns a confidence value to each pixel, depend-
ing on the certainty of its information (see also [CPT04, KT07]). This will help
in guiding the flow of information from the boundary towards the interior of
the hole, eliminating some local minima and reducing the effect of the initial
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condition. The resulting image energy term takes the form

F̃w(u) =
∫

Õ

∫
Õc

κ(x)w(x, x̂)ε(pu(x)− pû(x̂)) dx̂ dx,

where κ modulates the penalization of the incoherences between w and the error
ε between patches.

The effect of κ on the image update step can be seen on the pixel-wise influ-
ence weights m

m(z, ẑ) =
∫

Ωp

χÕc(ẑ− y)ga(y)κ(z− y)w(z− y, ẑ− y) dy.

Thus, the contribution of the patch pu(z − y) to the evidence function is now
weighted by its confidence. Patches with high confidence will have a stronger
influence. Notice that with the inclussion of the confidence mask, the normal-
ization coefficient c(z) becomes:

c(z) =
∫

Oc
m(z, ẑ) dẑ =

∫
Ωp

ga(y)κ(z− y) dy.

This does not affect intensity-based methods, but has implications on the im-
age update step for gradient-based ones. For example, for patch NL-Poisson
the errors with respect to the non-local guiding vector field ‖∇u(z)− v(z)‖ are
penalized according to c(z).

On the similarity weights, the confidence mask has the effect of modifying
the selectivity parameter h by a locally varying h/κ(x). If the confidence is high,
the effective selectivity h/κ(x) will be lower, thus increasing the selectivity of
the similarity measure. When h → 0 the weights tend to a Dirac’s delta inde-
pendently of κ. The same reasoning applies to the gradient based energies.

For the experiments shown in this paper, the confidence mask was set to

κ(x) =

{
(1− κ0) exp

(
− d(x,∂O)

tc

)
+ κ0 if x ∈ O,

1 if x ∈ Oc,

which shows an exponential decay w.r.t. the distance to the boundary inside
the hole d(·, ∂O). Here tc > 0 is the decay time and κ0 > 0 determines the
asymptotic value reached far away from the boundary. Setting tc = 0 amounts
to using a constant confidence mask. Table 6.1 shows the effect of using a confi-
dence mask with tc = 5 and κ0 = 0.1, allowing the restoration of the vertical line
for much wider gaps, and thus alleviating the dependence with the gray initial
condition.

Other shapes of the confidence mask could be used for controlling different
aspects of the dynamics of the completion algorithm. For instance controlling
the decay of the mask from certain points of the boundary allows us to privilege
the continuation of structures from them.
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6.4 Discussion and connections

In this section we will briefly review the connections of our work with other in-
painting algorithms and also with existing variational models of non-local reg-
ularization which have been proposed in contexts such as image denoising.

The method in [WSI07] is closely related to the patch NL-means scheme of
Equation (7.12). The key difference lies in the underlying theoretical model. The
problem is addressed as a MRF, where pixels outside the hole are observable
variables, missing pixels in the hole are the parameters, and the hidden variables
are given by the correspondence Γ : O → Oc, which assigns a patch outside the
hole to each x in O. The method can be seen as an approximate EM algorithm
for maximizing the log-likelihood w.r.t. the pixels in O, and some approxima-
tions have to be taken to make the optimization tractable. Based on heuristics,
the authors also propose to use more robust estimators than the mean for the
synthesis of pixels. Within the framework here proposed, robust estimators (as
the median) naturally result from particular choices of the patch error functions
ε(·).

In [KSY09] an energy is presented which can be seen as a limit case of the
patch NL-means energy when h → 0. The authors propose modifications of the
energy which improve the results, such as some spatial localization of the sim-
ilarity weights and brightness invariance. The latter is achieved by introducing
a multiplicative constant that matches the mean illuminance between each pair
of patches.

In the following we will comment on the relation of this model with recent
works on non-local regularization.

The UINTA algorithm, presented in [AW06] is a non-local denoising algo-
rithm that minimizes the entropy of the patches in the image. Casting this idea to
the context of inpainting the UINTA’s entropy is estimated as the sample mean

EU(u) = −
∫

Õ
log
[∫

Õc
exp(−1

h
‖pu(x)− pû(x̂)‖2) dx̂

]
dx,

where the inner integral is the probability of occurrence of the patch pu(x) ob-
tained as a Parzen density estimate. The corresponding Euler-Lagrange equa-
tion can be solved with a fixed point iteration which coincides with the patch
NL-means scheme (7.12). In [AW06] this energy is minimized by consider-
ing all patches as independent (disregarding the overlap between neighboring
patches), and evolving each of them according to a gradient descent of EU . After
this, an image is formed with the centers of these new patches. The repetition of
this process results in an iterative application of pixel-wise NL-means.

In [BKC08] the authors use a variational principle for deriving the iterated
pixel NL-means regularizer, and show its application to the restoration of tex-
ture. The underlying energy corresponds to the quadratic penalty between the
solution image u, and a pixel NL-means type average of the noisy input image
û. The weights for this average are computed using u. Due to the dependence of
the weights with the regularized image u, the minimizer is no longer a weighted
average as NL-means, but the solution of a nonlinear optimization problem. It is
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shown that if the derivative of the nonlinear component is neglected, the result-
ing Euler-Lagrange equation matches the proposed fixed point algorithm: The
iterated NL-means regularizer.

In [PMD+10] the authors presented a variational framework for image de-
noising consisting in non-local regularization and data adjustment terms. In-
painting could be performed by considering only the data term as follows:

EP(u) = −
∫

Õ

∫
Õc

exp(ε(pu(x)− pû(x̂))) dx̂ dx.

This energy is the same as the one adapted from the UINTA algorithm EU , with-
out the logarithm. In [PMD+10] the Euler-Lagrange equation is solved with a
fixed point iteration. This model has two differences with our framework. First
it allows to use a more general nonlinearity for the computation of the weights
other than the exponential. Second, even in the case of the exponential, the meth-
ods differ in the normalization, for instance, when ε is the squared L2-norm, the
resulting scheme is as the patch NL-means, with the unnormalized weights.

After its introduction in [ACS09], our model has been interpreted as a non-
local self-similarity regularizer in [PBC09], where in conjunction with appropri-
ate data fitting terms it has been applied to the solution of inverse problems,
including inpainting, super-resolution and compressive sensing. In [PBC09] a
different patch-error function ε is used, namely the L2-norm between patches
(without squaring it). This choice is motivated as a patch-wise version of their
work [PBC08] on non-local Total Variation [GO07b, LEB07, ZS05] with adap-
tive weights. This patch-wise non-local TV is defined as the L1-norm of the
non-local gradient of the patch valued image pu : Ω → RΩp . The non-local
gradient is defined as a function ∇w pu : Ω×Ω → RΩp given by ∇w pu(x, x̂) =
w(x, x̂)(pu(x)− pu(x̂)). Thus, the patch-wise non-local TV reads

‖∇w pu‖ =
∫

Ω

∫
Ω

w(x, x̂)‖pu(x)− pu(x̂)‖2 dx̂ dx.

Note that in this sense, the model of the patch NL-medians corresponds to an
anisotropic version of the non-local TV where the 2-norm in the integral is re-
placed by the 1-norm. Our work and the work of [PBC09] are complementary. In
[PBC09] the regularization term is fixed, and the authors focus on the possibili-
ties given by different data terms suited for different applications. On the other
hand in this work we focus on the regularization term exploring its properties
with different patch error functions ε, and applying them to a problem in which
the data term plays no role at all, since there is no data to adjust to.

6.5 Multiscale scheme

Exemplar-based inpainting methods show a critical dependence with the size of
the patch. In Figure 6.7, we show completions obtained with patch NL-means
using different patch sizes: Two results with a small patch (a = 4) and one result
with a large patch (a = 19). The latter is able to reproduce the periodic pattern of



100 CHAPTER 6. EXEMPLAR-BASED IMAGE INPAINTING

Figure 6.7: Single scale vs. multiscale. Left column: inpainting domain and
initial condition. For the rest of the columns, from left to right: single scale
inpainting with a 9× 9 patch with a = 4; single scale inpainting with a 43× 43
patch with a = 19; multi-scale inpainting with three scales, corresponding to
patch sizes of 9× 9 with a = 4, 21× 21 with a = 9, and 43× 43 with a = 19.
All results have been computed with the patch NL-means scheme. The bottom
row shows the boundaries between copy regions superimposed over the energy
density image.

the lamps, but the completion is blurry due to the spatial overlap of the patches
and presents many discontinuities at the boundary of the hole.

The results with the small patch do not show these artifacts, but one of them
has failed to reproduce the lamps. The only difference between both is the ini-
tialization. One of them was initialized with the original image shown in the
bottom left, whereas the other one with the result obtained with the multiscale
approach described in this section.

As in many state of the art exemplar-based inpainting methods (e.g. [KT07,
WSI07, KSY09]), we will incorporate a multiscale scheme. This is usually moti-
vated as an heuristic to avoid local minima, to find a good initialization and/or
to alleviate the computational cost. We believe however (following [HGY08])
that, as the example of Figure 6.7 suggests, inpainting is inherently a multiscale
problem: Images have structures of different sizes, ranging from large objects to
fine scale textures and edges. The multiscale scheme responds to the fact that
several patch sizes are needed to reproduce all these structures properly.

6.5.1 Multiscale algorithm

In the following we describe the multiscale method we adopted, which goes
along the lines of what is customary in the literature [FL09, KSY09, WSI07]. It
consists on applying sequentially the inpainting scheme on a Gaussian image
pyramid, starting at the coarsest scale. The result at each scale is upsampled and
used as initialization for the next finer scale. The patch size is constant through
scales.

Let us consider S scales, the finest denoted with s = 0. We will specify the
size of the image at the coarsest level AS−1. Denoting the size of the image at
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the finest scale by A0, we compute the sampling rate as r = (A0/AS−1)
1/(S−1) ∈

(0, 1). The width of the Gaussian filtering is associated to the subsampling factor
as in [MY08]. Let a0 be the size of the patch and Ea0 the corresponding energy.
We will add the superindex s = 0, . . . , S− 1 to the variables u and w to denote
the scale. As before, the subindex 0 refers the initial condition, i.e.us

0 is the initial
condition at scale s.

Algorithm 2 Multiscale scheme.

Require: uS
0 , S, a0 and AS−1

1: Initialize: (uS−1, wS−1) = arg min(u,w) Ea0(u, w)

2: for each scale s = S− 2, . . . , 0 do
3: Upsample us+1 to obtain us

0
4: (us, ws) = arg min(u,w) Ea0(u, w)

5: end for

The upsampling from s+ 1 to s is obtained as in [WSI07]. The coarse weights
ws+1 are first interpolated to the finer image size, yielding ws

0. These weights are
then used to solve an image update step at the new scale: us

0 = minu Ea0(u, ws
0).

More conventional upsampling schemes by local interpolation (such as bilinear
or splines) introduce a bias towards low-frequency non-textured regions. This
exemplar-based upsampling avoids this bias.

Notice that keeping the patch size constant while filtering and reducing the
image, is almost equivalent to enlarging the patch domain and filtering an image
of constant size. The process can thus be seen as the sequential minimization of
a series of inpainting energies with varying patch size given by as = (1/rs)a0,
s = 0, . . . , S− 1, over a corresponding series of filtered images. In the coarsest
scale S − 1, a larger portion of the inpainting domain is covered by partially
known patches. This makes the inpainting task easier and less dependent on
the initialization. The energy at this scale should have fewer local minima. The
dependency of the minimization process on the initial condition ensures that
each single scale solution remains close to the coarse scale initialization. The
multiscale algorithm exploits this dependency to obtain an image u0 which is
approximately self-similar for all scales (or equivalently, for all patch sizes).

Figure 6.7 shows a comparison between single and multiscale results with
the patch NL-means scheme. The multiscale result shows the benefits of large
and small patch sizes. The missing lamps have been completed with the correct
shape and spacing by the coarser stages, and the fine details are overall much
less blurry and there are almost no discontinuities at the boundary of O. The
bottom row shows the copy regions. The single scale results show a coarse par-
tition with the large patch (the copying is more rigid), and one with many small
regions with the smaller patch. The multiscale’s NNF shows an intermediate
partition, with some large regions inside of the hole and smaller ones around its
boundary. The inpaintings at the finer scales work by refining the coarse parti-
tion obtained at coarser scales.
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6.6 Experimental results

In this section we further will show the performance of the proposed schemes
on real inpainting problems. The images used were obtained from Komodakis
and Tziritas [KT07] and from the 100 images benchmark proposed by Kawai et
al. [KSY09], available at http://yokoya.naist.jp/research/inpainting/. We
refer to [KSY09, KT07] for a comparison with their approaches.

6.6.1 Experimental setting

We consider three inpainting methods, variations of our proposed framework,
namely patch NL-means, -medians and -Poisson. The latter is always combined
with patch NL-means with mixing parameter λ, as in (6.13). In all cases we
use the multiscale approach. To prevent blurring we set h, the selectivity of
the similarity weights w, to h → 0. In this case, the weights select the nearest
neighbor of each patch in Õ. We use the CIE La*b* color space.

The calculation of the weights dominates the computational load of the al-
gorithms. With an exhaustive search for the exact nearest neighbor, the cost of
each iteration isO(A(O)×A(Oc)× s2). However, a significant speed-up can be
obtained with approximate searches, almost without any noticeable decrement
in the quality of the results (see [BKC08] and references therein).

In our implementation we use a modified version of the PatchMatch algo-
rithm introduced in [BSFG09]. PatchMatch is an iterative algorithm that esti-
mates the NNF jointly for all patches in the inpainting domain by exploiting the
coherence of natural images. The modification we implemented allows the es-
timation of a lists of the L first nearest neighbors of each patch. The algorithm
has a computational cost ofO(A(O)× s2× L) per iteration. Typically between 5
and 10 iterations are sufficient to obtain results comparable with the exhaustive
search algorithm when using lists of size L ' 10. In Appendix 6.A we describe
the modified PatchMatch.

The results are shown in Figures 6.8 and 6.9. The first column shows the
initialization. The rest of the columns show the results obtained with patch NL-
means, -medians and -Poisson in that order. Obtaining good results requires
fixing the following parameters:

Patch size. For almost all experiments we used patches of size s between 3× 3
and 9× 9. We did not use Gaussian intra-patch weights to shape the patch,
since they need a larger support, which implies less available exemplars.

Multiscale parameters. The multiscale scheme has two parameters: the size of
the coarsest image AS−1 and the number of scales S. From these, AS−1 is
the most critical parameter. Smaller images with smaller inpainting do-
mains are easier to complete. Care must be taken, however, since small
images also imply less available exemplars to copy from. In these experi-
ments AS−1 was set to a 20% of the original size when possible. Some cases
required less subsampling. The number of scales S was set such that the
subsampling rate r = (A0/AS−1)

1/(S−1) ≈ (1/2)1/3 ≈ 0.8 as in [WSI07].

http://yokoya.naist.jp/research/inpainting/
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Confidence mask. The confidence mask has two parameters, the asymptotic
value c0 and the decay time tc. For all experiments we fix c0 = 0.1 and
used a decay time tc = 5 except for small inpainting domains, in which we
set tc = 1.

For the mixing coefficient λ of patch NL-Poisson we tested two configura-
tions: Low-λ corresponding to λ = 0.01, and high-λ corresponding to λ = 0.1.
Recall that lower values of λ give a higher weight to the gradient component
of the energy. This is appropriate for structured images with strong edges. In
almost each row of Figs. 6.8 and 6.9 we used the same λ for patch NL-Poisson.

The rest of the parameters are also the same for each row in Figure 6.9. In-
stead, for the images in Figure 6.8 we used different parameters for the image
based methods (NL-means and NL-medians), in these cases, image-based meth-
ods required larger patches than NL-poisson.

6.6.2 Observations and comments

Gradient vs. intensity. Patch NL-Poisson shows a better reconstruction of
structure and periodic patterns (Figure 6.8). Intensity-based methods present
discontinuities at the boundary of the hole and between copy fronts. Further-
more, patch NL-Poisson facilitate the prolongation of structures and edges, due
to the reinforcement of local PDE diffusion and non-local propagation (see Sec-
tion 6.3). This allows to use smaller patches, which alleviates the computational
load and reflects in more available exemplars and less blending due to patch
overlap (either by averages or medians).

On the other hand, patch NL-Poisson shows problems with random textures
(Figure 6.9) and in some occasions between copy fronts. In these cases, the
nearest neighbors of overlapping patches disagree on the gradient of a certain
pixel. This may result in the attenuation or the omission of gradients, causing a
“spilling effect” as seen in rows 2 and 3 of Figure 6.8.

Some failures of patch NL-Poisson on random textures result from the use of
gradients in the patch error function, as seen in Figure 6.9. In the second row of
Figure 6.9, for instance, segments of the sky have been reproduced in the snow.
Figure 6.10 shows results with an inpainting scheme in which the weights are
computed based only on the image values (with the squared L2-norm), and the
image is updated using patch NL-Poisson with a low value of λ. Such scheme
is non-variational and its convergence its not guaranteed.

We should point out that in many other cases, considering gradients in the
comparison criterion improves the results. See for instance Figure 6.8.

Means vs. medians. It is notorious that patch NL-medians perform better at
the reproduction of fine texture. The results of the L2 methods are smoothed by
the spatial averaging of overlapping patches. Patch NL-medians creates sharp
discontinuities as in Figure 6.2 when different copy fronts meet (e.g. rows 2, 3
and 5 in Figure 6.8). These discontinuities are very noticeable and in these cases
some smoothing is desirable.



104 CHAPTER 6. EXEMPLAR-BASED IMAGE INPAINTING

Figure 6.8: Results on structured images. From left to right: Original image and
mask, patch NL-means, -medians, and -Poisson.
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Figure 6.9: Results on random textures. From left to right: Original image and
mask, patch NL-means, -medians and -Poisson. All images in each row have
been generated with the same parameters.

Figure 6.10: Results with a non variational algorithm. Patch NL-Poisson some-
times introduce blurry areas in the solution. Here we show the results using a
non variational version of the patch NL-Poisson for some of those images.

We have observed that patch NL-medians is resistant to introduce changes
in the solution during the minimization process. The same robustness that al-
lows a better performance with textures makes it more greedy. Once a set of
neighboring patches have settled on a locally stable solution (typically a region
of constant NNF), it is hard for the algorithm to change that local decision.

Although the confidence mask diminishes this effect, patch NL-medians still
shows more dependence on the initialization. A result of this are some misalign-
ments in straight lines, due to subsampling artifacts of the multiscale scheme.
Also generally requires the use of larger patches, particularly for structured im-
ages. This is not always possible, as in row 4 of Figure 6.8, where we could not
find a proper set of parameters. However we found a good result by after 3
iterations of the multiscale scheme.
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6.7 Conclusions and future work

In this work we presented a variational framework for exemplar-based non-local
image inpainting. The proposed energy lends itself to intuitive interpretations in
terms of probabilistic models and has connections with mean shift and statistical
mechanics. We minimize it using a coordinate descent algorithm, alternating
between similarity weights and the image updates. These processes are coupled
through the patch error function, i.e. the criterion used to compare patches.

We derived from this framework three different inpainting schemes, corre-
sponding to error functions based on L1- and L2-norms of image patches and
the L2-norm of the gradient patches.

The proposed functional shows a critical dependence with the patch size.
Furthermore, it is nonconvex and has many local minima, particularly for small
patch sizes. To tackle these issues we use a multiscale approach. This is custom-
ary in the literature, usually motivated as a way to obtain a good initialization
and for computational reasons. We believe however that inpainting is inher-
ently a multiscale problem, and that underlying the multiscale approach lies an
inpainting criterion. We are currently working on a variational formulation of
multiscale inpainting.

Although the focus of this work lies more on introducing and exploring
the variational framework than in presenting a single inpainting algorithm, we
would like to comment on which is the best method among the ones presented.
Based on the experimental observations, it is clear that the answer to this ques-
tion will depend on the characteristics of the inpainting problem. However, a
priori, the combination of patch NL-Poisson with patch NL-means seems a rea-
sonable compromise between quality and computational cost. It is also able to
provide good results for a wider range of parameters.

Other topic of current research is the use of other patch error functions based
on the comparison of structure tensors, which could provide a more robust esti-
mation of the morphological structure of the image.

6.A Computation of the Nearest Neighbor Field

The computation of the nearest neighbor (or of the weight function w) is the most
time consuming step of an exemplar-based algorithm. Two key observations
allow to reduce the computational load for this task. The first one is that, the
nearest neighbor search can be approximated without compromising the quality
of the output, allowing to trade precision for speed (see for instance [BKC08]
and references therein). The second one, as noted in [BSFG09], is that due to the
coherence of natural images, nearest neighbors of patches centered on nearby
pixels are likely to be located at nearby positions.

PatchMatch is a very efficient algorithm for computing approximate nearest
neighbors proposed in [BSFG09]. The authors in [BSFG09] consider two regions
O and Oc of the same or different images. The objective is to find for each patch
centered in x ∈ O the location of the best match n(x) ∈ Oc. The authors define
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Figure 6.11: Performance of the modified PatchMatch. The graph shows the
evolution of the nearest neighbor’s error with the iterations of the algorithm.
Each graph corresponds to a different size L of the sets (L = 1 corresponds
to the original PatchMatch [BSFG09]). The dots indicate the completion of an
iteration.

the Nearest Neighbor Field (NNF) as the function x 7→ (n(x)− x) defined over
O. Instead of searching for the nearest neighbor of each query patch indepen-
dently, PatchMatch computes the NNF simultaneously for all query patches. It
exploits the fact that since query patches overlapp, the offset n(x)− x of a good
match for at x is likely to lead to a good match for the adjacent points of x as well.
It is an iterative algorithm which starting from a random initialization, alternates
between steps of propagation of good offsets and random search (see [BSFG09]
for details). For most applications with natural images, a few iterations after a
random initialization are often sufficient.

