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Abstract We consider two problems associated with

non-dense block-matching stereo algorithms. The first

is to compute correct disparities at places where the

pronto-parallel hypothesis is invalid: places like discon-

tinuities and slanted surfaces. The second is to detect

when a match is ambiguous or invalid. We advocate,

in this work, for the use of oriented windows in order

to deal with slanted surfaces and discontinuities. Unlike

adaptive support windows the oriented windows permit

to correctly estimate disparities on slanted surfaces. To

improve the mismatch detection we propose two new

parameter-less techniques, which are based on old ideas.

One, based on the notion of distinctiveness, is used to

detect ambiguous matches. The other, based on the

min-filter, is used to detect occluded and dis-occluded

pixels. The incorporation of these simple ingredients in

a coarse-to-fine algorithm, allows to obtain fairly dense

results with less mismatches than other algorithms with

similar characteristics. Our work is motivated by pho-

togrammetric applications from high-resolution aero-

spatial imagery. The automatic generation of urban dig-

ital elevation models from this type of images justifies

our interest on obtaining sparse but reliable disparity

maps.

Keywords stereovision · mismatch detection ·
multiple correlation windows · slanted surfaces

A. Buades
E-mail: toni.buades@uib.es

G. Facciolo
E-mail: gabriele.facciolo@cmla.ens-cachan.fr

1 Introduction

Stereovision consists in finding the depth of a scene

from two or more images taken from slightly different

viewpoints. This is one of the central problems in com-

puter vision, and it has been an active research sub-

ject for the last thirty years. The principle of stereovi-

sion is that the apparent motion of a point, resulting

from a camera movement, is related to its distance from

the camera. The problem is then to find corresponding

points in the images in order to compute their apparent

motion (or parallax movement).

The correspondence problem or disparity computa-

tion reduces in the case of two stereo-pair images u and

v to the search of a disparity function ε such that

u(x) = v(x + ε(x)).

For the pinhole camera model it can be shown [12] that

the parallax movement of a point occurs only along a

line (called epipolar), and that the images can always

be rectified so that the disparity of every points is hor-

izontal.

Since the above equation is ambiguous many stere-

ovision algorithms do not look for the function ε by

matching the grey level of individual pixels but instead

match the grey level of an entire window around each

pixel. These are designated local methods [24] because

they rely only on information present in the neighbor-

hood of a pixel to determine its disparity. Conversely,

the global methods disambiguate the matching by im-

posing some global regularity constraints on the output

disparity function.

The local methods compute the disparity by cor-

relating a small window (or patch) along the epipolar

lines, being the Sum of Squared Differences (SSD) the

most common matching cost used for this purpose. The
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lack of texture or information in the image is the main

challenge of local methods. That is, if an image patch

lacks texture or its signal-to-noise ratio is too small,

then the computed disparity will likely be incorrect.

The global methods cope with ambiguities by restricting

the disparities to some class of smooth functions, which

usually permit to derive reasonable estimations even on

textureless areas. Most global methods could even ex-

tend these estimations to half-occluded regions of the

images (regions which are visible only in one of the im-

ages). However, the result of a global method makes

no explicit distinction between bad and good matches,

confusing where the disparity is factual or not. More-

over, the smoothness of the solution is always controlled

by a parameter, whose optimal value usually depends

on the scene being processed.

The choice between local and global methods is cer-

tainly application dependent. In some cases it may be

critical to obtain dense disparity maps regardless of

the possible extrapolation errors that a global method

may introduce. However, since the main application we

are considering is the generation of urban digital eleva-

tion models from satellite images, in order to keep only

the factual correspondences we opt for a local method.

Thus, as in [7,13], our algorithm will favor reliability

over completeness by allowing for non matched regions.

For that we propose a set of tests that permit to identify

the reliable matches.

We distinguish two stages of the stereo estimation

process: the computation of a candidate disparity map

by a winner-take-all strategy [24]; and the classification

(or rejection) of the mismatches which is done indepen-

dently of the mechanism that generated the matches.

Thus, a good algorithm should generate good candi-

date disparities and should be effective at detecting the

mismatches. This modularization simplifies the expo-

sition and the analysis of the individual choices. For

computing the disparities we will consider classic block-

matching costs with uniformly weighted windows. Con-

cretely the Sum of Squared Differences (SSD) and the

zero-mean SSD (ZSSD). The rejection tests are aimed

at detecting mismatches due to factors like: lack of tex-

ture, repetitive patterns and occlusions.

