

Observing the Earth in 3D with Pleiades-HR

jean-marc.delvit @t cnes.fr celine.lhelguen @t cnes.fr

PLEIADES program overall context

- Dual system designed for civil and defense needs
- Submetric optical Earth observation system developed by CNES In cooperation with
- Sweden Swedish National Space Board
- Belgium Federal Office for Space Policy
- Spain Instituto nacional de Tecnica Aerospacial
- Austria Osterreichische Forschungsforderungesellschat

two satellites in orbit within 11.5 months

Launch: PHR1A 17th December 2011 In flight acceptance : March 2012

PHR1B: 2nd December 2012 February 2013

Cones

Pleiades Main Mission Requirements

Image characteristics

- +0.7 m Pan resolution at nadir
- four XS bands (blue, green, red, near IR) with 2.8 m resolution at nadir
- +20 km swath at nadir
- +data coded on 12 bits

Revisit Capability

 Daily accessibility to any point on the globe (with 2 satellites)

Improved access image delay

- Better than 24 hours between image request and image delivery in nominal mode
- ◆1 hour, with Direct Tasking …

Large coverage capability

In average 600 images per satellite and per day

PLEIADES satellite

A new concept compared to Spot

 A small and very agile satellite to improve operational capability and minimize the conflicts between users

Designed for an high agility

- Compact <1000 kg satellite with low inertia</p>
- Rigid satellite with fixed solar array
- Attitude control system with powerful CMG actuators

Designed for an high image quality

 High stability instrument with high precision sensor heads mounted on the optical bench for maximum geometrical quality accuracy (star trackers, Inertial Measurement Unit (FOG))

Definition Satellite : AOCS

sensors

- Autonomous navigation with the DORIS/DIODE system
- Image geolocation governed by attitude determination
 - 3 star trackers
 - ♦ 4 Fiber Optical Gyrometers
 - All active in nominal configuration

actuators

- Instrument agility is obtained through a set of 4
- gyroscopic actuators (control moment gyros or CMGs)
- CMG on ball-bearings,
- kinetic momentum: 15 Nms

agility (roll and pitch):

- 5 in 8 seconds
- 10 in 10 seconds
- 60 in 25 seconds

FOG Inertial Core Unit

Cnes

Mission performances

High agility is a must to

- minimize conflicts between users
- select the most important images
- take into account cloud coverage forecast
- access to different acquisition modes
 - stereo pairs
 - stereo triplets
 - single pass mosaics
 - follow linear targets

Stereoscopy : acquisition principle

Stereoscopy : contributors

3D restitution (ponctual perf)

Geometric Supersite - Napier,NZ

North (Napier) GSD 10cm South (Hastings) GSD 12.5cm

Geometric Supersite - Napier,NZ - DSM

3d algorithm

Correlation and filtering

CORREL LeftRight

CORREL RightLeft

LRRL FILTER Black or red = not valid

18

Viewing directions intersection (2)

Viewing directions intersection (N)

The intersection of the viewing direction for the DSM construction is resolved like the following problem. Let Δ be a line passing through a point S and whose direction vector is V, any point M and δ the distance between M and Δ . Then,

$$\delta^{2} = \left\| \overrightarrow{SM} \wedge \overrightarrow{V} \right\|^{2} = \overrightarrow{SM}^{2} - \left(\overrightarrow{SM} \cdot \overrightarrow{V} \right)^{2}$$
$$d(\delta^{2}) = 2 \overrightarrow{dM} \cdot \left[\left(Id - VV^{t} \right) \left[M - S \right] \right]$$

For a set of *n* of viewing directions Δ_i with (S_i, \vec{V}_i) , we are looking for as intersection of these viewing directions the point M which minimizes this distance quadratic sum:

$$\sum_{i} \delta_{i}^{2} = \sum_{i} \left\| \overline{S_{i}} \overline{M} \wedge \overline{V_{i}} \right\|^{2} = \sum_{i} \left[\overline{S_{i}} \overline{M}^{2} - \left(\overline{S_{i}} \overline{M} \cdot \overline{V_{i}} \right)^{2} \right]$$

The solution is :

$$M = \left[\sum_{i} \left(Id - V_{i}V_{i}^{t}\right)\right]^{-1} \sum_{i} \left[\left(Id - V_{i}V_{i}^{t}\right)S_{i}\right]$$

The real interest of this method is the simplicity of the algorithm:

- it is easy to compute the terms $Id V_i V_i^t$ and $(Id V_i V_i^t)S_i$
- only one 3x3 matrix inversion arises
- <u>in</u> an iterative process it is really easy to eliminate "far viewing directions" by removing the contribution of these viewing directions using the terms $\sum_{i} (Id V_i V_i^t)$ and $\sum_{i} [(Id V_i V_i^t)S_i]$.

3D points cloud 1

DTM obtained with the first couple

3D points cloud 2

DTM obtained with the second couple

Final 3D points cloud

Final DTM obtained

Multi-resolution points cloud

DTM with a DSM inside

Global statistical filter 3σ

Local statistical filter 2σ

Sphere filter (R=10m with 5 points minimum)

DSM with 2 images 1000x1000 pixels with a 19 pixels exploration window and a 11 pixels correlation patch.

Tests	Processors	Time	Optimization / test A
А	1	12m21.496s	1
В	5	3m17.056s	3,76
С	4x5	0m54.081s	13,71

A Pléiades DSM (30000x30000 pix) can be computed in 1h40 with a cluster of 10x10 processors instead of 8 days on a single processor.

Examples Haïti

Lidar Reference

¢cnes

Examples Haïti

Lidar Reference

¢cnes

Example Haïti

Good 3D restitution Bundle adjustment with some GCPs - for planimetry adjustment Statistics with low average and std. Performances as Napier

~ 2 pixels PHR in altimetry

Focal plane catography impact

- An error on the focal plane cartography implies altimetric errors (example on Monument Valley B/H 0,09)
- update of the carto via GIPP in july 2012 for PHR1A and july 2013 for PHR1B.

Décalage en colonnes

50 pix

Image de référence

Décalage en lignes

Image secondaire

Monument Valley (PHR1B)

Conclusions : 3D, resolution, B/H

B/H~0,12 **Stereo**

Some walls

¢ cnes

Pléiades 70cm

OTOS (next gen) 30cm