We extended this algorithm following a suggestion in [BSFG09]. Instead of
storing a single offset for each query patch, we store queues of L offsets in an
L-Nearest Neighbors Field (L-NNF). Thus the number of initial random guesses
gets multiplied by L. During the propagation step adjacent queues are merged in
to a temporal queue of length 2L from which only the best L offsets are kept. This
allows to preserve and transfer non optimal offsets that may in turn be optimal
for farther positions. Our implementation of the random search is essentially as
in [BSFG09].

As expected using queues allows to achieve results similar to the original
PatchMatch with less iterations, however each iteration takes considerably more
time. Figure 6.11 shows the evolution of the nearest neighbor’s error measured
as
∑

x∈O ‖pu(x) − pu(n(x))‖2 with time, using queues of different lengths. In
the long run using the queue pays back allowing to attain smaller errors in less
time, even with L = 2 we observe that starting from the middle of the graph the
errors are always smaller than L = 1. Since we are not interested in attaining
a high precision, we do not use big values of L. In practice we set L ≤ 10 and
perform a small number of iterations (generally 5 or 10).

Let us remark that each queue is an approximated neighborhood of the query
patch in the patch space. This neighborhood can be interpreted as a truncated
representation of the function w(x, ·) for each pixel x, which is useful in the non-
degenerated case when h > 0 in (6.6).





Chapter 7

Exemplar-Based Interpolation of
Sparsely Sampled Images

In this chapter we propose a nonlocal formulation for the problem of image interpolation
from a sparse set of samples. This formulation is derived from the nonlocal inpainting
framework presented in the previous chapter. Following the paradigm of exemplar-based
methods, this formulation encourages the transfer of information between similar im-
age patches, but contrary to the classical inpainting problem, no complete patches are
available from the sparse image samples, hence the patch similarity criterion has to be
redefined as here proposed. The results show the ability to recover textures at low sam-
pling densities. We also explore some departures from the variational setting, showing a
remarkable ability to recover textures at low sampling densities.

7.1 Introduction

The terms image inpainting and interpolation refer to the problem of recovering
missing information in an image, in a visually plausible manner exploiting avail-
able image information. Both, inpainting and interpolation, are ill-posed inverse
problems, and as such, some sort of prior knowledge is needed for its solution.
We will distinguish between: inpainting when the available data is given on a
(not necessarily connected) region of the image; and interpolation when the avail-
able data consists of a set of isolated samples (be regular or irregular). The liter-
ature on these topics is vast, since lies at the heart of many relevant applications
such as: image editing and desocclusion for the former; zooming, demosaicing
and super-resolution for the latter. Let us review the main trends in both areas.

For the inpaiting problem, the available information usually allows to deter-
mine the image derivatives on the boundary of the unknown region of the im-
age. First approaches to inpainting took advantage of this, completing the image
by means of variational methods [MM98] or PDEs [BSCB00, BBS01] that contin-
ued the image gradients or the level lines inside the inpainting domain. These
schemes involve only interactions between local pixels, fail with textured images
or large inpainting domains. Advances in the field of texture synthesis [EL02]

109
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served as inspiration for new inpainting strategies. Based on the hypothesis that
natural images are redundant, and self similar, these methods determine the
value of a pixel from known pixels with similar neighborhoods. These meth-
ods are often refereed to as non-local or exemplar-based [LZW03, CPT04, SYJS05].
Exemplar-based methods excel in recovering textures but their ability to recover
geometry is limited, while the local methods are good at recovering geometric
texture-less features. Recent efforts aim at combining both, local and non-local
strategies e.g. [BVSO03, CGMP09].

Interpolation approaches on the other hand are based on priors of smooth-
ness or regularity assumptions. These can be imposed by restricting the so-
lutions to be, for instance, band limited [GS00], of bounded variation [CS01],
expanded over a base of functions (e.g. splines [ASHU05a], radial basis func-
tions [She68a]), among others. PDE’s for anisotropic diffusion are successfully
applied to the interpolation of sparse samples [GWW+08] by estimating a dif-
fusion tensor from the available samples. These techniques are also local in the
sense that they regard only local interactions between the pixels. And as in the
inpainting case these techniques fail to recover textures. A recent front of activ-
ity is given by the techniques based on the sparseland model [CW08, AEB06], in
which the image is restricted to have a sparse representation over an overcom-
plete basis or dictionary [MSE08, AEB06, ESQD05]. The dictionary based meth-
ods are very similarly to the exemplar-based methods for inpainting. The main
difference between them is where the missing information is obtained from. Dic-
tionary based methods look for the missing data in the dictionary (as a linear
combination of a few atoms), whereas exemplar-based methods assume that the
information needed is elsewhere in the image itself (or in a database of images
[HE07]). Non-local priors have also been considered for the resolution of inverse
problems [PBC09], and in particular for interpolation. In [PBC09] the set of im-
age patches with their similarity relations is modeled as a weighted graph, and
the interpolation is done by imposing regularity in this graph [LEB07, GO07a]
which corresponds to a non-local regularization on the image.

Both inpainting and interpolation problems are very similar. Thus, it is nat-
ural to think of applying the inpainting techniques to interpolation problems.
However, since in our case only a sparse set of samples is available, the adap-
tation of the inpainting techniques is not trivial because: 1. The gradients as
well as the directions of the level lines are unknown; 2. There are no complete
patches available on the image. Under these conditions, the PDE based methods
for inpainting cannot be directly applied to interpolation and exemplar-based
inpainting methods need to be adapted (as we will do).

In Chapter 6 we presented a framework for exemplar based inpainting,
which models the self similarity of the image explicitly as a weight function
(see Section 7.2 for a summary). These problems are solved by alternate min-
imization of the energy, with respect to the image and the weights. The main
difference between inpainting and interpolation lies the available data and its
geometric organization in the image. In a typical inpainting problem, a region
of the image is missing (the hole or inpainting domain) but also large regions of
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the image are known. From the known regions complete patches are copied and
used to fill the inpainting domain (see Figure 7.1(a)). In the interpolation prob-
lem here addressed, we may still have entire regions of missing information,
but in addition the image is only known at some isolated positions distributed
through all the image (see Figure 7.1(b)), this means that there are no complete
patches to copy from. This prevents the direct application of the inpainting en-
ergy from the previous chapter to the interpolation problem, since in the current
case the set of complete patches is likely to be empty.

In this chapter we will generalize the framework of Chapter 6 to address
the problem of image interpolation from non-uniformly sampled data. In this
setting, we consider the simpler case where the samples are arranged on a dis-
crete (but non regular) grid, and leave the sub-pixel case for future development.
Hence we will formulate the interpolation problem in a discrete setting. Since
in this context there are no complete patches to copy from, the patch error func-
tion is tailored to compare only the known pixel positions in one or both of the
patches being compared. The interpolated image is computed by solving a se-
quence of problems each using a decreasing value of the selectivity parameter (see
Section 7.3), this “coarse to fine” strategy permits to iteratively resolve details of
the interpolated image [BCMS09].

Related work. Our work is related to the nonlocal techniques applied to de-
mosaicing [BCMS09] and super-resolution [PETM09] problems which can be
cast as image interpolation from a regular sampling set. These methods work
by averaging known pixels according to the similarity of their neighborhoods,
and are closely related with our approach. More detailed comments on them
will be given in subsequent sections. The work [MBP+09] combines sparsity
and non-local techniques. The regularity is imposed by sparsity over a dictio-
nary, which is learned by assigning a common representative to similar patches.
Similar ideas can be also found in the field of 3D tomographic imaging [BSL+08],
where incomplete 3D volumes are reconstructed via grouping them by similar-
ity and averaging the exemplars in each cluster.

Let us mention that the problem of interpolating an image from a set of
sparse samples could be approached with the techniques of compressed sensing
[CW08, CR08]. Even if the standard setting uses a set of random measurements
(e.g. projections on a random basis, or noiselets) one could apply the corre-
sponding reconstruction schemes with a random sampling of the image, as in
our case. As far as we know, there is no detailed comparison between exemplar-
based methods and compressed sensing in the context of image interpolation.
On the other hand, as shown in this paper, exemplar-based methods can handle
the problem of interpolating non uniformly sampled images with large unsam-
pled regions.

Notation. Images are denoted as functions u : Ω → R, where Ω denotes the
image domain, usually a rectangle in Z2. Pixel positions are denoted by x, x̂,
z, ẑ or y, the latter for positions inside the patch. A patch of u centered at x, is
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(a) Inpainting (b) Interpolation

Figure 7.1: Domains for the inpainting (left), and for the interpolation problems
(right). In the case of inpainting the red areas indicate the unknown regions O
of the image; we have also shown the extended inpainting domain Õ its com-
plement complement Õc. In the case of interpolation, D1 is the whole image
domain and D2 represents the unknown pixels (in red), the known pixels are
displayed in white.

denoted by pu(x) = pu(x, ·) : Ωp → R, where Ωp is a disk (or a square) centered
at (0, 0). The patch is defined by pu(x, y) = u(x + y), with y ∈ Ωp. O ⊂ Ω is the
set of unknown image pixels or the domain to be interpolated, and Oc = Ω \O
is the known part of the domain. For simplicity we will assume that the image
is defined on an extended domain Ω̃ = Ω + Ωp (i.e. Ω̃ is a dilation of Ω) and we
work in Ω, hence a patch can be centered at any pixel in Ω without escaping the
image domain. Additional notation will be introduced in the text.

7.2 Variational framework

First let us briefly recall the non-local inpainting framework of Chapter 6, now
in a discrete context. Then we will discuss the modifications for its application
to the interpolation problem.

7.2.1 Review: Non-local functional for image inpainting

Let us define, Õ as an extension of O containing the centers of all patches inter-
secting O (see Figure 7.1(a)). In doing so, patches pu(x̂) centered at pixels x̂ ∈ Õc

consist entirely of known pixels. The energy proposed in the previous chapter
is composed of two terms, the first measures the coherence between the patches
in Õ and those in Õc , for a given the similarity function w : Õ× Õc → R+. This
permits the estimation of the image from the weights w. And the second term
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allows us to compute the weights w given the image u.

Ẽ(u, w) =
1
h

F̃w(u)−
∑
x∈Õ

H̃w(x), (7.1)

s.t.
∑
x̂∈Õc

w(x, x̂) = 1,

where
F̃w(u) =

∑
x∈Õ

∑
x̂∈Õc

w(x, x̂)ε(pu(x)− pu(x̂)), (7.2)

ε(·) is the patch error function, and

H̃w(x) = −
∑
x̂∈Õc

w(x, x̂) log w(x, x̂)

is the entropy of the probability w(x, ·) for x ∈ Õ and h is the selectivity parameter
.

The term (7.2) promotes the similarity between the image patches centered
at x ∈ Õ and x̂ ∈ Õc. Indeed, minimizing F̃w w.r.t. the image u, for a given
fixed weight function w, forces pairs of patches for which w(x, x̂) is high to be
similar. Since pu(x̂) lies outside the inpainting domain, it is fixed and the simi-
larity can only be enforced by modifying pu(x). Thus, incomplete patches receive
information from outside the inpainting domain.

The similarity weight function w : Õ× Õc → R+ measures the similarity be-
tween patches centered in the inpainting domain and in its complement. To
avoid trivial minima of Fw, w(x, ·) is constrained to be a probability density
function,

∑
x̂∈Oc w(x, x̂) = 1. For a given completion u, and for each x ∈ Õ,

the optimum weights minimize the mean patch error function for pu(x), given
by
∑

x̂∈Õc w(x, x̂)ε(pu(x)− pu(x̂)), while maximizing the entropy. The resulting
weights are exponential, as can be confirmed easily by derivating the energy.
Gaussian weights w(x, x̂) ∝ exp

(
− 1

h‖pu(x)− pu(x̂)‖2
)

, are obtained by set-

ting the patch error function as the squared L2 norm of between the patches
i.e.ε(pu(x)) =

∑
y∈Ωp

(u(x + y))2 , where the proportionality factor is a constant
such w(x, ·) adds up to one. The parameter h controls the trade-off between both
terms and is also the selectivity parameter of the Gaussian weights. Since w(x, ·)
is a probability, we discard trivial minima of E with w(x, x̂) = 0 everywhere.

Summarizing, the first term of (7.1) permits the estimation of the image u
from the weights w, whereas the second one allows us to compute the weights
given the image.

7.2.2 Generalization to interpolation

Let us now discuss the modifications needed to adapt the formulation (7.1) to the
problem of image interpolation. We will focus our attention on the image term
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(7.2). For that let us assume for the moment that we know a weight function
w which measures the similarity of pairs of incomplete patches. Later we will
detail the issues related with the computation of these weights.

The main difference between inpainting and interpolation is the available
data and its geometric organization in the image. In a typical inpainting prob-
lem, large regions of the image are known, and information is transferred from
the complete patches of the complement to the inpainting domain. Whereas in
the interpolation case the image is known only at some isolated positions dis-
tributed through all the image and there are no complete patches available. This
prevents the direct application of the inpainting energy (7.1) to the interpolation
problem, since every patch contains unknown pixels, and thus needs informa-
tion from other patches (which are also incomplete). Moreover in this case it is
likely that Õc = ∅. This suggests that the summation domains in equation (7.2),
as well as the patch comparison metric, have to be modified. We address this
here.

For the sake of generality we will use generic summation domains and de-
note them by D1 and D2. The distinction between summation domains Di
and known data Oc, is also useful for the understanding of the resulting al-
gorithm. The corresponding definitions for the inpainting functional (7.2) are
D1 = Õ and D2 = Õc, while for all methods implemented below we used
D1 = Ω and D2 = Oc, i.e. D2 the set of known pixels (see Figure 7.1(b)). The
weight function is thus defined over D1 × D2 and is such that for each x ∈ D1
w(x, ·) is a probability over D2.

A general description of the image term in the interpolation functional is the
following:

Fw(u) =
∑

x∈D1

∑
x̂∈D2

w(x, x̂)Ve(pu(x), pu(x̂)). (7.3)

We have introduced a general pair-wise patch similarity potential Ve, substituting
the patch error function ε(·). Since we deal with sparsely sampled patches, the
pair-wise patch potential Ve is based only on the known pixels around x and x̂:

Ve(pu(x), pu(x̂)) =∑
y∈Ωp

gσ(y)
ρ(x, x̂)

(αXOc(x + y) + βXOc(x̂ + y))e(u(x + y)− u(x̂ + y)), (7.4)

where gσ is a Gaussian centered at the origin with standard deviation σ, XS
denotes the characteristic function of the set S and e(r) = |r|p, r ∈ R and p =
{1, 2}. Taking p = 2, leads to an algorithm analogous to patch NL-means and
with p = 1 leads to patch NL-medians (see 7.3), also more general functions e :
R → R+ could be considered. The constant parameters α, β ∈ {0, 1} are set by
the user. They control whether known positions around x or x̂ are used in the
computation of the similarity potentials (at least one of them has to be 1).

If α = 1 the positions with known data around x are used for the compu-
tation of the similarity potential (7.4). This happens whether the correspond-
ing locations arround x̂ belong to the data set or not. If β = 1 the similar-
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Figure 7.2: Visualization of transmission and reception processes due respec-
tively to terms Vα

e and Vβ
e in the patch similarity potential (see equation (7.6)).

Recall that x̂ ∈ D2 and x ∈ D1. Thus, when D1 = Ω, x may be known or
unknown (this is not reflected in the figure).

ity potential accounts for the known pixels around x̂. If both of them are 1,
then Ve accounts for the locations known in any of the two patches. This
last case coincides with the patch comparison criterion defined in [BCMS09]
in the context of demosaicing. The normalization factor ρ(x, x̂) is such that∑

y∈Ωp
gσ(y)
ρ(x,x̂) (αXOc(x + y) + βXOc(x̂ + y)) = 1 for all x ∈ D1, x̂ ∈ D2.

Considering the overlap between known positions in both patches (see for
instance [BSL+08]) would also make sense for comparing patches with miss-
ing data. However, this cannot be applied to the current formulation since this
eliminates the dependency of the energy on the unknown image (recall that the
energy depends on the image though the similarity potential Ve).

The complete functional for the interpolation problem becomes:

E(u, w) =
1
h

Fw(u)−
∑

x∈D1

Hw(x), (7.5)

where Hw(x) = −∑x̂∈D2
w(x, x̂) log w(x, x̂) is again the entropy of the proba-

bility w(x, ·) for x ∈ D2. And as in the case of inpainting, this last term allows to
model the weight update together with the image update.

A similar functional for image super-resolution was proposed in [PETM09]
without explicitly modeling the weight updating step. The image update in
[PETM09] is related to the case where α = 0 and β = 1.

Interpretation of the functional. The proposed functional can be easily un-
derstood by splitting the pairwise patch potential into two terms Ve = Vα

e + Vβ
e ,

with

Vα
e (pu(x), pu(x̂)) = α

∑
y∈Ωp

gσ(y)
ρ(x, x̂)

XOc(x + y)e(u(x + y)− u(x̂ + y)), (7.6)
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and analogously for Vβ
e . For a fixed weight function w, the energy Fw can be

split accordingly in two terms. The first potential measures differences between
known pixels in pu(x), with x ∈ D1, and the corresponding pixels in pu(x̂), with
x̂ ∈ D2. Since known pixels are fixed, its minimization implies the modification
of unknown pixels around x̂, thus transferring information from pu(x) to pu(x̂).
On the other hand, Vβ

e considers differences between known pixels in pu(x̂) and
the corresponding locations in pu(x). In this case known information flows from
pu(x̂) centered at D2 to pu(x) centered at D1.

Since the weights w(x, ·) are a probability over D2 for each x ∈ D1, we will
adopt subsequently the point of view of the patch pu(x) centered at x ∈ D1.
We refer to these patches as central patches, and to patches centered in D2 as
peripheral patches. From this perspective, the minimization of the term with
Vα

e implies the transmission of the information (the pixel values) of known po-
sitions in the central patch pu(x) towards the unknown positions in peripheral
patches pu(x̂) ∈ D2 (see Figure 7.2(b)). Whereas the minimization of the term
with Vβ

e implies receiving known pixel values from peripheral patches at D2 (see
Figure 7.2(a)). We refer to these processes as transmission and reception.

7.2.3 Rewriting of the energy term Fw

As in Chapter 6, we rewrite the energy term (7.3) so that the image values appear
directly, and not as part of patches. This will be useful for the derivation of the
methods. After the change of variables z = x + y, ẑ = x + ŷ, the energy can be
rewritten by adding up the pair-wise pixels differences as

Fw(u) =
∑
z∈Ω̃

∑
ẑ∈Ω̃

m(z, ẑ)(αXOc(z) + βXOc(ẑ))e(u(z)− u(ẑ)), (7.7)

where Ω̃ = Ω + Ωp (since D1, D2 ⊆ Ω, we have that D1 + y, D2 + y ⊆ Ω̃ for all
y ∈ Ωp), and we have defined the pixel-wise influence weights m(z, ẑ) as

m(z, ẑ) =
∑

y∈Ωp

XD1(z− y)XD2(ẑ− y)w(z− y, ẑ− y)
gσ(y)

ρ(z− y, ẑ− y)
.

These weights integrate the similarities of patches centered at z− y ∈ D1 con-
taining z and those centered at ẑ− y ∈ D2 containing ẑ for y ∈ Ωp.

The formulation given in (7.3) accumulates the pair-wise potentials for each
pair of patches centered in D1 and D2, where the potentials are computed as
the sum of pixel differences. In (7.7), the same energy is rewritten so that the
contribution of each pixel difference u(z)− u(ẑ) is made explicit. If the charac-
teristic functions XOc(z) and XOc(ẑ) in (7.7) are both zero (i.e.neither z nor ẑ are
known), then the corresponding term is not considered in the energy. Therefore
only those differences involving at least one known pixel are taken into account.
It is also clear from (7.7) that its minimization encourage the similarity of u(z)
and u(ẑ) for all pairs of pixels z and ẑ such that m(z, ẑ)(αXOc(z) + βXOc(ẑ)) is
large (i.e.the current patches do not match).
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7.3 Minimization of E

We have formulated the interpolation problem as the constrained optimization
problem

(u∗, w∗) = arg min
u,w

E(u, w) subject to (7.8)∑
x̂∈D2

w(x, x̂) = 1 for all x ∈ D1. (7.9)

To minimize the energy E, we use an alternate coordinate descent algorithm.
At each iteration, two optimization steps are solved: The constrained minimiza-
tion of E with respect to w while keeping u fixed; and the minimization of E with
respect to u with w fixed. This procedure is summarized in Algorithm 3.

Algorithm 3 Alternate minimization of E(u, w).
Require: Initial Condition: u0(x) defined ∀x ∈ D1.