Detect mismatches. Let us first comment on the main

causes of matching errors and how to handle them.

Match ambiguity. As mentioned before the ambiguity

due to lack of texture in the image is one of the

main sources of matching errors for the local meth-

ods. Similar issues are observed in presence of the

aperture problem, or when the patch belongs to an

object with a repetitive pattern. The common de-

nominator for all these cases is the ambiguity of the

matches. Many methods [7,13,18] detect ambiguity

by comparing the costs of the best and second best

match candidates, but this usually requires to fix

a parameter. Manduchi and Tomasi [19] observed

that self-similar regions of the reference image yield

ambiguous matches because the are not distinctive.

Based on this notion of distinctiveness we will pro-

pose a new parameter-less criterion to detect these

ambiguous matches.

Almost all local stereo matching algorithms use the

left-right consistency check [8,9] for detecting mis-

matches. Although this test excels in the detection

of occlusions (see below) it can also detect some am-

biguous matches.

Inadequacy of the geometric model. Three-dimensional

geometric discontinuities of the scene produce occlu-

sions and dis-occlusions, which manifest as spurious

matches or foreground fattened results. Figure 1 il-

lustrates these concepts. A similar phenomenon is

observed on slanted surfaces. The block-matching

performance is usually poor on slanted surfaces (that

are not occluded), and may even produce incor-

rect matches. The overall reason for these failures

is the inadequacy of the fronto-parallel hypothesis

for block-matching methods. That is, the assump-

tion that any image patch can be found undistorted

in the second image. The patches overlapping dis-

continuities are only partially visible in the second

image. And the patches on slanted surfaces appear

distorted in the second image (by an affinity in the

case of rectified images).

The left-right consistency check [8,9] detects most

occlusions, however the foreground fattening associ-

ated to the dis-occlusions is usually not detected by

this technique. In this work we propose a new filter

based on the min-filter [2,6] that permits to reject

most of the foreground fattened regions.

Improve matching. Errors near depth discontinuities re-

sult from the incorrect assumption that any image patch

appears translated in the second image. Let us see how

these errors can be attenuated or prevented.

The usual way to cope with depth discontinuities is

to use adaptive windows (also known as adaptive sup-

port weights) that avoid image discontinuities as was

first proposed by Kanade and Okutomi [15]. Similar

works by Lotti and Giraudon [17] and more recently

by Wang et al. [29] pre-compute the image edges and

recursively grow a comparison window while avoiding

the edges. Patricio et al. [21] and Yoon and Kweon [31]
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Fig. 1 Depth discontinuities and foreground fattening. The
center of the window (A) is on the background but the win-
dow contains the depth boundary, thus some points in the
window match at the foreground disparity (B), while others
match at the background disparity (B’). The best match will
be for the region containing the stronger horizontal texture,
which is usually the object boundary itself. Since the object
boundary is at the foreground disparity, a strong preference
for the foreground disparity is created. Leading to the well-
known “foreground fattening” effect.

select an adaptive window containing only pixels with

a grey level similar to the reference one, like in neigh-

borhood and bilateral filters [27,30]. All of these meth-

ods identify depth discontinuities with image disconti-

nuities, which is not always the case.

Other approaches do not try to avoid explicitly the

discontinuities of the image. Instead, they choose an

adaptive window with a minimum matching cost crite-

rion. The subjacent idea is that windows that do not

contain depth discontinuities will be matched with a

smaller matching cost. Fusiello et al. [10] choose among

all the windows containing the reference pixel the one

that yield the minimal matching cost. Veksler [28] ap-

plied the same strategy but considering square win-

dows of different sizes. A more elaborated version by

Hirschmüller et al. [13] adapts the shape of the win-

dow by dividing the matching window into small sub-

windows and by selecting those for which the minimum

matching cost is attained.

The methods based on adaptive windows deal with

the discontinuity issues by adapting to the shapes in

the image. However they are still bound to the fronto-

parallel hypothesis in the sense that they don’t con-

template the case of slanted surfaces. To cope with

the slanted surfaces some methods [5,11] propose to

explore, for each image point, all possible surface ori-

entations. For rectified images the transformations be-

tween planar patches are reduced to three dimensions:

translation, horizontal tilt and shear. In [5] this over-

parametrized space of transformations is efficiently ex-

plored using a random exploration algorithm.

In this work we use multi-window block-matching

algorithm similar to [13] which chooses for each pixel

among a group of oriented windows. Using elongated

and oriented windows improves the matching on slanted

surfaces and permits to match pixels closer the disparity

discontinuities. On a slanted surface the chosen window

will adapt to the direction of least variation of the dis-

parity, thus matching with a low cost. Whereas near a

disparity discontinuity the window oriented with the

edge will match with lower cost, thus permitting to

match and validate closer to the discontinuity. More-

over, as shown in the asymptotic analysis performed by

Blanchet et al. [4], the disparity estimated by SSD min-

imization is in reality to the mean disparity within the

matching window. The oriented windows are consistent

with this analysis as they permit to minimizes the vari-

ation of disparity within the window, thus leading to

more accurate results.

The proposed block-matching algorithm is melded

with a principled coarse-to-fine strategy that allows to

reduce the occurrence of ambiguous matches and also

reduce the computation time. Moreover the multi-scale

strategy interacts positively with the multi-window match-

ing yielding denser results.

Contributions and plan of the paper. In this work we

propose a principled block-matching algorithm for stereo,

using a coarse-to-fine strategy. A multi-window algo-

rithm with oriented windows is used to compute the

disparities. This new approach permits to deal with non

fronto-parallel surfaces and allow to match near the ob-

ject’s edges, leading to higher matching densities. We

propose two new match classification techniques that

are virtually parameter-less, that extend previous ideas

on match validation [2,3]. Unlike other works [7,13] the

proposed algorithm has no tredeoffs or parameters to

be set beside the size of the patch. Compared to other

non-dense block-matching methods the proposed algo-

rithm yields state-of-the-art performances in terms of

density and mismatch rates. To test the algorithm an

on-line demo is also made available1.

We summarize the plan of the paper as follows. Sec-

tion 2 introduces the block-matching method that will

be used for disparity estimation. Section 3 describes

the criteria used to reject incorrect matches. Each crite-

rion is designed to cope with one of the block-maching’s

drawbacks, namely lack of texture or information, strobe

effect or fattening effect. In Section 4 we introduce the

multi-window block-matching algorithm which chooses

for each pixel among a group of oriented windows. Sec-

tion 5 describes a multi-scale strategy that is performed

by adapting at each pixel’s disparity range depending

on the estimation at a lower scale. It is shown that this

strategy improves the results of the block-matching. Fi-

nally, Section 6 compares the proposed algorithm with

1 On-line demo of the proposed method available at:
http://dev.ipol.im/~facciolo/ipol_demo/msmw/
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two state-of-the-art local methods for non-dense block-

matching and a global method based on the graph cuts

minimization. It is shown that the proposed method

yields the lowest mismatch rates among all the consid-

ered algorithms while producing a fairly dense disparity

map. It is illustrated by examples that global method

fail in estimating correctly the disparity near depth dis-

continuities and detecting occlusions. A global fattening

effect appears due to the regularity constraints of global

methods. Thus, only local methods allow for a control

of matches and thus a validation step.

2 Block-Matching by SSD

We denote by x = (x1, x2) the position of a point in

a continuous image domain Ω ⊂ R2, and by u(x) =

u(x1, x2) and v(x) the images of a rectified stereo pair.

For non-integer positions x ∈ Ω, u(x) is computed in-

terpolating the discrete samples of u. The disparity is

estimated by

d(x) := arg min
d′∈pZ

c(x,x + d′),

where c(·, ·) is a cost function computed by comparing

patches of u and v centered respectively at x and x+d′.

The factor p ∈ Q is the disparity step and it is set

to p = 1 in most methods. We will consider here the

following two cost functions:

– The sum of squared differences (SSD), which writes

as the Euclidean distance between patches

SSD(x,y) :=
1

|Br|
∑
t∈Br

|u(x + t)− v(y + t)|2,

whereBr denotes the domain of a patch (or window)

centered at 0 and parameter r. For squared windows

r is the length of its side. For color images the cost

is computed as the average among all the channels.