1: repeat
2: Weights Update Step: wk = arg minw E(uk, w), s.t. (7.9).
3: Image Update Step: uk+1 = arg minu E(u, wk).
4: until Stopping Criterion: ‖uk+1 − uk‖ ≤ τ

In the weights updating step, the minimization of E w.r.t. w yields

wk(x, x̂) =
1

q(x)
exp

[
−1

h
Ve(puk (x), pu(x̂))

]
, (7.10)

where q(x) is a normalization factor such that
∑

x̂∈D2
w(x, x̂) = 1 for each patch

puk (x). The parameter h determines the selectivity of the similarity potential.
If h is large, maximizing the entropy becomes more relevant, yielding weights
which are less selective. In the limit, when h → ∞, wk(x, ·) becomes a uniform
distribution over D2. On the other hand, a small h yields weights more concen-
trated on the patches that are similar to pu(x). In fact, when h → 0 the weights
are given by limh→0 w(x, x̂) = 1

#n(x)Xn(x)(x̂), where n(x) ⊆ Oc is the set of min-
imizers of Ve(pu(x), ·), i.e.n(x) = {x̂ ∈ Oc : Ve(pu(x), pu(x̂)) = Vmin(x)}, where
Vmin(x) is the minimum potential w.r.t. pu(x). In other words, when h → 0+

the weights encode a multivalued assignment of patches with centers in D2 for
each x ∈ D1.

The Euler equation of E w.r.t. u is∑
ẑ∈Oc

(αm(ẑ, z) + βm(z, ẑ))e′(u(z)− u(ẑ)) = 0 for all z ∈ O. (7.11)

This equation specifies the information transferred from the datum u(ẑ) to the
unknown u(z). This information can be transferred in any of the two modes
discussed previously, i.e. reception, by a patch in D1 covering z, of data coming
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from a patch in D2 covering ẑ, and/or transmission, of data from a patch in D1
covering ẑ, to a patch in D2 covering z. The term m(z, ẑ) gathers all contributions
by reception, whereas the term m(ẑ, z) considers all transmissions.

When e(t) = t2 we call the resulting method patch NL-means. And equation
(7.11) becomes

u(z) =
1

C(z)

∑
ẑ∈Oc

(αm(ẑ, z) + βm(z, ẑ))u(ẑ), (7.12)

for each z ∈ O, where the normalization constant C(z) is given by C(z) =∑
ẑ∈Oc(αm(ẑ, z) + βm(z, ẑ)). Let us comment that this image update differs from

the one used in [BCMS09]. Here u(z) is updated using contributions (captured
by m) of many patches that overlap z, while in [BCMS09] only the central pixel
of patch centered at ẑ is used for computing u(z).

Taking e(t) = |t|, we get the patch NL-medians. In this case, the Euler equation
(7.11) for u, given w, becomes

∑
ẑ∈Oc

(αm(ẑ, z) + βm(z, ẑ))sign(u(z)− u(ẑ)) = 0,

and its solution u(z) is obtained as a weighted median of u(ẑ) with ẑ ∈ Oc.

7.4 A departure from the variational model

We have seen that three different schemes can be derived from the proposed
variational model, by changing the values of α and β. We have interpreted them,
by observing the effect over the unknown pixels of u, as transmission (α = 1,
β = 0), reception (α = 0, β = 1), or combination of both (α = 1, β = 1). But
each scheme also forces the manner we compute w. However, if we abandon
the variational framework, we can combine different strategies for computing w
and updating u. This is equivalent to using a different analysis and synthesis for
the inpainting problem (denoted as non variational algorithms in Section 6.6.2 ).

We now propose a new scheme that computes the weights w according to the
transmission scheme (α=1, β=0), and updates the image u using the combined
scheme (α = 1, β = 1). The resulting algorithm was experimentally found to be
numerically stable, and for relatively high sampling densities to behave like the
combined scheme (α=1, β=1). However for low sampling densities it exhibits
a remarkable ability to speed up the convergence. An intuitive reason that may
explain this scheme relies on the fact that using the transmission potential (α=1,
β = 0), the weights w(x, ·) are always computed using coordinates around x,
with known values. Adding known positions around x̂ may provide a poorer
estimate of the weights, specially if the current interpolation around x is bad.
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h→ 0

h = 500
Figure 7.3: Synthetic. The first column shows the original image, and the ran-
dom samples (5% of the image) with the window gσ (see (7.4)) depicted in the
upper left corner. The second column shows a linear interpolation over the De-
launay triangulation of the samples. The remaining columns (from left to right)
correspond to the results of the schemes A, B, AB and O. The rows correspond
to two different values of h.

7.5 Experimental results and discussion

We now present experimental results with both synthetic and natural images
randomly sampled with densities from 20% to 5% of the image points. 1 We will
show only results corresponding to patch NL-means (i.e.p = 2 in the definition
of e from (7.4)). The four schemes derived from the potential (7.4) in Section
7.2, are referred here as A (for α = 1, β = 0), B (α = 0, β = 1), AB (α = 1,
β = 1), and O for the departure from the variational model (which is a variant of
AB). All of them have a computational cost proportional to A(D1) × A(D2)
(where A(Di) is the number of pixels of Di). Since D2 is a fraction of D1 (the
density of the sampling) then the algorithm is O(T ×A(D1)

2), where T is the
number of iterations (usually T < 200). A single iteration for a 256×256 pixels
image takes about 3 min on a 3GHz processor. However, with the coarse to fine
scheme described below, the convergence is generally attained with less than
40 iterations. This amounts to 120 minutes of computation.

Role of locality in the non-local algorithms. A common strategy to improve
the computational performance of nonlocal methods is to reduce the size of the
search window (subset of D2 arround the central pixel x), thereby reducing the
number of comparisons performed for each pixel. As a desirable side effect, this
enforces the ergodicity assumption over the data. In other words, the patches
needed to estimate the current point are assumed to be found in the vicinity
of it, not far away. As a consequence, the size of the search window is a very
important parameter, and it may be itself subject of optimization as in [KB06].
In our experiments we choose the search windows to have a reasonable size
(containing 100 to 500 samples) with respect to the density of the image.

Choice of Ve. The experiments shown in Figure 7.3 are aimed to compare the
performance of the different schemes. The best result for this experiment is ob-

1The experiments shown here are also available at: http://gpi.upf.edu/static/vnli.

http://gpi.upf.edu/static/vnli
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tained with the scheme AB. Other experiments are also consistent with these
results, so from now on we will mainly show results of AB and O. Notice in
Figure 7.3 that the textures are recovered in great detail, while the interface be-
tween them, is very imprecise. This evidences the exemplar-based nature of the
algorithms, since there are plenty of examples of textures, but only few of the
interface.

Initial condition and h. If the initial condition has artifacts, then minimizing
(7.5) with a small h tends to reinforce them. To reduce this dependence on the
initial condition we adopt the coarse to fine scheme proposed in [BCMS09], where
a decreasing sequence of h is used to recover first large scale structures and later
refine them (as h decreases). Figures 7.7 and 7.9 show the results of applying
the algorithms O and AB to natural images with sampling densities from 20%
to 5%. For high densities the performances of both schemes is similar. For lower
densities (5% for instance) O exhibits less dependence on the initial condition
than AB. In particular, we can obtain with O results similar to those obtained
with AB even without the coarse to fine scheme. Using h > 0 produces smooth
results with blurred details, while using h→ 0 introduces a staircasing effect. In
the first two columns of Figure 7.7 we display: a set of random samples, and an
optimal dithered set of the same image (optimal for the Laplacian-based inter-
polation as described in [BBBW08]). Both sets contain 10% of the image points.
The Laplacian interpolation from dithered samples takes advantage of the distri-
bution of the samples along the edges and permits to recover a visually pleasant
smooth image with clear edges (see [BBBW08]), while our method is less fit for
this task (second column of Figure 7.7). However, for random samplings the
results of the Laplacian interpolation are less convincing, while our algorithm
manages to recover most of the edges and textures of the image (see Figure 7.9).

Interpolation of large holes. In Figure 7.8 we show a preliminary result using
method B (only reception process) applied to the interpolation of a hole in a
sampled image, this choice of the potential leads to a functional similar to the
inpainting one shown in the previous chapter.

Let us remark that for this experiment the algorithm was applied without
making any distinction between the hole and the sampled areas. Other meth-
ods that involve the transmission process (AB or O) fail to fill the large holes,
although all manage to recover the sparsely sampled area. We attribute the non
regularity of the solution to the low frequency of the texture, which implies less
exemplars to copy from, evidencing again the main limitation of exemplar-based
methods. To overcome this problem a local regularization could be used to im-
pose smoothness on the result [PETM09].

7.5.1 Discussion: How does it work?

As we see from Figures 7.3 and 7.9 the proposed algorithm is able to recover
high frequency textures even when the sampling density is well below the cor-
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responding Nyquist frequency. There are tree factors that contribute to make it
work:

1. The textures are stationarity;

2. The sampling is non-regular;

3. And the overlapping of the patches in the interpolated image.

Let us study a couple of toy models.

Figure 7.4: Texture T and a patch q. The (known) pixels are highlighted in green.
Note that many incomplete exemplars of the same patch can be collected nearby
q (shown on the right), and the positions of the known pixels are different in each
exemplar.

Single texture. If the texture is stationary, then even if it is under-sampled we
can obtain several exemplars of the same textured patch from a single image.
And since the sampling is not regular then the exemplars will not exhibit the
same alias. Consequently collecting a sufficient amount of randomly sampled
exemplars and simply piling them permits to recover the texture.

Let us study this with a simple example, consider the texture T as the one
shown in Figure 7.4, and a patch q ⊂ T. We will assume that are known a set of
k incomplete (randomly sub-sampled) exemplars of the same texture patch (as
shown in Figure 7.4). It is easy to see that the probability of completely recover
the patch q ∈ RD (with D pixels) from a set of k incomplete exemplars is:

P (recovering q) =
(

1− (1− δ)k
)D

, (7.13)

where δ is the sampling density (known/total pixels). 1− (1− δ)k is the prob-
ability of recovering a certain pixel by piling the k exemplars. While the proba-
bility of recovering the entire patch is the product of D pixel probabilities. The
probability P (recovering q) is plotted in Figure 7.5(a) with increasing k for the
case of patches with D = 49 pixels and with sampling densities δ of 0.05, 0.1,
and 0.2.



122 CHAPTER 7. EXEMPLAR-BASED INTERPOLATION

0 50 100 150 200
0

0.5

1

k

P
r
o

b
.

 

 

δ=.2

δ=.1

δ=.05

(a) Probability of recovering a patch without considering
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(b) Probability of recovering a patch considering the overlap
(in the final image) of other 49 patches.

Figure 7.5: Probability of recovering a patch of size 7× 7 (D = 49), considering
k exemplars. The exemplars have densities δ: 20%, 10% and 5%. The graph in
(a) shows the probability of recovering a single patch as function of k. In the plot
the crosses are obtained by empiric verification of the formula (7.13). In (b) is
shown the estimation of the probability (7.14) of recovering a patch considering
the overlap of other 49 patches.

From Figure 7.5(a) we see that in order to recover a patch q with high proba-
bility, using exemplars with a density δ = 0.05 we need k > 160 exemplars. For
most textures it is easy to find many exemplars of the same pattern as shown
in Figure 7.4. But 160 patches is a respectable quantity that in some cases (as in
Figure 7.6) is not available, still the interpolation algorithm manages to recover
most of the textures.

If we consider that the recovered patches are going to be overlapped for as-
sembling the texture T, then we see that not all the patches need to be recov-
ered completely. Since the interpolation algorithm assembles all the recovered
patches in an image, then the lack of pixels in one patch may be compensated by
the abundance in its neighbor. Therefore considering the overlapping of patches
allows to adjust the probability of recovering the texture:

P(recovering q considering overlap) = (1− (1− δ)k D)D. (7.14)

That is, for each pixel of the texture we compute: the probability of not recover-
ing a certain pixel considering k exemplars plus the overlap of other k ∗ (D− 1)
exemplars. This probability grows very fast with k (as seen in Figure 7.5(b)), ob-
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serve that with an average of 3 exemplars per patch is sufficient to recover the
patch q with a high probability, independently of the density δ. The previous
statement means that there are (in average) 3 exemplars for each one of the 49
overlapped patches.

Figure 7.6: Interpolation with only few exemplars. From left to right: the original
image (140× 25 pixels), the mask of known pixels (with 194 samples) and the
interpolation obtained using the scheme O with h = 100.

Multiple textures. In the previous discussion we considered the recovery of a
single textured patch, this hides the complexity of finding the correspondence
relation between the exemplars. Let us not concentrate on the dynamic of the
interpolation algorithm. A remarkable fact is that the proposed method is ca-
pable of discerning and recover several textures simultaneously. In part this is
due to the locality of the search window (mentioned earlier); However follow-
ing [ACS09] we can also justify this behavior (at least partially for patch NL-
means) by interpreting the interpolation algorithm in terms of blurring mean-
shift [Che95].

Mean-shift [FH75] is a procedure for estimating the modes of a density. Let
us consider a dataset {zn}N

n=1 ⊂ RD and define a kernel density estimate

p(z) =
1
N

N∑
n=1

K

(∥∥∥∥z− zn

h

∥∥∥∥2
)

,

with bandwidth h and kernel K(t) = e−t/2 for Gaussian. Mean-shift iteratively
finds for the modes of the density p, it does so by arranging the equilibrium
equation ∇p(z) = 0 into an iterative scheme zτ+1 = f (zτ) with

f (z) =
N∑

n=1

K′
(∥∥ z−zn

h

∥∥2
)

∑N
n′=1 K′

(∥∥∥ z−zn′
h

∥∥∥2
)zn. (7.15)

In blurring mean-shift [Che95], each point zm of the dataset actually moves to
the point f (zm). That is for each point zm in the dataset we obtain a new point
z̃m ← f (zm). After one iteration the blurring mean-shift results in a new dataset
{z̃n}N

n=1 which is a blurred version of the previous one. This process is known
[Che95, CPn06] to hierarchically collapse the datasets into clusters, where the
final number of clusters depend on the support of the kernel (in the case of a
Gaussian kernel it is a single cluster).

Going back to the analysis of our algorithm. For our case let us further sim-
plify the situation by considering the potential that corresponds to taking α = 0
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and β = 1 in (7.4).Rewriting the corresponding image update (7.11) and undo-
ing the variable change we get

∑
y∈Ωp

u(x + y) =
∑

y∈Ωp

∑
x̂∈D2

w(x, x̂)XOc(x̂ + y)∑
x̂∈D2

w(x, x̂)XOc(x̂ + y)
u(x̂ + y), ∀x ∈ D1.

(7.16)
In the inner sum of (7.16) we recognize the structure of the mean-shift update
rule (7.15)

[ f (zx)](y) =
∑

x̂∈D2

w(x, x̂)XOc(x̂ + y)∑
x̂∈D2

w(x, x̂)XOc(x̂ + y)
zx̂(y), y ∈ Ωp

where the patches are denoted as vectors zm = (pu(m + y))y∈Ωp ∈ R|Ωp |, and
the indicator functions XOc are accounting for the possibility of unknown pixels
in pu(x̂). The weights w(x, x̂) are exponential defined in (7.10), they correspond
to the kernel’s derivative. The update rule (7.11) becomes an average of mean-
shifted patches

u(x) =
∑

y∈Ωp

[ f (zx)](y). (7.17)

In this case the dataset is a set of points correspond to the set of image
patches. Modulo the average that takes place in (7.17) this procedure behaves as
blurring mean-shift, and we expect the dataset to collapse into clusters. How-
ever, in our case the points are not free to move in all the directions, because
several dimensions of each point are locked. These dimensions correspond to
the known pixel values of each patch, which translate into hard constraints on
the mean-shift process. Since the points are constrained to different subspaces,
the evolution of the dataset will not converge to a single cluster. The evolution
will drive the clusters to the intersection of the hyperplanar constraints, hope-
fully these will be nearby the original image patches.

7.6 Conclusions and future work

In this chapter we extended the variational framework for exemplar based im-
age inpainting to image interpolation. Being based on the self-similarity prior,
the resulting algorithms are capable of hallucinating textures even for severely
undersampled images. And sometimes, when the sampling is sufficiently irreg-
ular and the texture is big enough, then the hallucinated textures are correct.
These results suggest that imposing adequately a self-similarity prior may lead
to restoration algorithms capable of recovering from aliasing artifacts. In the fu-
ture we will extend the current model to consider samples located at non-integer
positions.
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Figure 7.7: Sparse sampling interpolation. 1st row: original images. 2nd row:
input data with sample densities of 10%, 10% dithered [BBBW08], 20% and 9%.
3rd row: linear interpolation over the Delaunay triangulation of the samples;
PSNRs: 25.8, 30.6 (not considering the black frame), 25.0 and 22.74. 4rt row:
results of method AB with h = 100; PSNRs: 22.5 ,22.7, 25.5 and 22.79. 5th row:
results of AB with h → 0; PSNRs: 22.6, 23.0, 25.5 and 22.56. 6th row: results of
the method O with h→ 0; PSNRs: 22.6,21.7,25.1 and 22.69. (Details can be better
appreciated by zooming on a computer screen)
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Figure 7.8: Inpainting experiment. From left to right top to bottom: the origi-
nal image Mitama Matsuri 200×113, the available samples (the sampling density
outside the hole is 20% yielding a global sampling density of 14%), the result
of linear interpolation over the Delaunay triangulation and the result of algo-
rithm B. The algorithm makes no distinction between the hole and the sampled
regions.
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Figure 7.9: Interpolation with lower sampling density. From left to right top to
bottom: original image Barbara 512×512, the available samples 5% of the samples,
the result of linear interpolation over the Delaunay triangulation (PSNR 20.1),
results of the Laplacian interpolation (PSNR 19.9) and the output of algorithm
O with h=100 (PSNR 22.8).





Part III

Digital elevation model
interpolation

129





Chapter 8

Range data interpolation

The acquisition of range data is generally associated, due to different factors, to some
data loss. This produces holes in the obtained data and, therefore the elevation maps
need to be interpolated. When a reference image of the scene is available it is possible
to interpolate and to increase the spatial resolution of the underlying measurements by
incorporating geometric information provided by the image. In this chapter we motivate
the problem of digital elevation model interpolation from sparse or incomplete data. We
explain under what circumstances the elevation maps contain holes and outline three
methods for interpolation them which are described in detail in the following chapters.

8.1 Motivation: interpolation of elevation data

The demand for high resolution remote sensing products on urban areas has
experimented a rapid growth in the last times. In the case of Digital Elevation
Models (DEM) and High Resolution Imagery for civil and defense applications,
not only has grown the need of accuracy but also the amount of data (see for
instance Google Earth), making impractical any non-automatic technique.

At present, the urban elevation data is mainly harvested from cadastral data,
acquired with LIDAR range scanners (light detection and ranging or laser imag-
ing detection and ranging), radar interferometry or applying 3D reconstitution
methods to aerial images. Except for the cadastral data, the other techniques
generally require post-processing of the data to impose regularity of the recon-
structed surface or to fill the gaps in the acquisition.

We will concentrate on data produced by a particular class of stereo algo-
rithms called small baseline stereo [SAM08, SMA10]. The baseline or stereoscopic
coefficient is the distance of the cameras between the two acquisitions. It is com-
mon to admit that the accuracy of the disparity measure (which is directly re-
lated to the distance of the object) depends only on the resolution of the im-
ages, so to obtain the maximal precision the baseline should be increased. But in
[Del04] it is shown that if the images are correctly interpolated and the dispari-
ties are computed with sub-pixel precision, then the precision is not dependent
on the stereoscopic coefficient.
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132 CHAPTER 8. RANGE DATA INTERPOLATION

Small baseline stereo is particularly attractive because it reduces the occlu-
sions artifacts, still allowing to compute disparities under strong sub-pixel accu-
racy requirements [Del04, SMA10]. However disparities at such precisions can-
not be computed everywhere in the image, leaving gaps in the model. Although
data acquired by LIDAR and radar interferometry also requires post-processing
because of occlusions, noise and limited spatial resolution, we will not focus on
them.

Stereopsis is a process that allows to reconstruct the depth information of a
scene from two images. It can be subdivided into four steps: camera calibration,
rectification, correspondence computation and reconstruction. In the calibration and
rectification steps the physical geometry of the camera system (position, orienta-
tion, focal length...) is estimated and the images are re-projected on planes that
facilitate the correspondence task. The correspondence step computes depth of
corresponding features observed in the two images. The reconstruction takes
the correspondences and construct a feasible model that explains them. Even
though the main subject of this part is the reconstruction step, we should first
understand the artifacts and characteristics of the data provided by the corre-
spondence methods. So, we comment here on the correspondence methods,
and we will discuss the reconstruction in next section.

Stereo algorithms extract depth information from two or more images of a
scene by finding corresponding features between the images. If the correspon-
dence is correct we can effectively compute the depth of a feature (a point for in-
stance) by computing its disparity, however not all the features can be matched
faithfully. It is clear that, to overcome this uncertainty some hypothesis about
the regularity of the scene must be made in the reconstruction step. Common
hypotheses are based on reasonable physical and geometrical properties of the
scene.

Correspondence methods are classically [BBH03] grouped into: local corre-
spondence methods for those that rely on local information to determine the corre-
sponding point and global correspondence methods for those that rely on informa-
tion of a whole scanline or the entire image to compute the solution.

Global correspondence methods. The global methods produce dense dis-
parity maps. The correspondence is computed using discrete optimization
techniques such as graph cuts [KZ06], belief propagation [SZS03], dynamic
programming [FKO+04] or using continuous variational techniques [PSGB08,
GKC]. These methods generally rely on smoothness constrains imposed on the
disparity map that range from total-variation to piecewise smooth models.

In a certain way, the global correspondence methods also include the recon-
struction phase, because the smoothness constraints translate into priors for the
reconstructed model. However since the correspondence is generally computed
as a minimum of a global objective function it is difficult to asses the precision
of the individual measurements since the errors are diluted in the global opti-
mization.
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Local correspondence methods. The local correspondence methods match lo-
cal features from one image to local features in the other image. Block matching
methods are among the most used local correspondence methods, for which the
feature is a window (block) surrounding the current point. The correspondence
is computed by minimizing a distance measure of a neighborhood of the interest
pixel. The blocks are usually compared with NCC (Normalized Cross Correla-
tion), SSD (Sum of Squared Differences) or SAD (Sum of Absolute Differences).
The choice of this function determines the performance of the method and de-
pends on the application of the specific algorithm, for instance SSD and SAD are
very fast but are very sensitive to radiometric changes between the images, see
[SS02] for a compendium of methods.

Independently of the choice of the block distance measure, a minimum of
this distance does not assure a correct match. In general only a proportion of
the image can be reliably matched [SMA10]. Due to the so called “flattening ef-
fect” [SB97, Del04] block matching assigns the wrong disparity to points whose
window touches some edge of the model. Some techniques alleviate this prob-
lem by adapting the shape of the window [BGGP07, FRT97, KSC01, KO94] or
matching other geometric primitives [SZ00]. Another approach is to detect these
situations. The techniques pioneered by Delon and Rougé [Del04] and further
developed by Sabater et al. in [SMA10] allow to asses the quality of the matches
by using an contrario rejection algorithm. As a result the disparity information
provided by this type of algorithms is very precise but incomplete, particularly
near the boundaries of the objects.

While local methods are very efficient they are sensitive to ambiguous re-
gions (like uniform zones or occlusions), while global methods are less sensitive
to local problems due to their global nature (see Scharstein and Szeliski taxon-
omy [SS02] for a comparison of algorithms). But also due to their global nature,
their precision is harder to asses locally and are more computationally expen-
sive. We will concentrate on the interpolation of incomplete disparity data pro-
vided by local methods.

Figure 8.1: DEM data. From left to right: a sparse DEM to be interpolated,
the reference image and the ground truth elevation data for the represented
area. The elevation is encoded as a gray level image (higher elevation values
are darker).
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8.2 Model reconstruction

We have seen that the local correspondence methods generally produce sparse
and not equally significant measurements over all the image. In Figure 8.1 we
show an incomplete correspondence map obtained after rejecting some of the
correspondences by the criterion proposed in [Del04] (the correlation curvature).
To obtain a dense model, the measurements must be interpolated and/or regu-
larized. The objective is to interpolate the known data according to some reg-
ularity prior, taking into account the shapes and structures present in an image
of the scene. The regularity prior can be imposed by requiring a minimal sur-
face, minimum curvature of the surface [MS05], as piecewise models such as
the affine clusters in [ABGvG10], or affine regions obtained from a segmenta-
tion of the image [IPG+07, CJDS03, KSK06]. Other approaches use higher level
priors that impose the scene structure [LDZP08, KP09] (in this case roofs). Al-
though some methods may interpolate the model using only the depth informa-
tion [ABGvG10], when available, the information provided by an image of the
scene is valuable and most methods will take advantage of it.

When the elevation data is very sparse it becomes harder to determine the
boundaries between the different objects, and this is the case we are interested
in. The aim is to obtain geometrically meaningful interpolation of the data by
imposing the shapes observed in a reference image of the scene. This idea has
been applied before for image fusion [BCBV06, Alv02]. In the current context it
corresponds to the fusion of elevation data with the image.

8.3 Anisotropic diffusion and model interpolation

In the following chapters we discuss three models for diffusion and interpola-
tion of digital elevation models, based on the Lambertian hypothesis. That is, a
uniform surface (in the model) with a constant angle will be seen with a con-
stant intensity in the image. This assumption allow us to extrapolate informa-
tion across uniform regions of the image.

We must acknowledge that areas of constant intensity in the image do not
necessarily correspond to the same surface in the model (these are false nega-
tives of the edge detection), but this situation is unlikely since in most cases a
discontinuity in the model corresponds to a change of intensity in the image.
On the other hand, heavily textured objects will induce false boundaries in the
model (false positives). Although the latter should not be a problem if there are
enough samples for recovering each apparent part of the object. The problem is
that using the gray level as a cue for determining a surface can be misleading.
To alleviate this problem other (richer) descriptors, of texture for instance, can
be used [SGT02, BS07], but we are not going to consider them.

Chapter 9 approaches the interpolation problem from a variational perspec-
tive, using an anisotropic regularizer based on a popular approximation of the
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total variation. For simplicity the functional is formulated in the discrete setting

min
u∈U

∑
x∈N2

√
β2 + |A(x)∇u(x)|2 + λ

∑
x∈N2

w(x)|u(x)− f (x)|p,

where U := RN×N , β is a small constant, A(x) ∈ R2×2 determines a tensor
field that defines the anisotropy (when A = Id we recover the isotropic case),
p = {1, 2} selects the data fitting term, f , w ∈ U are respectively the initial
data and a binary mask that indicates where this data is valid. The main prop-
erty of the total variation is that preserves the discontinuities of the model u.
The discontinuity preserving property is important for many Computer Vision
problems, e.g. to preserve edges in the solution. And the approximation β > 0
avoids the difficulties associated with the non-differentiability of the total vari-
ation. Moreover the model with β > 0 can also be interpreted as a minimal
surface regularization, which seems appropriate for this application. The tensor
A(x) is defined so that the diffusion is inhibited across the level lines of the ref-
erence image I. The direction of the level lines is approximated by z(x)⊥, where
z(x) = ∇I(x)√

1+|∇I(x)|2
and z(x)⊥ denotes the counterclockwise rotation of z(x) of

angle π
2 . Then the tensor A(x) = Id− z(x)⊗ z(x) = z⊥(x)⊗ z⊥(x).

The second model (Chapter 10) is formulated in the context of anisotropic
Cheeger sets (sets that minimize the quotient between an anisotropic perimeter
and its area). The model we consider is based on the anisotropic total variation
for a general class of anisotropies φ (to be made precise in Chapter 10)

min
u∈BVφ(Ω)∩L2(Ω,h dx)

{∫
Ω
|Du|φ +

λ

2

∫
Ω
(u− f )2h dx +

∫
∂Ω

φ(x, νΩ)|u| dHN−1
}

,

where φ : Ω × RN → R is a metric integrand in Ω which is symmetric in ξ,
i.e., φ(x,−ξ) = φ(x, ξ) for any ξ ∈ RN and any x ∈ Ω; h ∈ L∞(Ω), h(x) > 0
a.e., with

∫
Ω

1
h(x) dx < ∞; f ∈ L2(Ω, hdx), λ > 0; and νΩ denotes the outer unit

normal to Ω at points of ∂Ω. We denote by L2(Ω, hdx) the set of measurable
functions u : Ω → R such that

∫
Ω u2 h dx < ∞. We apply this formalism to

compute the global minima of the geodesic active contours model, and to the
interpolation problem. We define a diffusion tensor similar to the previous case,
that also captures the magnitude of the edge in addition to its orientation. Thus
φ(x, ξ) = |Axξ|, where for each x ∈ Ω Ax is a symmetric positive definite matrix
defined as Ax = z⊥(x)⊗ z⊥(x) + 1√

1+|∇I(x)|2
z(x)⊗ z(x).

Finally, in Chapter 11 we propose a new interpolation algorithm that uses
geodesic distances to propagate intensities to neighboring pixels (neighbors in
the geodesic sense). The geodesic distance between two points a, b ∈ Ω is

d(a, b) = min
γa,b

∫ 1

0
|∇I(γa,b(t)) · γ̇a,b(t)|dt,

where γ(t) : [0, 1] → Ω is a curve in Ω, γa,b denotes the curve connecting a and
b such that γa,b(0) = a and γa,b(1) = b, and γ̇(t) denotes the tangent of the
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curve at t. The distance accumulated by a curve crossing a uniform area of I
or moving perpendicular to ∇I is 0, while the length increases when the curve
crosses a steep gradient. This means that pairs of points in the same level line
have small distances. This permits to define geodesic neighbours of each sample
in f which are used in the interpolation step to define affine planes (see Chapter
11 for more details).



Chapter 9

Constrained Anisotropic Diffusion
and some Applications

In this chapter we consider an anisotropic minimal surface regularizer coupled with a
robust data fitting term for interpolation of sparse digital elevation models. The proposed
regularizer constraints the diffusion of the elevation data to the isophotes of a reference
image u. This allows to recover geometric features not present in the elevation data.

9.1 Introduction

Among the stereo matching methods [BBH03, SS02], the algorithms based on
windowed correlation allow to achieve the highest accuracy in terms of depth
estimation [Del04, SMA10]. This feature is particularly attractive for the acquisi-
tion of digital elevation models (DEM) using photogrammetric techniques. How-
ever, due to the local nature of correlation methods, the elevation data they pro-
vide is not equally accurate at all the points of the image. In Figure 9.2 we show
an incomplete correspondence map obtained after rejecting the correspondences
with high error as estimated by the criterion proposed in [Del04] (the correlation
curvature).

In order to recover a dense model, the elevation data must be interpolated.
The objective is then to interpolate the sparse data by diffusing them to un-
known areas, while imposing certain regularity of the interpolated model. For
urban scenes the target models are discontinuous, therefore the regularity prior
must allow discontinuities. Since the relevant discontinuities are likely to oc-
cur also as edges in the image of the scene, this image should be taken into
account in the definition of the model prior. Thus, we propose to interpolate the
sparse digital elevation data by a diffusion process constrained by the geometry
extracted from a reference image [BCBV06, Tsc02], coupled with a data fitting
term.

For simplicity, we shall work in a discrete setting, and thus images are repre-
sented as vectors in X = RN×N (without loss of generality we consider square
images), we denote by Ω = {1, 2, . . . , N}2, the image domain. We state our
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problem as the minimization of a functional:

min
p∈X

E(p) + λD(p), (9.1)

where D(p) is a data term to be made precise later, and E(p) is an anisotropic
regularization term

E(p) =
∑
x∈Ω

√
β2 + |A(x)∇p(x)|2 . (9.2)

For each x ∈ Ω A(x) is a 2× 2 matrix and ∇ denotes a suitable discretization
of the gradient (to be made precise later). The matrix A is called the structure
tensor and allows to embed information on the directions were we want to con-
strain the diffusion process. The regularizer (9.2) corresponds to an anisotropic
minimal surface regularizer. The minimal surface regularizer [FK98] can be re-
covered by setting A = Id, β = 1 in (9.2). The gradient descent minimization of
(9.1) is:

∂p
∂t

= div

(
A† A∇p√

β2 + |A∇p|2

)
− λ

∂D
∂p

(p), (9.3)

plus Neumann boundary conditions, where−div denotes the adjoint of the gra-
dient ∇ in X.

Diffusion equations of the form:

∂t p = div (A∇p),

where A is a diffusion tensor, i.e., a map which associates to each x ∈ Ω a pos-
itive definite matrix A(x), have been studied in many contexts. In particular,
Weickert [Wei98] studied the continuous, the time discrete and spatio-temporal
discrete diffusion models and its applications to image processing; Tschumperle
considered this problem [Tsc02] applied to the diffusion of multi-valued data.
In [WSW06] Welk et al. have developed the so called Locally Analytic Schemes
(LAS) for this type of problems and analyzed its connections to wavelet shrink-
age. Graph-cuts have also been applied to similar problems [BVZ01, KZ06],
however for the precision we are considering here the memory requirements
grow prohibitively as we increase the number of labels i.e. the number of quan-
tized altitudes.

In next section we propose a model for DEM interpolation and we develop
an explicit numerical method for solving (9.3). Then and we analyze it in Sec-
tion 9.3. This explicit scheme, although slower (in terms of convergence) than
an implicit one, allows to easily combine the regularizer with a wide range of
data terms such as the one described in [FAP05]. In Section 9.4 we apply the
proposed method to the interpolation of digital elevation models and present
some experiments to illustrate its performance.

It is worth noting that the algorithm we developed was also applied in the
context of diffusion of probability vector maps. Vector probability diffusion (VPD)
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Figure 9.1: Regularization subject to level lines. The evolution of surface p (dotted level
set) is constrained by the geometry (square) given by its normal z. The gradient of p is
projected over the basis {z, z⊥} and ∇p− 〈∇p, z〉z is aligned with z⊥.

[PS01] is a tool for improving classification that diffuses the probability maps of
concrete features detected in an image. The anisotropic version of (VPD) was
proposed in [Lec05].

9.2 An anisotropic diffusion model for DEM regularization
and interpolation

Assume that u ∈ X is a given reference image of a stereo pair from which we
have computed the disparity map m : D → R. We denote by D the subset of
Ω where m can be reliably computed. We define the mask function w(x) = 1 if
x ∈ D and 0 otherwise. We assume that, for each known point x, an estimate of
the error’s standard deviation Err(x) is available (see [Del04, SMA10] for details
on how this estimate could be computed). The height map m we are considering
is incomplete, specially after considering the mask w.

We will interpolate m with a function p on the full N × N grid by mini-
mizing the energy (9.1). Assuming that the geometry of the reference image
u (expressed in terms of its edges) is correlated to the height p, we define as in
[BCBV06, Tsc02] a structure tensor that inhibits the diffusion of p across the level
lines of u. In this way, we correlate the geometry of u and p.

Structure tensor. The structure tensor is obtained as A(x) = (I − z(x)⊗ z(x)),
where the vector field of unit normals to the level lines of the image u is de-
fined as z(x) = ∇u(x)

|∇u(x)| if |∇u(x)| ≥ b and z(x) = ∇u(x)√
b2+|∇u(x)|2

otherwise. The

constant b > 0 is a threshold on the gradient which ensures that its direction is
reliable, in our cases we select b = 50 for images with a range [0, 3000].

The effect of the structure tensor (depicted in Figure 9.1) is a projection of the
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gradient field ∇p in the direction of z:

A∇p =

(
1− z2

x −zxzy
−zxzy 1− z2

y

)
∇p = ∇p− 〈z,∇p〉z.

Data fitting terms. We consider data terms based on the L2- and L1-norms.
The weighted L2-norm yields

D2(p) =
∑
x∈Ω

w(x)|p(x)−m(x)|2, (9.4)

where w is the binary function described before.
To avoid bias due to outliers in m we also consider a term based on the L1-

norm
D1(p) =

∑
x∈Ω

w(x)
√

a2 + |p(x)−m(x)|2 , (9.5)

a > 0. This term keeps the robustness of the L1-norm while avoiding the numer-
ical difficulties associated to the non-differentiability of the L1-norm at 0.

When the measurements m have a known and uniform error variance σ2 it
is possible to impose the data fitting as a constraint D2(p) ≤ σ2L, where L is the
number of pixels such that w(x) 6= 0 (or D1(p) ≤

√
a2 + σ2 L). Then the value of

λ is chosen so that the constraint is satisfied (for instance, by means of Uzawa’s
method [BCRS03, GSZ06, ABCH08]). However in general the disparities com-
puted with stereo correlation have a non uniform error variance. In this case a
single Lagrange multiplier as in (9.1) will give an unfair weight to the values
with high variance.

Indeed, in [Del04] and [SMA10] the authors suggest that the disparities com-
puted near the image borders are more reliable than in flat areas and provide
an estimate of the error variance (in the case of [SMA10] a quite precise one).
Therefore we can assume that we know a local estimate Err(x)2 of the error’s
variance at each point x, and that this error has 0 mean (the differences (p−m)
have 0 mean) .

Then, instead of adapting locally the value of λ as in [BCRS03, GSZ06,
ABCH08], we include the error estimate directly into the data terms obtaining
the two new terms:

D∗∗2 (p) =
∑
x∈Ω

w(x)
|p(x)−m(x)|2

Err(x)2 , (9.6)

D∗∗1 (p) =
∑
x∈Ω

w(x)

√
1 +
|p(x)−m(x)|2

Err(x)2 . (9.7)

For both terms the new expected error per pixel is 1, and we write the constraints
as: D∗∗2 (p) ≤ L and D∗∗1 (p) ≤

√
2 L. This observation allows us to use a unique

value of the multiplier λ for the whole data term.
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9.3 Numerical Analysis of Constrained Diffusion

We denote by X the Euclidean space RN×N . The Euclidean scalar product and
the norm in X will be denoted by 〈·, ·〉X and ‖ · ‖X , respectively. Then the image
u ∈ X is the vector u = (u(x))x∈Ω. If u ∈ X, the discrete gradient is a vector in
Y = X× X given by ∇u(x) = (∇1u(x),∇2u(x)), where

∇1u(i, j) =
{

u(i + 1, j)− u(i, j) if 1 ≤ i < N
0 if i = N,

∇2u(i, j) =
{

u(i, j + 1)− u(i, j) if 1 ≤ j < N
0 if j = N,

are the horizontal and vertical partial derivatives computed with forward dif-
ferences (the pairs (i, j) represent the coordinates of x ∈ Ω). Other choices of the
gradient are possible, this one will be convenient for the developments below.

We denote the euclidean norm of a vector v ∈ R2 by |v|. We define
the Euclidean scalar product in Y in the standard way by 〈r, q〉Y =

∑
x∈Ω

(r1(x) q1(x) + r2(x) q2(x)) for every r = (r1, r2), q = (q1, q2) ∈ Y. The norm
of q ∈ Y is, as usual, ‖q‖Y = 〈q, q〉1/2

Y . We define the discrete divergence div as
the dual operator of ∇, i.e., for every p ∈ Y and u ∈ X we have

〈−div p, u〉X = 〈p,∇u〉Y.

One can easily check that div is a discrete divergence computed using backward
differences.

Let us consider the discrete functional:

E(p) + λD(p) =
∑
x∈Ω

√
β2 + |A(x)∇p(x)|2 (9.8)

+λ
∑
x∈Ω

w(x)α(x)
√

a2 + |p(x)−m(x)|2 ,

where w(x) is a binary mask defined in Section 9.2 and α(x) > 0 is a weighting
function to be described later. We propose to minimize (9.8). Since the functional
E + λD is strictly convex, there is a unique minimum of it in X, call it p∗. To
minimize E(p) + λD(p) we use an explicit gradient descent method, i.e., an
iterative scheme of the form pn+1 = pn − tn∇(E + λD)(pn) with tn > 0 for all
n, which in the present case can be written as:

pn+1 = pn + tn

(
div

(
At

pn Apn∇pn
)
− λwα

pn −m√
a2 + |pn −m|2

)
, (9.9)

plus Neumann boundary conditions, where Ap = At
p = A

(β2+|A∇p|2)1/4 .

Observe that, since we are in the discrete case, the term inside the parenthesis
is bounded in X with a bound independent of n. Moreover, since the minimum
of E + λD is unique, using Theorem 11 below (see [Sho85]) we have that {pn}
converges to p∗
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Theorem 11 (Shor 1985). Let X be a vector space of finite dimension and J be a convex
function defined on X which has a bounded set of minimum points X∗. Assume that tn
is a sequence of positive numbers satisfying the conditions

tn > 0, lim
n→+∞

tn = 0,
+∞∑
n=0

tn = +∞, (9.10)

and let xk be a sequence of vectors in X generated by the formula: xk+1 ∈ xk− tk∂J(xk),
where ∂J(xk) is a subgradient of J at xk with initial condition given by some x0 ∈ X.
If the sequence ∂J(xk) is bounded, then there is a subsequence converging to some point
x∗ ∈ X∗. If the minimum of J is unique, then xk converges to it.

The previous result applies to three cases since the formulation (9.8) includes:

• Case 1: α(x) = 0. In this case we are only considering the energy E(p),
and its evolution is given by: pn+1 = pn + tndiv

(
At

pn Apn∇pn
)

.

• Case 2: α(x) = 1, a being a positive constant and w ∈ X being a binary
mask. It corresponds to the minimization of E(p)+ λD1(p) (Equation (9.5)
as described in Section 9.2).

• Case 3: α(x) = 1
Err(x) ; a = Err(x). In this case the value of α = 1/a is not

constant and can be interpreted as a weighting function to impose a local
control on the errors. This applies to the minimization of E(p) + λD∗∗1 (p)
(Equation (9.7)).

Now let us consider the case with a quadratic data fitting term in the energy,
for instance, assume that we replace the term D(p) in (9.1) by:

D2(p) =
∑
x∈Ω

α(x)w(x)|p(x)−m(x)|2 (9.11)

and we minimize E(p) + λD2(p). In this case, ∂D2
∂p = 2α(x)w(x)(pn −m) is not

bounded uniformly in pn and we cannot use Theorem 11. Let us denote

Cn(p) = div
(

At
pn Apn∇p

)
, Bn(p) = Cn(p)− 2λαw p,

where αwp(x) = α(x)w(x)p(x) ∀x ∈ Ω. In this case, we may write the gradient
descent equations for E(p) + λD2(p) as:

pn+1 = pn + dtCn(pn)− dtλαw2(pn −m) = (Id + dtBn)pn + 2dtλαwm. (9.12)

By iterating we may express pn+1 in terms of p0 by the formula:

pn+1=
n∏

i=0

[Id + dtBi(pi)]p0

︸ ︷︷ ︸
I

+ 2dt λαwm

1 +
j=n−1∑

j=0

 n∏
k=j+1

[
Id + dtBk(pk)

]p0

︸ ︷︷ ︸
I I

.
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The sequence pn is bounded and the above method is stable. This will follow as
a consequence of Proposition 1 below which guarantees the boundedness of the
term (I) and the convergence of the series in (I I) as soon as dt < β

4+λαβ . This
condition allows to cover two cases:

• Case A: α(x) = 1 and w ∈ X being a binary mask. It corresponds to the
minimization of E(p) + λD2(p): Equation (9.4) in Section 9.2.

• Case B: α(x) = 1
Err(x)2 . In this case the value of α is not constant and can be

interpreted as a weighting function to impose a local control on the errors.
In this case, we minimize the functional E(p) + λD∗∗2 (p) (Equation (9.6)) .

For a linear operator A : X → X, we denote by ρ(A) its spectral radius, that
is max{|λi| : λi eigenvalue of A}.

Proposition 1. If dt < β
4+λαβ , then ‖Id + dtBn‖X = ρ(Id + dtBn) ≤ 1− ε for some

ε > 0.

Proof. Observe that Cn is a symmetric operator and thus its norm in X coincides
with its spectral radius. Now, observe that λi is an eigenvalue of Id + dtBn if
and only if λi = 1 + dtµi − 2dtλα for some eigenvalue µi of Cn. Our statement
follows if we prove that

− 1 + ε ≤ 1 + dtµ− 2dtλα ≤ 1− ε ∀µ eigenvalue of Cn. (9.13)

Now, we observe that the eigenvalues of Cn are contained in the interval [− 8
β , 0].

Indeed, if x is an eigenvector of Cn corresponding to the eigenvalue µ, we have

µ|x|22 = 〈Cn(x), x〉X = 〈div (At
x Ax∇x), x〉X = −〈At

x Ax∇x,∇x〉Y
= −〈Ax∇x, Ax∇x〉Y = −‖Ax∇x‖2

Y ≤ 0

and ‖Ax∇x‖2
Y ≤ 1

β‖A∇x‖2
Y ≤ 8

β because ‖Ax‖ ≤ 1 and ‖∇p‖2
Y ≤ 8‖p‖2

X . Since
the eigenvalues of Cn are negative, (9.13) can be written as

2− ε ≥ dt(|µ|+ 2λα) ≥ ε. (9.14)

If {µi} are the eigenvalues of Cn, this condition is implied if we choose dt such
that

ε

mini |µi|+ 2λα
≤ dt ≤ 1− ε

maxi |µi|+ 2λα
,

which is implied by a choice of dt such that ε
2λα ≤ dt ≤ 1−ε

(8/β)+2λα
. We can find a

value of ε > 0 satisfying this as soon as dt < β
4+λαβ .
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(a) Reference image (b) Input elevation data
(57% of pixels are unknown)

(c) Estimated error variance
(brighter for higher error)

(d) Ground truth (e) Anisotropic diffusion (f) Isotropic diffusion

(g) Ground truth 3D (h) Anisotropic diffusion 3D (i) Isotropic diffusion 3D

Figure 9.2: DEM interpolation. The first row shows the inputs of the method: the refer-
ence image, the elevation data to be interpolated and the error map. In the second row
are shown the ground truth and two interpolation results obtained with anisotropic and
isotropic regularization, both using the D∗∗1 data fitting. The elevations are encoded as
gray level images. The third row displays the corresponding elevation models.
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ISOTROPIC ANISOTROPIC
DATA TERMS Mean d1 Mean d2 Mean d1 Mean d2

D1 1.0165 0.0367 1.0106 0.0236
D∗∗1 1.0143 0.0321 1.0115 0.0254
D2 1.0199 0.0438 1.0118 0.0259
D∗∗2 1.0158 0.0358 1.0123 0.0274

initial condition 1.0241 0.0552 N/A N/A

Table 9.1: Experiments with DEM interpolation. We report here different combinations
of interpolation algorithm and data terms. The errors are measured against the ground
truth information as the mean of d1(p(x), m(x)) =

√
a2 + |p(x)−m(x)|2 and the mean

of d2(p(x), m(x)) = |p(x)−m(x)|2.

9.4 Experimental results

The experiments with DEM interpolation where performed using a low dis-
parity synthetic data set kindly provided to us by the CNES - Centre National
d’Etudes Spatiales (the reference image is shown in Figure 9.2(a)). They also pro-
vided us with a disparity map and the map of estimated disparity errors Err(x)
(Figures 9.2(b) and 9.2(c)) . Both where obtained using the correlation technique
mentioned in Section 9.2. As can be seen in Figure 9.2(b), the initial disparity
map contains sparse information, mostly because some points have errors be-
yond a certain threshold, thus, the known data must be interpolated. To test the
performance of the different interpolation strategies we compare them against
the provided ground truth (Figure 9.2(d)).

All the experiments where performed with the same value of β = 0.025, the
time step dt was determined according to the criterion described in Section 9.3,
and the parameter λ was adjusted using Uzawa’s algorithm [BCRS03, ABCH08]
in order to satisfy the constraints corresponding to each data term (Section
9.2). In order to compare the results obtained using local and global con-
straints we compute the global error σ from the error map Err(x) (which is the
standard deviation at each point). The global standard deviation is given by

σ =
√

1
L
∑

x∈Ω Err(x)2 = 0.032.
In Figure 9.2 we compare the results of isotropic and anisotropic regulariza-

tion (Figures 9.2(f) and 9.2(e) resp.) of the data given in Figure 9.2(b). As it can
be seen, the shape driven regularization produces a more coherent result. This is
confirmed by the reconstruction displayed in Figures 9.2(h) and 9.2(i) and by the
errors in Table 9.1 (computed with respect to to the ground truth). We have also
verified that the data fitting constraints are satisfied by our algorithm and that
the data fitting terms have a better local behavior when using D∗∗i that when
using Di. Finally, let us observe that the use of a robust norm (L1 in this case)
effectively increases the precision, but this improvement is generally marginal
compared to the one obtained with the use of the precision information (Err). In-
deed the results obtained with L1- and L2-norm are virtually indistinguishable
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except for the apparition of some outlier points in the L2 case.

9.5 Conclusions

We have considered a variational model coupling an anisotropic regularization
term with a data fitting term and its applications to the interpolation of sparse
digital elevation models. We have minimized the energy via a gradient descent
algorithm using an explicit numerical scheme, and we have analyzed its stabil-
ity. We proposed the use of an anisotropic diffusion that respects the geometry
of a reference image. In combination with robust data fitting terms, this permits
to interpolate urban digital elevation models while preserving discontinuities.
Still, we observe an excessive diffusion effect because the minimal surface does
not allow as sharp discontinuities as the total variation does.



Chapter 10

Anisotropic Cheeger Sets and
Applications

This chapter is dedicated to the study of Cheeger sets in the context of image processing.
In particular, we consider Cheeger sets computed with respect to different non-uniform
anisotropic norms relevant for applications to image processing. We describe the ap-
plications of these Cheeger sets to: the computation of global minima of geodesic active
contours, edge linking problems and anisotropic diffusion.

10.1 Cheeger sets and Total Variation

Given a nonempty open bounded subset Ω of RN , we call Cheeger constant of
Ω the quantity

CΩ := min
F⊆Ω

P(F)
|F| . (10.1)

Here |F| denotes the N-dimensional volume of F, and P(F) symbolize the
perimeter of F. The minimum in (10.1) is taken over all nonempty sets of fi-
nite perimeter contained in Ω. A Cheeger set of Ω is any set G ⊆ Ω which
minimizes (10.1). Observe that G is a Cheeger set of Ω if and only if |G| > 0 and
G minimizes

min
F⊆Ω

P(F)− CΩ|F|. (10.2)

Existence of Cheeger sets follows directly from the direct methods of calculus
of variations. Uniqueness of Cheeger sets is a more delicate issue and is not true
in general (a counterexample is given in [KLR06] when Ω is not convex), though
it has recently been proved that it is generically true [CCN] (that is, true modulo
a small perturbation of the domain Ω). However, uniqueness of Cheeger sets
inside convex bodies of RN was proved in [CCN07] when the convex body is
uniformly convex and of class C2 and in [AC09] in the general case. The case of
convex bodies of R2 was studied in [ACC05b, KLR06].

The computation of Cheeger sets has recently been the object of several pa-
pers [BCC07, CCP09]. One of the possible algorithms consists in solving the

147
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Figure 10.1: Euclidean Cheeger set examples for two domains (first column).
For a better display the second column shows log(u) for the solution u of (10.3),
with some level lines superimposed. The Cheeger set (right) is selected among
the level sets of the second image as the one that minimizes the ratio (10.1).

variational problem

min
u∈BV(Ω)∩L2(Ω)

{∫
Ω
|Du|+

∫
∂Ω
|u| dHN−1 +

λ

2

∫
Ω
(u− 1)2 dx

}
. (10.3)

This strictly convex lower semicontinuous functional has a unique minimizer
u ∈ BV(Ω) ∩ L2(Ω) satisfying 0 ≤ u ≤ 1. Moreover, for any s ∈ (0, 1] the level
set Es := {x ∈ Ω : u(x) ≥ s} is a solution of

min
F⊆Ω

P(F)− µ|F|, (10.4)

where µ := λ(1 − s) and the infimum is taken over the sets F ⊆ Ω of finite
perimeter in RN [ACC05a, CCN09]. When taking λ ∈ (0,+∞) and s ∈ (0, 1]
we are able to cover the whole range of µ ∈ [0, ∞) [ACC05a]. Since the family
of level sets Es is nested, the solution of (10.4) is unique for any µ ∈ (0,+∞)
up to a countable exceptional set. Moreover, when λ is big enough, the level
set associated to the maximum of u, {x ∈ Ω : u(x) = ‖u‖∞}, is the maximal
Cheeger set of Ω [ACC05a, CCN07]. Observe that this provides an algorithm
for computing the maximal Cheeger set (and also the solution of the family of
problems (10.4)). In particular, using Chambolle’s algorithm [Cha04] to mini-
mize (10.4), one passes to a dual variational problem which can be solved by a
simple iterative scheme (see Figure 10.1).

Our purpose in this chapter is to study Cheeger sets in the context of im-
age processing, in particular, their connections with active contours and edge
linking. For that we use the theory of anisotropic perimeters developed in
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[AB94, BBF00] to extend model (10.3) to general anisotropic perimeters. In
the next section we present the mathematical background regarding general
anisotropic perimeters. Then in Section 10.4 we will briefly describe the ap-
plications including as particular cases the geodesic active contour model with
an inflating force [CKS95, CKS97, KKO+96], a model for anisotropic diffusion,
and a model for edge linking. In Sections (10.5 and 10.6) discuss the applications
in detail and present some experiments. Finally, in Section 10.7 we address the
computational aspects related to the computation of anisotropic Cheeger sets.

10.2 Anisotropic Cheeger sets

Let us start defining the general notion of total variation with respect to a metric
integrand.

Anisotropic metric integrand and total variation

Let Ω be an open subset of RN . Following [BBF00] we say that a function φ :
Ω × RN → [0, ∞) is a metric integrand if φ is a Borel function satisfying the
following conditions:

for a.e. x ∈ Ω, the map ξ ∈ RN → φ(x, ξ) is convex, (10.5)

φ(x, tξ) = |t|φ(x, ξ) ∀x ∈ Ω, ∀ξ ∈ RN , ∀t ∈ R, (10.6)

and there exists a constant Λ > 0 such that

0 ≤ φ(x, ξ) ≤ Λ‖ξ‖ ∀x ∈ Ω, ∀ξ ∈ RN . (10.7)

The polar function φ0 : Ω×RN → R of φ is defined by

φ0(x, ξ∗) = sup{〈ξ∗, ξ〉 : ξ ∈ RN , φ(x, ξ) ≤ 1}. (10.8)

Definition 12 ([CFM09, Definition 3.1]). Let u ∈ L1(Ω). We define the φ-total
variation of u in Ω as∫

Ω
|Du|φ := sup

{∫
Ω

u div σ dx : σ ∈ K∞
φ (Ω)

}
, (10.9)

where for any p ∈ [1, ∞], we define

Kp
φ(Ω) := {σ ∈ Xp(Ω) : φ0(x, σ(x)) ≤ 1 for a.e. x ∈ Ω, [σ · νΩ] = 0},

with Xp(Ω) := {z ∈ L∞(Ω; RN) : div z ∈ Lp(Ω)}.
We set BVφ(Ω) := {u ∈ L1(Ω) :

∫
Ω |Du|φ < ∞}, which is a Banach space when

endowed with the norm |u|BVφ(Ω) :=
∫

Ω |u|dx +
∫

Ω |Du|φ.
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Sets of finite φ-perimeter. We say that E ⊆ RN has finite φ-perimeter in Ω if
χE ∈ BVφ(Ω). We set

Pφ(E, Ω) :=
∫

Ω
|DχE|φ.

If Ω = RN , we denote Pφ(E) := Pφ(E, RN). By assumption (10.7), if E ⊆ RN

has finite perimeter in Ω, it also has finite φ-perimeter in Ω. The coarea formula
for the φ-total variation was proved in [BBF00] (see also [AB94] in a slightly
different formulation):∫

Ω
|Du|φ =

∫
R

Pφ({u > s}, Ω) ds ∀u ∈ BVφ(Ω). (10.10)

Anisotropic Cheeger set as solution of a variational problem

Similarly to the Euclidean case to compute anisotropic Cheeger sets we study
the problem

min
u∈BVφ(Ω)∩L2(Ω,h dx)

{∫
Ω
|Du|φ +

λ

2

∫
Ω
(u− f )2h dx +

∫
∂Ω

φ(x, νΩ)|u| dHN−1
}

,

(10.11)
where φ : Ω × RN → R is a metric integrand in Ω which is symmetric in ξ,
i.e., φ(x,−ξ) = φ(x, ξ) for any ξ ∈ RN and any x ∈ Ω; h ∈ L∞(Ω), h(x) > 0
a.e., with

∫
Ω

1
h(x) dx < ∞; f ∈ L2(Ω, hdx), λ > 0; and νΩ denotes the outer unit

normal to Ω at points of ∂Ω.
We denote by L2(Ω, hdx) the set of measurable functions u : Ω → R such

that
∫

Ω u2 h dx < ∞.
Although for φ-Cheeger sets we need only the case f = 1, the general case

where f 6= 1 is of interest in Section 10.6, where we discuss the application to
anisotropic diffusion. To shorten the expressions inside the integrals we shall
write h, u instead of h(x), u(x), with the only exception being φ(x, νΩ).

In order to compute φ-Cheeger sets using the energy formulation (10.11) we
have to assume that the metric integrand φ(x, ξ) is continuous and coercive near
the boundary of Ω, which amounts to saying that for x ∈ Ω near ∂Ω we have

α|ξ| ≤ φ(x, ξ) ≤ β|ξ| ∀ξ ∈ RN , 0 < α < β. (10.12)

We note that in case that φ is coercive everywhere we can minimize (10.11)
in the space of functions of bounded variation BV(Ω). In the present situation,
where we do not assume that φ is coercive, we need the anisotropic extension of
BV(Ω) given in Definition 12, namely, the space BVφ(Ω).

Notice that the use of degenerate (noncoercive) metric integrands φ comes
from the applications, where it can be natural to assume that φ vanishes on a
subset of Ω (e.g., for the geodesic active contour poblem it may vanish on arcs
of curve if N = 2 or surface patches if N = 3).
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The PDE associated to the variational problem (10.11). In order to minimize
(10.11) we solve its associated Lagrange equation which can be written as

h f ∈ hu− λ−1div
(
∂ξ φ(x,∇u)

)
(10.13)

with Dirichlet boundary conditions. We use the notion of solution defined in
[CFM09, Definition 6.1]. As proved in [CFM09, Theorem 6.2], if f ∈ L∞(Ω),
then there exists a unique solution of (10.13) which is also the unique solution of
(10.11).

10.3 The maximal φ-Cheeger set inside Ω.

If u is a solution of (10.11), then the level sets {x ∈ Ω : u(x) ≥ s}, s ∈ (0, 1], are
solutions of

min
F⊆Ω

Pφ(F)− µ|F|h, (10.14)

where µ := λ(1 − s), recall the Pφ(F) is the anisotropic perimeter of F, and
|F|h =

∫
F h(x) dx. Let us state this result [CFM09, Proposition 6.3]:

Proposition 13 ([CFM09, Proposition 6.3]). Let u ∈ BVφ(Ω) ∩ L2(Ω, h dx) be
the solution of the variational problem (10.11) with f = 1. Then 0 ≤ u ≤ 1. Let
Es := {u ≥ s}, s ∈ (0, 1]. Then for any s ∈ (0, 1] we have

Pφ(Es)− λ(1− s)|Es|h ≤ Pφ(F)− λ(1− s)|F|h (10.15)

for any F ⊆ Ω.

As in the Euclidean case, the solution of (10.14) is unique for any s ∈ (0, 1]
up to a countable exceptional set. Moreover, when λ is big enough, the level
set associated to the maximum of u, {x ∈ Ω : u(x) = ‖u‖∞}, is the maximal
(φ, h)-Cheeger set of Ω. A (φ, h)-Cheeger set in Ω is a minimizer of the problem

inf
{

Pφ(F)
|F|h

: F ⊆ Ω of finite perimeter, |F|h > 0
}

, (10.16)

and the value of this infimum is the (φ, h)-Cheeger constant, denoted by Cφ,h
Ω .

The computation of the maximal (φ, h)-Cheeger set (together with the solution
of the family of problems (10.14)) can be computed using Chambolle’s algorithm
[Cha04]. To simplify our expressions, instead of (φ, h)-Cheeger set and constant,
we will say φ-Cheeger set and constant.

Local φ-Cheeger sets in Ω

In the applications below we will need an extension of the notion of Cheeger set.
Suppose that we want to detect several objects in an image and we have a model
that enables us to identify them as Cheeger sets. The Cheeger set will minimize
the perimeter/area in the whole image domain. This gives a first object in the
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Figure 10.2: Local φ-Cheeger sets (red curves). In the first row are shown local
φ-Cheeger sets in the Euclidean case. The second row shows local φ-Cheeger
sets obtained on a domain that occupies the whole image but using a metric
integrand φ(x, ·) ∼ 1

1+|∇I(x)| , where I is an image containing two shapes (not
shown). In all the figures the backgrounds show the corresponding solution
of (10.11). For both: the Euclidean and the non-uniform metric cases, the sec-
ond column show an experiment where, with a very similar setup, the local
φ-Cheeger sets collapsed into a single set. In the Euclidean case the shape of
the domain is changed, and in the non constant metric case the shapes in I have
moved.

image. By extracting it, we may compute the Cheeger set inside the remaining
domain and this will provide us with a second object. This requires to define the
notion of local Cheeger set. For that we notice that Cheeger sets are computed
as the maximum region of the solution u of (10.11) which we expect to be a flat
region. By analyzing the level sets of u we discover that there may be several
local maxima (see Figure 10.2) which are flat regions and correspond to Cheeger
sets in its neighborhood, that is, they are local Cheeger sets.

To develop the notion of local φ-Cheeger set, we assume that φ is continuous
and coercive in Ω. Let E ⊆ RN be a set of finite perimeter. We say that E is
decomposable if there exists a partition (A, B) of E such that Pφ(E) = Pφ(A) +
Pφ(B) and both |A| and |B| are strictly positive. We say that E is indecomposable
if it is not decomposable; notice that the properties of being decomposable or
indecomposable are invariant modulo Lebesgue null sets and that, according to
our definition, any Lebesgue negligible set is indecomposable.

The following result was proved in [ACMM01] for the Euclidean perimeter.
The proof easily extends to cover the case where φ is continuous and coercive in
Ω, but it also follows from the Euclidean case since the assumptions on φ imply



10.4. APPLICATIONS OVERVIEW 153

that
Pφ(E) =

∫
∂∗E

φ(x, νE(x)) dHN−1

for any set E ⊆ RN with finite perimeter.

Theorem 14 ([CFM09, Theorem 6.10]). Let E be a set with finite perimeter in RN .
Then there exists a unique finite or countable family of pairwise disjoint indecomposable
sets {Ei}i∈I such that |Ei| > 0 and Pφ(E) =

∑
i Pφ(Ei). Moreover, the sets Ei are

maximal indecomposable sets; i.e., any indecomposable set F ⊆ E is contained modulo a
Lebesgue null set in some set Ei.

In view of the previous theorem, we call the sets Ei the φ-connected compo-
nents of E.

Proposition 15 ([CFM09, Proposition 6.11]). Assume that φ is continuous and coer-
cive in Ω. Let u ∈ BVφ(Ω)∩ L2(Ω, h dx) be the solution of (10.11). Let t ∈ (0, 1] and
Et := {u ≥ t}. Let E′t be a φ-connected component of Et, and let Fs = {u ≥ s} ∩ E′t,
s ≥ t. Then for any s ∈ (0, 1] we have

Pφ(Fs)− λ(1− s)|Fs|h ≤ Pφ(F)− λ(1− s)|F|h (10.17)

for any F ⊆ E′t. If s = maxx∈E′t
u(x), then Fs is a maximal φ-Cheeger set in E′t.

The sets Fs will be called local φ-Cheeger sets.
Recall that, when φ is coercive, by the isoperimetric inequality there is a con-

stant α > 0 (depending on the domain) such that any φ-Cheeger set has mea-
sure ≥ α. Moreover, the union and intersection of φ-Cheeger sets are φ-Cheeger
[CCN]. In particular, there are minimal φ-Cheeger sets and there are finitely
many of them [CCN].

10.4 Applications overview

We illustrate the previous formalism with three examples: (a) the geodesic active
contour model; (b) a model for edge linking; and (c) an anisotropic diffusion
model. In this section we will briefly discuss these examples, and in Section 10.5
and 10.6 we will develop them.

(a) The geodesic active contour model. Let I : Ω → R+ be a given image in
L∞(Ω), G be a Gaussian function, and

g(x) =
1√

1 + |∇(G ∗ I)|2
, (10.18)

where in G ∗ I we have extended I to RN by taking the value 0 outside Ω. Ob-
serve that g ∈ C(Ω) and infx∈Ω g(x) > 0. The geodesic active contour model
[CKS95, CKS97, KKO+96] with an inflating force (see [Coh91]) corresponds to
(10.14) when we take φ(x, ξ) = g(x)|ξ|, |Du|φ = g(x)|Du|, and h(x) = 1, x ∈ Ω.
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The purpose of this model is to locate the boundary of an object of the image at
the points where the gradient is large. The presence of the inflating term helps
to avoid minima collapsing into a point. The analysis of this model was done
in [CCCD93, CKSS97, KKO+96] using the level set formulation of (10.14). In
this case we write Pg(F) instead of Pφ(F), and we have Pg(F) :=

∫
∂∗F g dHN−1,

where ∂∗F is the reduced boundary of F [AFP00].
In this case the φ-Cheeger sets are a particular instance of geodesic active

contours with a constant inflating force µ = Cg,1
Ω . An interesting feature of this

formalism is that, assuming that φ is continuous and coercive, it permits us to
apply the result of Proposition 15, and obtain local φ-Cheeger sets as local (re-
gional) maxima of the function u. They are φ-Cheeger sets in a subdomain of Ω.
They can be identified with boundaries of the image, and the above formalism
permits us to compute several active contours at the same time (the same holds
true for the edge linking model).

A more general active contour model, based on Finsler metrics, was intro-
duced in [MPAT08]. In this paper, the authors minimized the Finsler metric
using dynamic programming. A different numerical approach based on graph
cuts, and valid for submodular Finsler metrics, was proposed in [KB05].

(b) An edge linking model. Another interesting application of the above for-
malism is to edge linking. Given a set Γ ⊆ Ω (which may be the output of an
edge detector formed by arcs of curve if Ω ⊆ R2 or surface patches if Ω ⊆ R3),
we define dΓ(x) = dist(x, Γ) and the metric integrand φ(x, ξ) = dΓ(x)|ξ|. In this
case, we experimentally see that the φ-Cheeger set determined by this weighted
metric has a boundary formed by a set of curves (N = 2) or surfaces (N = 3)
linking Γ.

Let us mention the formulation of active contour models without edges pro-
posed in [CV01] by Chan and Vese, whose solution can be related to the general
formulation (10.14). Let I : Ω → R+ be a given image and g ∈ C(Ω) be such
that infx∈Ω g(x) > 0. The authors proposed minimizing

min
F⊆Ω,c1,c2∈R

Eg(F, c1, c2) := Pg(F; Ω) + λ

∫
F
(I(x)− c1)

2 dx + λ

∫
Ω\F
(I(x)− c2)

2 dx,

(10.19)
where the minimum is taken over the sets F of finite perimeter in Ω, with
c1, c2 ∈ R, λ > 0, and Pg(F, Ω) :=

∫
∂∗F∩Ω g dHN−1 is the weighted perime-

ter of F in Ω. Although in the initial proposal [CV01] the authors took g = 1
(in this case (10.19) is the restriction of the Mumford–Shah functional to a bi-
nary segmentation of the image), the extension to a weighted perimeter was
natural and has been considered, for instance, in [BEV+07]. If the set F is fixed,
then the minimum of Eg(F, c1, c2) with respect to c1, c2 ∈ R gives us the values

c1 =
∫

F I(x) dx
|F| and c2 =

∫
Ω\F I(x) dx
|Ω\F| , and we may write

min
F⊆Ω,c1,c2∈R

Eg(F, c1, c2) = min
F⊆Ω
Eg(F, c1, c2). (10.20)
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Observe that

Eg(F, c1, c2) = Pg(F, Ω) + λ

∫
F
((I(x)− c1)

2 − (I(x)− c2)
2) dx+

+ λ

∫
Ω
(I(x)− c2)

2 dx

and that it suffices to minimize with respect to F the first two terms of this sum,
the last one being a constant. Now, as proposed in [NEC06, BEV+07], for any
fixed values c1, c2 ∈ R the global minimizer of Eg(F, c1, c2) with respect to F can
be found by solving the convex optimization problem [NEC06, Theorem 2]

min
0≤u≤1

∫
Ω

g|Du|+ λ

∫
Ω
((I(x)− c1)

2 − (I(x)− c2)
2) u dx (10.21)

and then setting F := {u > t} for a.e. t ∈ (0, 1). Thus, iterating between the solu-
tion of (10.21) with fixed values of c1, c2 and the updating of c1, c2 just described,
we have a two step algorithm to solve the Chan–Vese model [NEC06, BEV+07].

Let us also mention the interesting work [PSGB08] in which the authors pro-
pose a method for convexifying the total variation regularization of some non-
linear and nonconvex data attachment terms (e.g. the computation of disparity
in rectified stereo pairs) which leads to the solution of an anisotropic total vari-
ation problem with Dirichlet-type boundary conditions.

(c) An anisotropic diffusion model. The model (10.11) contains the case
φ(x, ξ) = |Axξ|, where Ax is a symmetric positive definite matrix for each x ∈ Ω.
A particular instance when N = 2 is the anisotropic diffusion model given by
Ax = z⊥(x) ⊗ z⊥(x) + g(x)z(x) ⊗ z(x), where z(x) = ∇I(x)√

1+|∇I(x)|2
and z(x)⊥

denotes the counterclockwise rotation of z(x) of angle π
2 . Notice that by the

structure of Ax we could also take the clockwise rotation. Notice that this model
uses Neumann boundary conditions. As in the Dirichlet case there are existence
and uniqueness results for this problem [CFM09, Theorem 7.2].

10.5 Minimization of geodesic active contour model with an
inflating force, and edge linking

Given an image I : Ω→ R, let us consider the following formulation of geodesic
active contour with an inflating force:

min
E⊆Ω

Pg(E)− µ|E|h, µ > 0, (10.22)

where Pg(E) is a weighted perimeter with weights g(x) = (1 + |∇(G ∗ I)|2)− 1
2 ,

|E|h =
∫

E h(x) dx is the weighted area, and µ is a parameter that controls the
balloon force. In Proposition 13 we have shown that if u is the solution of prob-
lem (10.11), then Es := {u ≥ s}, s ∈ (0, 1], is a global minimum of (10.22) with
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µ = λ(1− s). In this case φ is of the form φ(x, ξ) = g(x)|ξ| and we will use the
expression g-Cheeger set. In particular, if λ > CΩ (the g-Cheeger constant), then
the set {u = ‖u‖∞} is the g-Cheeger set of Ω. Therefore to compute the solutions
of (10.22) it suffices to solve problem (10.11) for some λ > µ or, equivalently, to
find u by solving

hu− λ−1div
(

g
Du
|Du|

)
= h. (10.23)

The solution of (10.23) is computed using the scheme proposed by Chambolle
[Cha04] described in Section 10.7.1 (with f = χΩ). For λ big enough, for all
values of µ > 0, the solutions of (10.22) can be found as the level sets of u. In
practice we select the g-Cheeger set as the upper level set of u that minimizes

min
Γ⊆Ω

Pg(Γ)
|Γ|h

,

where the minimum is taken over the upper level sets of u. The details about
the computation of the weighted perimeters of the level sets and areas are given
in Section 10.7.2.

Experiments

We have used the theory described above in two different ways, correspond-
ing to different choices of the metric integrand g. The first choice is g(x) =

(
√

1 + |∇(G ∗ I)|2 )−1, and the second choice is the distance function to the set
of edge points detected by a preprocessing of the image, that is, g = dS, where S
is the set of edges of u. We label these two cases 1

|∇I| -Cheeger sets and dS-Cheeger
sets, respectively. We observe that the convergence of the iterative scheme to
solve the PDE is much faster for dS-Cheeger sets, and the result is less likely to
miss parts of the image. On the other hand, the computation of 1

|∇I| -Cheeger
sets gives smooth results after a long time and sometimes misses parts of the de-
sired objects or fails to break at holes. The choice of a subdomain B ⊆ Ω allows
for some flexibility: we can enforce hard restrictions on the result by removing
from the domain some points that we do not want to be enclosed by the output
surfaces.

Notice that, for a given choice of g, we actually find many local g-Cheeger
sets, disjoint from the global minimum, that appear as local minima of the g-
Cheeger ratio on the tree of connected components of upper level sets. The com-
putation of those sets is justified by Proposition 15 (see also [CFM09, Proposition
6.11]), however the assumptions for this result not cover the case where g van-
ishes (φ must be coercive). These are the sets which we show in the following
experiments.

2D images. In Figure 10.3, we display some local g-Cheeger sets of 2D im-
ages for different choices of metric g. These experiments are equivalent to ap-
plying the model (10.22) to edge linking problems. As in [Coh91] the inflating
force allows us to link the pieces of the boundaries of the objects. We display
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Figure 10.3: Geodesic active contours as g-Cheeger minimizers. The first row
shows the images I to be processed. The second row shows the weights g
used for each experiment (white is 1, black is 0): in the first two cases g =

(
√

1 + |∇(G ∗ I)|2 )−1, for the third g = 0.37(
√

0.1 + |∇(G ∗ I)|2 )−1, and for
the linking experiments g = dS, the scaled distance function to the given edges.
The third row shows the disjoint minimal local g-Cheeger sets extracted from
u (shown in the background); there are 1, 7, 2, 1, 1, and 1 sets, respectively. The
last linking experiment illustrates the effect of introducing a barrier in the initial
domain (black square).

in Figure 10.3 some 2D linking experiments, which show how the dS-Cheeger
set indeed links the edges. Let us point out here a limitation of this approach,
which can be observed in the last subfigure. Even if this linking is produced, the
presence of a bottleneck (bottom right subfigure) causes the dS-Cheeger set to be
a set with large volume. This limitation can be circumvented by adding barriers
in the domain Ω.

Synthetic 3D image. The first 3D example is a synthetic image built in the
following way. We have taken the characteristic function of a slanted torus plus
a linear function and then added some blurring and Gaussian noise to the result.
Some slices and a level surface of this image are shown in the left subfigure of
Figure 10.4. The first experiment with this synthetic image has been to segment
it using the 1

|∇I| -Cheeger set of the image domain. This gives a reasonable seg-
mentation of the object, as shown in Figure 10.4. The second experiment with
this synthetic image has been to perform edge linking. We have taken the out-
put of an edge detector [DMM01, MZFC08] and used the distance function to
the set of edges as a metric. The dS-Cheeger set of the image domain is a surface
that correctly interpolates the given patches. We can observe that the result of
the edge linking has a ragged appearance. In Figure 10.5 we display the input
edges, the corresponding metric, and the final result. In Figure 10.6 we display
the graph of the 1

|∇I| -Cheeger ratio and different level sets of u.
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Figure 10.4: Pipeline for computing 1
|∇I| -Cheeger sets, applied to a synthetic 3D

image. From left to right: slices of the original image I, slices of the metric g =
1
‖∇I‖ , and 1

|∇I| -Cheeger set of the image domain.

Figure 10.5: Pipeline for computing dS-Cheeger sets, applied to the same syn-
thetic image as in Figure 10.4. From left to right: detected 3D edges S, slices of
the metric g = dS, and dS-Cheeger set of the image domain.

Real 3D computed tomography (CT) image. The first real 3D example is
based on a CT of cerebral arteries containing an aneurysm. We have tried both

1
|∇I| and dS metrics (where S is computed, as before, by an edge detector). The
results are visually similar. Noticing that both methods give an incorrect seg-
mentation on a small part of the image (at the neck of the aneurysm), we have
forced a correct segmentation by manually marking some voxels, as in the right-
most column in Figure 10.3. Thus, instead of computing the φ-Cheeger set of the
image domain, we have computed the φ-Cheeger set of the image domain mi-
nus some manually selected voxels. In Figure 10.7 we display the results, and in
Figure 10.8, we display three different level surfaces of the solution u (the central
one being the 1

|∇I| -Cheeger set).
Real 3D magnetic resonance (MR) image. The second real 3D example is

an edge linking experiment coming from an MR image. This is a very low-
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Figure 10.6: Left: graph of the 1
|∇I| -Cheeger ratio F(t) for the input image

“torus.” Right: superposition of the three level sets shown, corresponding to
the interesting points of F(t) (the two minima and the cusp). To see the inner
surfaces, the display is clipped near the central singularity. Notice that these
level surfaces are all local minima of the classical geodesic snakes functional
with an inflating force, for different weights of the inflating force.

Figure 10.7: Computation of 1
|∇I| -Cheeger sets of the CT image. From left

to right: (1) dS-Cheeger set of the whole image domain, (2) dS-Cheeger set
of the image domain minus some manually selected voxels at the neck of
the aneurysm, (3) 1

|∇I| -Cheeger set of the whole image domain, and (4) 1
|∇I| -

Cheeger set of the image domain minus some manually selected voxels at the
neck of the aneurysm.
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Figure 10.8: Three level surfaces of the solution u of 1
|∇I| -total variation min-

imization. The central surface is the 1
|∇I| -Cheeger set of the image domain ac-

cording to this active–contours-like metric. The other two surfaces have a higher
1
|∇I| -Cheeger ratio and appear as local extrema of an active contour with ap-
propriate inflating force. In this figure, the image domain is split so that the
innermost surfaces can be seen. Notice that the inner surface, having a higher
level t, is separated from the other two. This indicates the concentration of val-
ues around the maximum 1.

Figure 10.9: These two figures display the best six local dS-Cheeger sets of the
MR image, labelled and from different points of view.
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resolution image, where the thin vessels have a width of one voxel. An edge
detector correctly finds most of the vessels (in several different connected com-
ponents). We show the best six local dS-Cheeger sets of this image in Figure 10.9.

10.6 Anisotropic diffusion

Consider the anisotropic diffusion problem formulated as

min
u∈X

‖πZu− f ‖2

2
+ λ−1 Jφ(u), (10.24)

where X = L2(Ω) and πZ is the orthogonal projection onto a convex set Z ⊂ X,
and f ∈ Z. The regularizer Jφ(u) =

∫
Ω φ(x,∇u(x)) is defined so that the dif-

fusion is constrained to the geometry (given by the level lines) extracted from
a reference image I. We define, for example, φ(x, ξ) = |Axξ|, where Ax is a
matrix that embodies knowledge about the boundaries of the objects in I. A
common example in two dimensions corresponds to Ax = z(x)⊥ ⊗ z(x)⊥ with
z(x) = ∇I(x)√

1+|∇I(x)|2
. This example favors the diffusion along the level lines

of I. In low gradient (flat) zones the previous definition can be relaxed to al-
low diffusion across the level lines (as depicted in Figure 10.10) in a way in-
versely proportional to the modulus of the gradient. In that case, we may take
Ax = z(x)⊥ ⊗ z(x)⊥ + 1√

1+|∇I(x)|2
z(x)⊗ z(x), where z(x)⊥ denotes the coun-

terclockwise rotation of z(x) of angle π
2 . Notice that by the structure of Ax we

could also take the clockwise rotation.
We will solve (10.24) by adapting the zoom algorithm proposed in [Cha04].

Observing that ‖πZu− f ‖ = minw∈Z⊥ ‖u− ( f + w)‖, (10.24) can then be refor-
mulated as

min
u∈X,w∈Z⊥

‖u− f − w‖2

2
+ λ−1 Jφ(u), (10.25)

which is solved by alternate minimization with respect to u and w. The first
minimization is done by the algorithm described in Section 10.7.1, un = ( f −
wn)−πKφ

( f −wn), and the second one consists in a projection over Z⊥ : wn+1 =

πZ⊥(un − f ).

Experiments

The scheme presented above for solving (10.25) can be applied in a variety of
diffusion problems, such as image colorization [LLW04], or to the interpolation
of sparse height data in a digital elevation model [FLA+06]. In each of these
cases, however, there are better algorithms for performing the task than the one
we propose here, which is meant only as an illustration.

In the case of colorization and interpolation, Z is defined as Z = {χΓ f : f ∈
X}, where Γ ⊆ Ω is a subdomain of the image where the values are known, and
the reference image I : Ω → R is used to compute the field z(x) to guide the
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z

z

Figure 10.10: Anisotropic diffusion directions for a synthetic image (back-
ground). The plotted ellipses correspond to the tensor field Ax = z(x)⊥ ⊗
z(x)⊥ + 1√

1+|∇I(x)|2
z(x)⊗ z(x) with z(x) = ∇I(x)√

1+|∇I(x)|2
. The orientation and

widths of the ellipses reflect the preferred direction of the diffusion.

Figure 10.11: Colorization. From left to right, scribbled image, the known values
of the U channel (20% of the image), diffusion in the U channel, and colorized
result using the reference Y channel (not shown).

diffusion of these values. For the colorization experiment shown in Figure 10.11
the result is computed in YUV color space, where Y is the input luminance chan-
nel and the chromatic channels U and V are interpolated with (10.24), where the
field z(x) = ∇I(x)√

1+|∇I(x)|2
restricts the diffusion to the geometry of I.

The last example concerns the interpolation of digital elevation models (see
Figure 10.12). In this case the datum f is known only at sparse locations, and
it is provided by a stereo subpixel correlation algorithm [SAM08] (which also
provides an estimation of the measure’s variance Err). The reference image
of the stereo pair is used as a geometric constraint for the interpolation, and
the variability Err is used to normalize the data fitting by adapting the spatial
metric h(x)1/2 = 1/Err(x). In Figure 10.12 we compare this method with the
anisotropic minimal surface interpolation described in [FLA+06].

10.7 Numerical Computation of the φ-Cheeger set

The computation of the φ-Cheeger set requires first to compute the solution u of
the PDE (10.13), and then to find the upper level set Γ of u that minimizes the
ratio Pφ(Γ)/|Γ|. In this section we will address these two issues.
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Figure 10.12: Disparity interpolation in an urban digital elevation model. From
left to right: (1) the reference image of the stereo pair, (2) the incomplete data
set computed with [SAM08] (30% of the image), where each point’s gray level
represents the height (darker is higher, mid-gray is unknown), (3) the interpo-
lation obtained with the minimal surface interpolation [FLA+06] (RMSE 0.239
when compared with the ground truth) and with the proposed algorithm (RMSE
0.190), (4) the minimal surface model [FLA+06] recovers the slanted surfaces
better than total variation; however, the latter is better at approximating the ge-
ometry near jumps.

10.7.1 Numerical solution of the PDE

In this subsection we present an adaptation of Chambolle’s algorithm [Cha04]
that permits us to solve a discrete version of (10.13) for some particular instances
of φ(x, ξ). Our development will be restricted to the two-dimensional (2D) case,
but it can be easily extended to higher dimensions. Let us give some notation
that we use in what follows, keeping in mind that, for simplicity, we will denote
the discrete functions we use like their continuous counterparts.

Let us consider the discrete domain Ω = {0, 1, . . . , N − 1}2 (more gener-
ally, we could assume that Ω ⊆ {0, 1, . . . , N − 1}2). For convenience, let us
denote by Ωe the extended domain {−1, 0, . . . , N}2. We denote by U the Eu-
clidean space R(N+2)×(N+2). Let us give the definition of the discrete gra-
dient which is adapted to problem (10.13) (which considers Dirichlet bound-
ary conditions). In Section 10.7.1 we shall use Neumann boundary conditions
with the definition of the gradient and divergence taken as in [Cha04]. Given
u ∈ U, its discrete gradient ∇u will be a vector in V := U × U given by
∇u(i, j) = ((∇u)1(i, j), (∇u)2(i, j)), (i, j) ∈ Ωe, where

(∇u)1(i, j) =


u(i + 1, j)− u(i, j) if (i + 1, j), (i, j) ∈ Ω,
−u(i, j) if (i + 1, j) /∈ Ω, (i, j) ∈ Ω,
u(i + 1, j) if (i + 1, j) ∈ Ω, (i, j) /∈ Ω,
0 if (i + 1, j), (i, j) /∈ Ω,

(10.26)

(∇u)2(i, j) =


u(i, j + 1)− u(i, j) if (i, j + 1), (i, j) ∈ Ω,
−u(i, j) if (i, j + 1) /∈ Ω, (i, j) ∈ Ω,
u(i, j + 1) if (i, j + 1) ∈ Ω, (i, j) /∈ Ω,
0 if (i, j + 1), (i, j) /∈ Ω.

(10.27)
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The above case amounts to saying that u(i, j) = 0 when the indexes are in Ωe \Ω.
These definitions of gradient embody the Dirichlet boundary conditions. The
extension of the anisotropy φ to Ωe will be made precise in the examples be-
low. We will avoid the use of the indices (i, j) (unless necessary) and use x
instead. The scalar product and the norm in U are defined as usual and de-
noted by 〈·, ·〉U and ‖ · ‖U , but in the absence of ambiguities the subindex will
be omitted. In V the scalar product is denoted 〈p, q〉V =

∑
x∈Ω p(x)T q(x) and

the norm ‖p‖V = 〈p, p〉V . Finally, the divergence is defined so that it verifies
〈p,∇u〉V = −〈div p, u〉U :

(div p)(i, j) =
{

p1(i, j)− p1(i− 1, j) if (i, j) ∈ Ω,
0 if (i, j) /∈ Ω

(10.28)

+

{
p2(i, j)− p2(i, j− 1) if (i, j) ∈ Ω,
0 if (i, j) /∈ Ω. (10.29)

Algorithm for the geodesic active contour type models

Let us consider the following generalization of the problem studied by Cham-
bolle in [Cha04]:

min
u∈U, u=0 in Ωe\Ω

‖(u− f )h1/2‖2
U

2
+ λ−1 Jg(u), where Jg(u)=

∑
x∈Ωe

g(x)|∇u(x)|,

(10.30)
f , g, h ∈ U and h(x) > 0 for all x ∈ Ωe. We consider these functions defined
originally in Ω and extended to Ωe by specular symmetry. Observe that the Eu-
ler equation of (10.30) is a discretization of (10.13), where φ(x,∇u) = g(x)|∇u|
(discrete case), and that where we write ∂ξ φ(x,∇u) = g ∇u

|∇u| ,

hu− λ−1div
(

g
∇u
|∇u|

)
3 h f . (10.31)

As in [Cha04] let us derive the dual formulation for (10.30) by rewriting (10.31)
as hλ( f − u) ∈ ∂Jg(u), which is equivalent to u ∈ ∂J∗g (hλ( f − u)), where J∗g is
the Legendre–Fenchel transform of Jg. Writing w = λ( f − u), we have

0 ∈ (w− λ f )h + hλ∂J∗g (hw) , (10.32)

which is the minimizer of the dual problem

min
w∈U

‖h1/2w− b‖2
U

2
+ λJ∗g (hw) with b = h1/2λ f . (10.33)

Since Jg is homogeneous, J∗g is the indicator function of a convex set Kg given by

J∗g (w) =

{
0 if w ∈ Kg
+∞ otherwise

with Kg = {−div ξ : ξ ∈ V, |ξ(x)| ≤ g(x) ∀x ∈ Ωe} .

(10.34)
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Therefore we may write (10.33) as

min
hw∈Kg

‖h−1/2h w− b‖2
U . (10.35)

Note that any solution hw ∈ Kg, must satisfy h(x)w(x) = −div (g(x)p(x)) with
|p(x)| ≤ 1. Hence we may write (10.35) as

min
p∈V
‖h−1/2div (gp) + b‖2

U

subject to |p(x)|2 − 1 ≤ 0 ∀x ∈ Ωe
(10.36)

and, introducing the Lagrange multipliers α(x) for the constraint, we obtain the
functional

F (p, α) =
∑

x∈Ωe

|h(x)−1/2div (gp)(x) + b(x)|2 +
∑

x∈Ωe

α(x)(|p(x)|2 − 1),

with α ∈ U, p ∈ V. Proceeding as in [Cha04] the solution of (10.36) satisfies

− [g∇(h−1div (gp) + λ f )](x) + α(x)p(x) = 0 ∀x ∈ Ωe. (10.37)

The Karush–Kuhn–Tucker theorem yields the existence of the Lagrange mul-
tipliers α∗(x) ≥ 0 for the constraints in (10.37), which are either α∗(x) > 0 if
|p(x)| = 1 or α∗(x) = 0 if |p(x)| < 1, but in this case also [g∇(h−1div (gp) +
λ f )](x) = 0. In any case α∗(x) = |[g∇(h−1div (gp) + λ f )](x)|, and substituting
it into (10.37) and using a gradient descent we arrive at the following fixed-point
algorithm:

pn+1 =
pn + τ

{
g∇[h−1div (gpn) + λ f ]

}
1 + τ|g∇[h−1div (gpn) + λ f ]| , (10.38)

where the maximum τ > 0 will depend on the chosen discretization. For the
present scheme, with a straightforward computation [Cha04, ACHR06], one can
show that the method converges if τ < 1

8
1

max |g|2
1

max |h−1/2|2 . At convergence, the

solution is obtained using the formula u = f +λ−1h−1div (gp). We summarized
these steps in Algorithm 4.

Algorithm for anisotropic diffusion-type problem

In this case, we consider an anisotropic diffusion problem with Neumann
boundary conditions. The discretization of the gradient and divergence are
the same as in [Cha04]. Let us consider the anisotropic total variation with
φ(x, ξ) = |Axξ|, for all x ∈ Ωe, where Ax is a symmetric and positive definite
(hence, invertible) matrix. As before, the solution of the minimization problem

min
u∈U

‖h1/2(u− f )‖2
U

2
+ λ−1 Jφ(u) with Jφ(u) =

∑
x∈Ωe

φ(x,∇ux)
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Algorithm 4 Chambolle’s algorithm with Dirichlet boundary conditions
Require: Data and weights: f , g, h ∈ U and parameter λ.
Ensure: u solution of (10.30).

1: Initialize p0 = 0 ∈ V, q0 = 0 ∈ U, and t = 0
2: while p not converged do

3: Compute: pt+1 ← pt+τg∇qt

1+τ|g∇qt |
4: Compute: qt+1 ← h−1div (gpt+1) + λ f
5: end while
6: Recover the solution u = λ−1qt+1

In step 3: pt is updated for x ∈ Ωe, while in step 4: qt may be updated only for
x ∈ Ω and qt(x) = 0 ∀x ∈ Ωe \Ω.

is obtained via its dual formulation

min
w∈U

‖h1/2w− h1/2λ f ‖2
U

2
+ λJ∗φ(hw) with w = ( f − u)λ. (10.39)

Since Jφ is homogeneous, J∗φ is the characteristic function of a set Kφ, which we
characterize next. Following [AB94] we have Kφ = {−div ξ∗ : φ0(x, ξ∗) ≤ 1},
where

φ0(x, ξ∗) =


0 if ξ∗ = 0,
+∞ if ξ∗ /∈ Z⊥x ,

sup
ξ:φ(x,ξ)≤1

〈ξ, ξ∗〉 if ξ∗ ∈ Z⊥x \ {0},

with Zx = {ξ : φ(x, ξ) = 0} = {ξ : |Axξ| = 0}. Since Ax is symmetric and
invertible, Zx = {0} and Z⊥x = Rn. Since the second condition is empty and
supξ:|Axξ|≤1〈A−1

x Axξ, ξ∗〉 = |A−1
x ξ∗|, it holds that φ0(x, ξ∗) ≤ 1 if and only if

ξ∗ = Ax p with |p| ≤ 1. We get that

Kφ = {−div ξ∗(x) : ξ∗(x) = Ax p(x), |p(x)| ≤ 1, ∀x ∈ Ωe}.

This allows us to write problem (10.39) as

min
p(x):|p(x)|≤1

‖h−1/2div (Ax p(x)) + h1/2λ f ‖2
U (10.40)

and derive the following fixed-point algorithm:

pn+1 =
pn + τ

{
Ax∇[h−1div (Ax pn) + λ f ]

}
1 + τ|Ax∇[h−1div (Ax pn) + λ f ]| . (10.41)

At convergence, the solution is computed as u = f + λ−1h−1div (Ax p). For
applications to image diffusion it is better to use Neumann boundary conditions,
which are imposed by adapting the definitions of the gradient and divergence
as in [Cha04].
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10.7.2 Computation of the φ-Cheeger set and numerical aspects of
the φ-perimeter computation

The numerical scheme described above produces a function u which is a solution
of the PDE (10.13). By Proposition 13, the level sets of u are global minima of the
anisotropic φ-perimeter with an inflating force. And the regional maxima of u
are local φ-Cheeger sets in a suitable domain containing them.

In this subsection we describe a method for finding these local φ-Cheeger
sets. We want to define local extrema of a function Pφ(·)/|·| which is defined
on the set of all connected components of upper level sets of an image u. To fix
ideas, let us assume that N = 2. Then we have to examine the connected com-
ponents of the upper level sets {u > t}, t ∈ (0, 1], of the solution u of (10.13).
The φ-Cheeger set is defined by {u = ‖u‖∞}, but due to the floating-point op-
erations we cannot proceed to a direct computation of this set. Instead we take
the φ-Cheeger set as the minimum of t → Pφ({u > t})/|{u > t}| with a suit-
able discretization of the variable t. Similarly, to compute the local φ-Cheeger
sets we use the tree of connected components of upper level sets of the image
(see [MG00, CM09] and [Mei06] when N = 3) and look for the local minima of
Pφ(cc{u > t})/|cc{u > t}|, where cc{u > t} denotes a connected component of
{u > t}. Thanks to the topological structure of the tree of connected compo-
nents of upper level sets, we can speak of local extrema of functions defined on
that set. Intuitively, a neighborhood of Γt = cc{u > t} consists in those con-
nected components of upper level sets whose levels are slightly above or below
the level of Γt.

Let us explain how to compute the weighted perimeter and volume of a
given level set. Then we will show how to use this computation to obtain an
efficient algorithm to find the connected components of the upper level sets
which are local minimizers of the φ-Cheeger ratio. When φ is of the form
φ(x, ξ) = g(x)|ξ|, we will use the expression g-Cheeger set.

Subpixel computation of weighted perimeters and areas

Notice that it is not trivial to compute the perimeter of a set which is defined
by pixels or voxels. The naive approach of counting the voxels which touch the
boundary of the region does not work, mainly because this quantity is not in-
variant by rotations. There are two common solutions to this problem: approx-
imate the perimeter using integral geometric measure techniques as in graph
cuts [BK03] or approximate the ragged boundary of the set by a smoother sur-
face and compute its perimeter. We found the second option best suited to our
needs because, as the goal is to compute perimeters of level sets, we can produce
high-resolution approximations of their boundaries by methods such as march-
ing cubes or marching squares [LC87]. Once we have a triangulated surface, we
can compute its weighted perimeter by adding the areas of all triangles, each
one multiplied by the weight φ interpolated at the barycenter of each triangle.

To test the consistency and precision of this scheme, let us consider a spher-
ical image u(x) = f (|x− x0|) whose profile f is an increasing function from



168 CHAPTER 10. ANISOTROPIC CHEEGER SETS AND APPLICATIONS

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1

F
(t

)

t

approximated F(t)
analytic F(t)

Figure 10.13: Numerical evaluation of 1
|∇I| -Cheeger ratios for a synthetic image

where they can also be computed analytically. The image is given by the model
in (10.42) with κ = 8 and s = 1. Left: graphs of the exact and computed F(t)
for that image. Right: interpolated level curve at which the minimum of F(t)
is attained, overlaid on the original image. This example has a very low reso-
lution (the original image has dimensions 31× 31). For higher resolutions the
approximation is nearly perfect, and the two curves F(t) are visually identical.

[0,+∞) to [0, 1). For each t in (0, 1), the level set of value t is a sphere of radius
r(t) = f−1(t) centered at x0, and this surface is weighted by 1

|∇u| =
1

f ′(r(t)) =

r′(t). The 1
|∇u| -Cheeger ratio is then

F(t) =
NVNrN−1r′

VNrN = N
r′(t)
r(t)

,

where VN is the volume of the unit ball of RN . This function F(t) is a real-valued
function whose minimum can be evaluated numerically, or even analytically in
some easy cases.

We can set, for example,

f (x) =
1

1 + exp κ−x
s

, (10.42)

where κ and s are parameters, such as κ = 8 and s = 0.1. Intuitively, the desired
segmentation of this image is a circle of radius κ ± s or, equivalently, some level
set of value near t = 1

2 . In Figure 10.13, we compare the graphs of the 1
|∇u| -

Cheeger ratio over t as computed analytically and with the numerical methods
described above. The minima in both cases is attained very near t = 1

2 , which
agrees with our intuition and suggests that the numerical approximations we
use are consistent.

As another numerical test, we computed the Euclidean Cheeger set of a
square and a cube (using the Euclidean metric). See Figures 10.15 and 10.14
for the plausible result we obtained.
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Figure 10.14: Cheeger set of a cube. This was computed by Euclidean total vari-
ation minimization of the characteristic function of the cube, followed by the
selection of the level surface that minimized the Cheeger ratio. On the right, the
graph of F(t). Notice that for large values of t, the level set collapses to a central
point of the domain, so that its Cheeger ratio is much larger than the optimum.

The discrete images u are obtained by an iterative numerical method, and
they have floating-point values. Most of the values are concentrated around
1, with the interesting part of the range being often contained in the interval
[0.99, 1]. Thus, it is important to conserve their floating-point values. This im-
plies that there are as many different level surfaces as pixels, one for each dif-
ferent floating-point value. But it is not necessary to compute the φ-Cheeger
ratio of all of these surfaces: via dichotomic search we can efficiently locate the
minimum.

On the symmetry of the numerical scheme

In Figure 10.15 we show an example of the Cheeger set determined with the
method described above. Observe that the first solutions are asymmetric; this
effect is particularly clear (and annoying) for small images (the first square is
50 pixels high), and it is due to the forward/backward scheme adopted to dis-
cretize the gradient (10.26). In [Cha04] the author remarks that the finite differ-
ence scheme converges to the continuous formulation as the number of samples
N → ∞, but when applied to volumetric images increasing the sampling is not
an affordable option. To maintain the symmetry of the solutions, we propose
the consensus algorithm, which computes the mean solution of all the finite dif-
ference schemes (4 schemes in two dimensions, and 8 in three dimensions) at
each iteration. The consensus algorithm outperforms the considered schemes
while keeping the symmetry, but it is 4 times (or 8 for three dimensions) slower
than the standard finite difference scheme.

10.8 Conclusion

We have introduced the anisotropic total variation for eventually degenerate
metric integrands φ. As a particular case, we have considered the geodesic active
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1/12.858 1/12.960 1/12.949 1/12.961

Figure 10.15: Computation of the Euclidean Cheeger sets (black regions) for
a square of 50 pixels. For the square the exact Cheeger set is known (dashed
line), and its constant is 1/13.253. The first column shows the results obtained
with Chambolle’s numerical scheme [Cha04]; observe that it is asymmetric. The
second solution is obtained by increasing the sampling (as proposed by Cham-
bolle); this considerably improves the solution, but the asymmetry persists. The
third column shows a symmetric solution obtained by averaging all the numer-
ical schemes (4 in two dimensions). The fourth solution is obtained using the
consensus algorithm. All the results were obtained after 20000 iterations of (10.38).

contour model, which corresponds to φ(x, ξ) = g(x)|ξ|, where g(x) is a function
that may vanish for some values of x. We have defined the notion of φ-Cheeger
set and we have shown that, for suitable metric integrands φ, the maximal φ-
Cheeger set can be computed as the level set associated to the maximum of the
solution of a φ-total variation minimization problem with Dirichlet boundary
conditions and datum f = 1. Thus, in the particular case of the geodesic active
contour model with inflating force, we can compute a global minimum. Con-
sidering other definitions of φ permits to apply the model for edge linking or to
interpolate data along the level lines of a reference image.



Chapter 11

Geodesic neighborhoods for
piecewise affine interpolation of
sparse data

Two widely used techniques for acquiring digital elevation models of urban areas are
laser range scanning (LIDAR) and stereo photogrammetry. Both techniques have a
common drawback, for a variety of reasons the information they provide is sparse or
incomplete. But in both cases it is fair to assume that a high resolution image of the
scene is available.

In this chapter we propose a different interpolation method for sparse data that in-
corporates the geometric information of a reference image u. This allows us to interpolate
the data set while respecting the edges of u. The idea consists in defining for each sample
a set of neighboring samples and then fit a model (affine for instance) for interpolating
the current point. The core of the algorithm is a fast method for computing geodesic
distances between image points, which has been successfully applied to colorization and
segmentation. The geodesic distance allows to determine the set of points that is used
to interpolate a piecewise affine model in the current sample. This first interpolation is
then refined by merging the obtained affine patches using a greedy Mumford-Shah like
algorithm. The output is a piecewise affine interplation of the data set that respects both
the given data and the radiometric information provided by the reference image u.

11.1 Introduction

We consider the problem of interpolating a set of range measurements of a scene
using the additional knowledge of the radiometric information of the same scene
given by the image u.

This scenario is common in the case of LIDAR measurements, since a digital
image has a higher density, and its acquisition is faster, when compared to the
range data. We will take advantage of the information provided by the associ-
ated image to interpolate the sparser range measurements. The same applies to
the case of stereo reconstruction of urban Digital Elevation Models (DEM), since

171
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in this case the height information can be accurately determined only at a sparse
set of locations in the image [Del04, DR07, SMA10], and therefore using the ref-
erence image to interpolate them will provide a denser height map.

As in most works we adopt the Lambertian hypothesis. That is, a uniform
surface (in the model) with a constant angle will be seen with a constant inten-
sity in the image. This assumption allows us to extrapolate information across
uniform regions of the image. Clearly not all uniform regions will have some
data sample in it, especially if we consider textured surfaces. In those cases we
extrapolate from the “nearest” sample, where nearest refers to the geodesic dis-
tance that takes into account the radiometric and edge information of the image.
We have to acknowledge that areas of constant intensity in the image do not
necessarily correspond to the same surface in the model, but this situation is un-
likely since in most cases a discontinuity in the model corresponds to a change
of intensity in the image.

11.1.1 The basic idea

Let us denote by u(x) : Ω → R+ the monochromatic image of a scene defined
on Ω ⊂ R2, and let G(λ) : Λ→ R, λ ∈ Λ ⊂ Ω, be a given depth function which
we assume to be known only at the samples Λ. As in [YS06, BS07, SGT02] the
idea is to use the geodesic distance to incorporate the radiometric information
provided by the image u in the interpolation of the sparse data G to produce a
dense depth map H(x) : Ω→ R that fits the values of G. This distance measures
the minimum variation of u between two points. Therefore, the distance of two
points along the same isophote is 0, while the distance of two points at both
sides of a discontinuity of u will be proportional to the “jump” of u.

With the geodesic distance we define the geodesic Voronoi diagram for the
sites in Λ, and then interpolate in each cell using an affine model. The geodesic
Voronoi cells, as opposed to the Euclidean nearest sample interpolation, permit
to recover sharp and meaningful boundaries of the model (see Figure 11.1 and
Figure 11.2). Moreover, since the distances can be efficiently computed with
a modified pixel queue algorithm, this method provides a fast alternative to
iterative anisotropic diffusion algorithms.

In [YS06] the authors use the K-nearest geodesic samples to blend the chromi-
nance information given by color the scribbles, while here we reinterpret those
geodesic neighborhoods as samples belonging to the same surface as the current
point (see Figure 11.2). The linear blending used in [YS06] cannot recover kinks
in the model (see Figure 11.3(a)). Because, as pointed out in [She68b], they con-
sider just the distance and not the spatial distribution of the nearby samples. It
becomes clear that, in order to recover kinks and discontinuities, an affine model
must be adjusted to each geodesic neighborhood. In Figure 11.3(b) is shown a
result obtained by least squares fitting of a plane.

This procedure is suitable for noiseless measurements, however when con-
sidering noise or outliers in the measurements the quality of the results drops
notably. To solve this issue we will resort to the robust selection and fitting of the
neighborhoods, and the merging of regions with compatible models. It is possi-
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(a) Reference image (b) Data points

(c) Euclidean Voronoi (d) Geodesic Voronoi

Figure 11.1: Piecewise constant geodesic Voronoi interpolation of height infor-
mation (darker is higher). In (a) we show the reference image used to compute
the geodesic distances, (b) shows the position of the samples with known depth
(5% of the total pixels). Interpolating the samples of (b) with Euclidean Voronoi
cells produces (c), while (d) corresponds to the geodesic Voronoi interpolation.

Figure 11.2: Geodesic Voronoi cells and geodesic neighborhoods. From left
to right: the reference image, the samples with the corresponding euclidean
Voronoi cells, the geodesic Voronoi cells and the geodesic neighborhoods cor-
responding to the blue dot in the forth image.
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(a) Linear blend (b) Affine adjust

Figure 11.3: Interpolation of the samples in Figure 11.1(b) using the 5-nearest
(geodesic) samples. Left: Weighted mean blending [YS06]. Right: interpola-
tion by affine plane estimation using the same 5 samples. In the second line we
compare a horizontal line section from each of the images.

ble to propose plenty of merging strategies to address this issue [IPG+07], which
will eventually lead us to a higher level representation of the scene. To improve
the estimation in case of noisy samples, we will merge adjacent geodesic Voronoi
cells using a greedy criterion and an error based stopping condition.

The idea of using the information provided by the image u to guide the in-
terpolation is not new. In [FLA+06] the authors solve an anisotropic minimal
surface problem to interpolate sparse disparity data. But minimal surfaces are
unable to resolve discontinuities and TV is unable to recover kinks in the model,
moreover, this type of schemes are likely to be slow due to its iterative nature.
In [IPG+07] the authors incorporate u through an initial segmentation, adjusting
the data points of each region with a robust estimation and use a region merging
strategy to merge similar regions. Ideally, with a “perfect” initial segmentation,
this method gives the best possible result, but since each initial region must al-
ready contain the points needed for the estimation, a bad initialization could
be catastrophic. In our method there is no initial segmentation, the Voronoi re-
gions are induced by the samples, and the affine planes are estimated using the
geodesic neighborhood relations.

The chapter is organized as follows: in next Section we define the geodesic
distance, the geodesic neighborhoods and we use them in Section 11.3 to fit a
piecewise affine model. In Section 11.4 we present a basic region merging al-
gorithm to increase the robustness of the estimation. Section 11.5 is devoted to
the discussion of the results, the limitations of the proposed method and their
possible solution. In Section 11.6 we give some conclusions and future work.
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11.2 Geodesic distances and neighborhoods

Let s and t be two points in Ω and let C(p) : [0, 1]→ Ω be a curve in Ω. We write
Cs,t to refer to a curve connecting s and t such that Cs,t(0) = s and Cs,t(1) = t,
and Ċs,t(p) denotes the tangent of the curve at p. Then we define the geodesic
distance between s and t as:

d(s, t) = min
Cs,t

∫ 1

0
|∇u(Cs,t(p)) · Ċs,t(p)|+ ε|Ċs,t(p)| dp. (11.1)

This distance is a regularized anisotropic distance. When ε� 1 it behaves as the
geodesic distance (at least for short curves)

min
Cs,t

∫ 1

0
|∇u(Cs,t(p)) · Ċs,t(p)| dp. (11.2)

The curve with smallest geodesic length is the a curve that crosses the least level
lines of the image u. For instance if s and t are located on the same isophote
then the shortest geodesic path is along the isophote, since in this case Ċs,t(p) ⊥
∇u(Cs,t(p)). Then along the isophotes (and across regions where the image u
is constant) all the paths have 0 geodesic length (11.2) no matter how long are
the paths. This causes to the following problem: when choosing the nearest
sample among two samples, both at the same geodesic distance, we still prefer
the nearest one (in the Euclidean sense). This is why we add a small part of
euclidean distance in (11.1). The distance (11.1) will behave like (11.2), as long
as the Euclidean length of the shortest curve is less than ε−1, and to make sure
of it we select ε inversely proportional to the size of the domain and the range of
u. A geodesic distance defined as (11.1) will respect the contrasted boundaries
of the image and in case of a tie it will use the Euclidean criterion as tiebreaker.

Then the geodesic neighborhood GNK(p) is the set formed by the K-nearest (in
the geodesic sense) samples of Λ to the point p. For K = 1 we get a corre-
spondence GN1 : Ω → Λ that for each point in p ∈ Ω assigns the nearest
sample λ ∈ Λ. We define the geodesic Voronoi region associated to of λ, as the set
{p ∈ Ω : GN1(p) = λ} (see the geodesic Voroni diagrams in Figures 11.1 and
11.2). With K > 1 we get a multi-correspondence map that associates several
samples to each point p. In Figure 11.2 we highlighted a geodesic neighborhood
of a point. Observe that all the points belong to the same object, we will take
advantage of this in the next section.

Remark 9. We have seen that the geodesic distance (11.1) embodies information
provided by the edges of the image u. This will prevent two points s and t,
at both sides of an edge, from having a small distance. However under some
circumstance (mainly due to noise or aliasing) the shortest path may indeed
cross an edge, and the crossing will occur at the least contrasted point of the
edge. To prevent this, when some high level information is available, it can
be embedded in the distance. For instance, the edges obtained with an edge
detector can be introduced as a hard constraint in the metric in order to penalize
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curves crossing them (add infinite cost |w(Cs,t(p)) · Ċs,t(p)| where w is a map of
the edge’s normals).

11.2.1 Computation of the Geodesic Neighborhoods

To compute the geodesic neighborhoods we use an algorithm similar to the one
proposed in [YS06, SGT02]. That is, for each data sample in Γ we run Dijkstra’s
algorithm over a 4-connected pixel lattice to compute the shortest paths to all the
pixels in the image. And for all the pixels in the image we store the K-nearest
geodesic distances to all samples in Γ. The computation of the geodesic lengths
of the paths defined on the 4-connected pixel lattice, decomposes into lengths of
path elements which are the edges of the lattice.

The overall performance of this method depends on the number of neighbors
K in the geodesic neighborhood, and this depends on the density of samples.
However since we only require the K-nearest neighbors, we can early stop the
Dijkstra iterations. The algorithm is summarized in Algorithm 5.

Remark 10. Processing the data points in a random order improves the effi-
ciency. Randomly selecting the current pixel p ∈ Ω \ Λ increases the speed of
the algorithm by a factor 3.5 (for datasets that cover 30% of the pixels) and 2 (for
datasets that cover 5% of the pixels).

11.3 Robust affine plane interpolation

For each data sample λ ∈ Λ we have defined a geodesic Voronoi cell and
a geodesic neighborhood. Figures 11.1 and 11.2 illustrate that the geodesic
Voronoi diagram successfully accounts for discontinuities in the image. We pro-
pose to use the geodesic neighborhood GNK(λ) to fit a plane through its points
and extend it to the whole geodesic Voronoi cell. This will give a piecewise affine
model H.

To compute the interpolation H at p = (px, py) ∈ Ω, we first determine
its nearest (with respect to the geodesic distance) data sample p∗ ∈ Λ, and its
geodesic neighborhood GNK(p∗). Then compute

H(p) = wT
p vp∗ ,

where wp = (px, py, 1)T are the homogeneous (spatial) coordinates of p, and
vp∗ ∈ R3 contains the affine parameters determined by the least squares regres-
sion

vp∗ = arg min
v∈R3

err(v, GNK(p∗)), (11.3)

err(v, GNK(p∗)) =
∑

q∈GNK(p∗)

|wT
q v− G(q)|2.

Observe that the samples of GNK(p∗) used in (11.3) are (except for p∗ itself) all
outside the geodesic Voronoi cell of p∗. This is the main advantage of this ap-
proach: using the information from the geodesic neighbors to extract knowledge
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Algorithm 5 Geodesic neighborhood algorithm
Data structures. For each pixel in Ω define:
• status label: needed for the Dijkstra algorithm (ACCEPTED, FAR, TRIAL).

• distance: stores the current minimum distance.

• nearest: refers to the nearest pixel in Ω \Λ.

• K-Nearest List: stores the K-nearest distances to samples obtained up to
the moment. This list is the output of the algorithm and only keeps the K
smallest values.

• maxDistance: the value of the maximum distance stored in the list, if the
list is not full then maxDistance is infinity.

Geodesic neighborhoods computation.
1: Construct a priority queue Q of pixels, sorted by the fitness field.
2: for all pixel p ∈ Ω\ : Λ do
3: Clear the queue Q.
4: Label all the pixels of Ω as FAR.
5: Add p to the priority queue, setting p.distance = 0.
6: while Q is not empty do
7: Extract the top of the queue Q→ q.
8: Update q.label as ACCEPTED.
9: Add the q.distance to the K-Nearest List of q.

10: for all non ACCEPTED neighbors of q→ r do
11: Compute the distance from p to r trough q, that is:

dNew = d(p, q) + d(q, r).
12: if r.label is TRIAL and dNew < r.distance then
13: Update r.distance = dNew.
14: end if
15: if r.label is FAR and p.distance < r.maxDistance then
16: Update r.label as TRIAL, set r.distance = dNew and

add r to the queue Q.
17: end if
18: end for
19: end while
20: end for
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about the current region. Exploiting the hypothesis that the geodesic neighbors
belong to the same surface, allows to construct an affine model for the current
region. Otherwise (using a single region) we could only determine a constant
model.

The size K of the neighborhood is a critical parameter here. If it is too small,
then the estimation of the plane will be poor. If it is too big, then we will not
be able to recover small planar surfaces (with only a few samples on them).
Moreover if the geodesic neighborhood contains outlier samples (that do not
belong to the same object as the center p) then the result will be biased.

To remove the outliers we use a RANdom SAmple Consensus (RANSAC)
[FB81], which we modified to ensure that the consensus set always contains
the 3-nearest geodesic neighbors of p. This choice of the 3 neighbors is arbi-
trary, however this parameter depends on the density of the samples. Indeed
with this selection we are supposing that each planar region contains at least 3
samples in it.

Remark 11. Let us note that some neighborhoods may be elongated because
the geodesic neighborhoods are expected to be anisotropic. In this case the re-
gression is ill conditioned, and a single plane cannot be estimated. We are not
considering this possibility, however this should be taken into account for future
developments.

11.4 Region merging

Fitting each individual Voronoi region with an independent plane represents
an inconvenient when the height information is perturbed by noise (or small
measurement errors). Even for adjacent regions, that share some samples, the
different fittings may not coincide, resulting in an irregular model as shown in
Figure 11.4(b).

To further improve the plane estimation we will merge the models of ad-
jacent geodesic Voronoi regions obtained in the previous section. For that, we
minimize a simplified Mumford-Shah functional

E(B, f ) =
∑

R∈P(Ω)

RErr(R, f ) + λ

∫
B

g(s) ds, λ ≥ 0, (11.4)

where P(Ω) denotes a partition of Ω, B the set of boundaries of the regions
of P(Ω), RErr(X, f ) =

∑
x∈X∩Λ | fX(x) − H(x)|2, H denotes the output of the

affine plane interpolation, and fX is the affine model for the region X obtained
as

fX(x) = wT
x

arg min
v

∑
p∈X∩Λ

err(v, GNK(p))

 .

The weight g(s) of boundary length term is a function that is big at poorly con-
trasted boundaries and very small at the well contrasted ones. In practice, we
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Algorithm Noiseless Disp. Noisy Disp. [SAM08]
Linear Blend [YS06] 0.0902 0.0983

Affine (no RANSAC) 0.0810 0.0829
Affine 0.0687 0.0708

Affine+Merge 0.0649 0.0637

Table 11.1: Mean Square Errors (MSE) of the results obtained using the ground
truth information. All the experiments were performed with the 25 geodesic
nearest neighbors. The first column corresponds to the interpolation of noise-
less data (the values of samples are exact), and in the second the samples are
computed with a stereo correlation algorithm [SAM08].

take g(x) = exp
(
− |∇u(x)|2

σ2

)
, with σ2 = Var(u), so that the length of a curve

along a contrasted boundary is almost zero. As in [MS95], a greedy minimiza-
tion of (11.4) will merge two regions A and B when

λ >
RErr(A ∪ B, f )− RErr(A, f )− RErr(B, f )

`g(∂(A, B))
,

where `g(∂(A, B)) :=
∫

∂(A,B) g(s) ds is the weighted length of the common
boundary between A and B.

In the context of urban landscape interpolation there may be clear bound-
aries that should not be removed by the merging. This could be the case of the
segments detected by the LSD algorithm [vGJMR10] (see Figure 11.5(a)), which
reflect the geometry of the urban landscape. If the edge crosses a line segment,
then its length will be set to zero, and this will avoid merging these two regions.
Moreover, we will keep track of all the edges in this situation and forbid any
merge that removes them from the segmentation.

Finally, let us mention that the selection of λ is critical for obtaining reason-
able results, because if set too low it will produce an over-segmentation, and if
too high it will merge different objects. Instead of selecting a particular value of
λ we will control it indirectly by monitoring the merging error RErr(A ∪ B, f )
at each step and stopping the algorithm if it exceeds a threshold proportional to
the measurement’s error.

Remark 12. Note that at each step of the region merging loop the affine model
fR for the merged region must be updated, however it is easy to show that the
merging of two affine models and the the re-evaluation of the error is a constant
time operation.

11.5 Experiments

In our first experiment we will use the stereo data set kindly provided to us by
CNES. We displayed it in Figure 11.1. We consider two cases: exact depth mea-
surements (obtained from the ground truth), and noisy depth measurements
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(a) Noiseless dataset without region merging

(b) Noisy dataset without region merging

(c) Noisy dataset after region merging
Figure 11.4: Left: interpolated map. Middle: interpolated map represented as a
gray level image. Right: error map. In (a) we display the interpolation of the
noiseless data without region merging. (b) is the same for the case of noisy data.
In (c) we display the region merging applied to (b).
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(a) LSD segments (b) Before merging (c) After merging
Figure 11.5: Region merging. The region merging algorithm do not merge re-
gions across detected segments (a), and stops if the error is too big. (c) shows
the regions obtained after merging the regions of (b).

computed with the subpixel stereo algorithm described in [SAM08]. For the
noisy case the variance of the error is estimated to be 0.013, and we use it to
select the parameters for RANSAC and the region merging stopping condition.

Both datasets were decimated to 5% of the image pixels (240× 240 pixels),
and the depth information along the detected segments was erased. Such a low
density is unlikely in a real application, however this may prove the perfor-
mance of the method. For these images the computation of the 25 geodesic near-
est neighborhoods takes 14 seconds on a 1.6 Ghz CPU with non optimized C
code. All the RANSAC trials are computed in less than 5 seconds and the region
merging takes less than 2 seconds.

In Table 11.1 we summarize the performance (in terms of Mean Square Er-
ror) of each step of the proposed method. First, let us consider the noiseless case.
In Figure 11.4(a) we display the result of the affine interpolation without merg-
ing. The error map, shown in the rightmost column of Figure 11.4(a) (darker
means higher error with respect to the ground truth information), shows that
most of the errors come from small planes, non-planar surfaces, and disconti-
nuities. Note that, despite of the low sample density, kinks are recovered with
great precision and planes are well recovered.

In the noiseless case we can skip the merging step since all the height in-
formation is consistent across neighborhoods. However in the noisy case this
is not possible since the result of the neighborhood interpolation is very irreg-
ular (see Figure 11.4(b)). The result shown in Figure 11.4(c) is obtained after
merging the region models in Figure 11.4(b). As mentioned in Section 11.4 the
algorithm avoids merging regions that are separated by LSD segments (shown
in Figure 11.5(a)), and stops when the merged error variance exceeds 0.013. It is
interesting to see that the resulting partition (see Figure 11.5(c)) also resembles a
segmentation of the model.

In our second experiment we considered the images from the Middlebury
dataset1 shown in Figure 11.6, the disparity was computed using [SAM08] and

1http://vision.middlebury.edu/stereo/ .

http://vision.middlebury.edu/stereo/
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(a) Map: density 14%.

(b) Venus: density 14%.

(c) Sawtooth: density 3%.

(d) Teddy: density 5%.

Figure 11.6: Middlebury dataset. From leftmost to rightmost columns: the ref-
erence image, the depth samples, the obtained interpolation (after merging) and
the merged regions. The depth data in the first three rows was computed with a
stereo correlation algorithm [SAM08] and subsampled (density specified in each
case). For the Teddy image the data is a random subsampling of the ground
truth.
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subsampled to different factors. The results are also shown in Figure11.6 to-
gether with the final segmentation. Observe that in presence of poorly con-
trasted edges between strongly textured regions the method tends to produce
artifacts as seen in Figure 11.6(a,c). These artifacts are consequence of our defini-
tion of geodesic distances, which is based on pixel graylevel differences. Hence,
complex textures are likely to produce false boundaries while poorly contrasted
boundaries are not distinguished by the geodesic distance. To alleviate this type
of problem, in [SGT02, BS07], the authors considered the use of higher level fea-
tures in the definition of the geodesic distance.

Finally, let us point out the main limitations of this method. Since we do not
construct a geometric description of the scene, there is no distinction between
kinks and discontinuities in the model. Note that in Figure 11.4(c) many roof
planes do not coincide at the top.

11.6 Conclusions and future directions

The geodesic Voronoi cells adapt to the shapes present in the reference image,
contributing to the interpolation of sparse data. We have also seen that, using
the information obtained from the nearby (in the geodesic sense) samples, it is
possible to locally infer a model from the data. We presented here an algorithm
that uses an affine interpolation model. However the methodology can be easily
adapted to other (non-affine) local models [She68b].

A region merging criterion that distinguishes kinks from discontinuities,
would improve the results. A step in this direction could be to weight the length
of the boundary between two regions by a factor of “coplanarity”, favoring the
elimination of boundaries between similar planes.

A different possibility is to merge the concept of geodesic Voronoi cells
with the region growing method for detecting planar patches, as proposed in
[ABGvG10]. In [ABGvG10] the authors considered dense samplings, but it is
a straightforward extension to use the geodesic Voronoi cells for interpolating
sparse data.

Finally, one could also interpret the region merging as a clustering problem.
Consider a graph where the nodes are the Voronoi regions and the edges con-
nect the geodesic neighborhoods (with weights proportional to the geodesic dis-
tance). An example of such graph is depicted in Figure 11.7. Then we can see
the region merging as a spectral clustering problem, where the issue is separate
the graph into disjoint subgraphs by cutting the least number of edges. Tech-
niques such as Normalized Cuts [SM02] compute such segmentations by itera-
tively splitting the graph.
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Figure 11.7: Geodesic neighborhood coherence. The black lines show the
geodesic nearest neighbors (four of them) corresponding to several points cho-
sen on a regular subgrid of the image. The width of the line is inversely propor-
tional to the distance (a small geodesic distance is represented by a thick line).
Observe that the samples belonging to the same object form strongly connected
subgraphs, while different objects are connected by thin edges or remain uncon-
nected.



Chapter 12

Conclusions

As we mentioned in the introduction the three parts of this thesis are motivated
by problems related to the acquisition of satellite images and the obtention of
digital elevation models from them. This led us to the study of several interpo-
lation problems.

In the first part of the thesis we considered the restoration (denoising and
deconvolution) of irregularly sampled images as a constrained regularization
problem using a band limited model. We propose a method that imposes the
regularity of the solution using a frequency adaptive regularizer, and enforces
the noise constrains locally. The combination of both allows us to obtain very
competitive results. We also studied the problem of image fusion, we discussed
the restoration of aliased images, and developed two methods for determining
the spectral region of an image that is “alias-free”.

A complementary approach to the interpolation of irregularly sampled im-
ages is to hallucinate the features that are not captured by the sampling. In the
second part we explored the use of a self-similarity prior as a regularity model
for the interpolation of sparsely sampled images (restricted to the case where
the samples are at integer positions). Our study starts with the introduction of a
new exemplar-based inpainting framework which we subsequently adapted to
the interpolation of sparsely sampled images. The interpolation results obtained
with the self-similarity prior are surprisingly good allowing to recover textured
patterns even at very low sampling densities.

Finally, in the third part, we considered the interpolation of sparse elevation
data as provided by the small baseline stereo correlation algorithm in [SMA10].
For this problem we explored several anisotropic regularizers that allowed us
to impose the geometric structure of a reference image in the interpolated re-
sult. Indeed, we studied three different regularization models: an anisotropic
minimal surface regularizer, the anisotropic total variation and a new piecewise
affine interpolation algorithm. Let us mention that the study of the anisotropic
total variation was primarily motivated by the computation of φ-Cheeger sets
for solving exactly the geodesic active contours model with inflating force. The
piecewise affine interpolation algorithm associates to each pixel a set of geodesic
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nearest neighbors that is used for fitting a plane.

Summarizing, the main contributions of this thesis are:

• An algorithm for restoring irregularly sampled images, with local con-
straints and using a spectral adaptive regularizer.

• An exemplar based framework for image inpainting. The extension of the
previous framework to the interpolation of sparsely sampled images.

• The application of anisotropic total variation for computing φ-Cheeger sets
and its use to exactly solve the geodesic active contour model with an in-
flating force.

• An algorithm for interpolating and regularizing urban digital elevation
models that uses a geodesic distance to impose the geometry of a reference
image.

12.1 Future directions

Irregular sampling restoration in presence of antialias. Removing the alias
from an irregularly sampled image has proven to be an ambitious task. We
see the image fusion problem as the restoration from irregularly sampled and
aliased images with a prescribed bandwidth (which is indicated by the spectral
projector). But, as we have shown in Chapter 4, using the spectral projector (in
the irregular case) leads to a bias in the estimation of the noise which is difficult
to fix.

Having approached the restoration problem using a band limited interpo-
lation model all the samples are needed to determine the restoration of each
pixel. This has two drawbacks, first the performance, and second the impossi-
bility to adapt locally the modulation transfer function and the spectral projector.
The second is particularly annoying because, previous to the fusion, the images
should be rectified and the rectification of the terrain distortions may induce
changes in the modulation transfer function [ACF07].

Some steps have already been taken in order to build “local” restoration al-
gorithms for irregularly sampled images [ACD10, Van06]. Hopefully, this work
will continue in the direction of including local modulation transfer functions,
ultimately leading to the development of high quality image fusion algorithms.

Image fusion using exemplar-based interpolation. Extending the framework
of Chapter 7 to handle images sampled at non integer positions will allow to
inject new samples into the restoration process. These samples can taken either
from the image being restored or from other images of the same scene.

We anticipate that this kind of processing will be computationally expensive
because of the nearest neighbor search. Since in this case it is not possible to take
advantage of search tree algorithms, this task is currently performed by a brute
force search on the neighborhood of the pixel. However we believe that it is
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possible to overcome these limitations by using collaborative random search al-
gorithms such as in [BSFG09, PELS10] combined with candidate lists [TZL+02].
In Section 6.A, in the context of image inpainting, we already described an ex-
tension of [BSFG09] that consider lists of candidates.

Better uses for the geodesic neighborhoods. As we mentioned in Chapter 11
geodesic neighborhoods provide useful information regarding the similarity of
the geodesic Voronoi cells with its neighbors. But this information needs to be
understood globally in order to extract some useful relations about the regions
and build clusters. Future research will concentrate on determining the applica-
bility of graph clustering techniques [SM02] to the graph of geodesic neighbor-
hoods.

Exemplar-based urban digital elevation model interpolation. Clearly the fea-
tures that define the urban environment are recurrent, so it seems reasonable to
define dictionaries of common features which can be used for assembling a dig-
ital elevation model that fits the known data.

Extension of exemplar-based inpainting to video. The extension of the exem-
plar based inpainting framework to video is not trivial, the main challenge being
the temporal consistency and the handling of occlusions.
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