– The zero-mean SSD (ZSSD) [14] removes the aver-

age intensity of each patch rendering the compari-

son independent of the mean intensity. This cost is

defined as

ZSSD(x,y) :=
1

|Br|
∑
t∈Br

∣∣∣u(x + t)− v(y + t)

− u|x+Br
+ v|y+Br

∣∣∣2,
where v|y+Br

denotes the average of image v over

the window centered at y.

Figure 2 compares results using these costs for two

stereo pairs. For the first pair, homologue regions have

exactly the same color or intensity. This is not the case

Reference Secondary SSD ZSSD

Fig. 2 Comparison SSD and ZSSD with square patch of size
5 × 5 on two stereo pairs. From left to right: stereo pair,
disparity estimated by SSD and disparity estimated by ZSSD.
Both methods give similar results when intensity does not
change from one image to the other. Although it is not easily
noticeable, small intensity differences in the second pair yield
to SSD mismatches while are correctly matched by ZSSD.

1-pixel steps 1
2

-pixel steps 1
4

-pixel steps Birchfield &
Tomasi

Fig. 3 Top: synthetic stereo image pair and ground truth
disparity. Bottom, from left to right: disparity computed us-
ing SSD by exhaustive search with 1-, 1

2
- and 1

4
-pixel steps.

Note that increasing the precision eliminates false matches
from the upper-left corner and right portion of the image.
The last image is computed using the sampling insensitive
cost proposed by Birchfield and Tomasi [3] with integer dis-
parity steps, note that the result is comparable to SSD at 1
pixel. All disparity images are quantified at 1 pixel for visual
comparison.

for the second pair where there is a small change of

intensity between the images particularly in the dark

areas. For the first pair, both costs lead to a similar

result while for the second one the mean normalized

cost gives much better results. For this reason, we will

use the ZSSD cost.

Subpixel disparity computation. Due to the image sam-

pling, if the true disparity is not integer, the reference

patch may not exactly be present in the second image.

That is, the exact patch will not exist in the second im-

age because of the different sampling. As a result some

matches will be incorrect if estimated at integer steps,

even if the patches are well textured and not repeated.

To cope with this issue, in this work we compute the

disparities with a fixed subpixel step. As seen in Fig-
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Fig. 4 Effects of subpixel sampling of the cost function. The
graphs show the SSD cost profiles obtained by matching a
region of the image shown in Figure 3. The curves show the
costs c(d) sampled with disparities steps of 1-, 1

2
-, 1

4
-pixel

and the continuous cost. Clearly sampling the cost function
at integer disparity steps can lead to incorrect results as the
global minimum can hide between two samples. Sampling at
1
2

-pixel steps (which is the critical sampling of the SSD cost)
the failures are less common but can still occur.

ure 3 the subpixel estimation improves the matching

performance by avoiding correspondence mismatches.

To minimize the overhead involved in the subpixel

estimation Birchfield and Tomasi [3] proposed a match-

ing cost (based on the SSD) that is insensitive to the

sampling of the patches. This cost is estimated at in-

teger positions and is proven to be stable with respect

to subpixel translations of the patches. It is particu-

larly useful when used within global methods, where

it can prevent the misclassification of some pixels as

occlusions. However, as seen in Figures 3, for a winner-

take-all method this cost yields a limited performance

gain with respect to the standard SSD cost.

Szeliski and Scharstein [26] and Sabater et al. [23]

have shown that in order to properly compute and inter-

polate the SSD cost d 7→ c(d) (with c(d) := c(x,x+d)

for a point x), the input images and the cost function

must be oversampled by at least a factor two. In a nut-

shell, this is because the squared difference (SSD) of two

band-limited images has twice the bandwidth of the in-

put images. In that case, perfect band-limited interpo-

lation (sinc filter) could be used to interpolate the cost

function from the samples taken at half-pixel dispar-

ity steps, allowing to accurately compute the disparity

with arbitrarily subpixel precision.

The proposed oversampling of the cost function d 7→
c(d) is important because it guarantees that the dispar-

ity can be exactly interpolated from the samples. The

oversampling (zooming) of the images, on the other

hand, is rather technical and is needed to guarantee

that the discrete cost coincides with its continuous gen-

eralization [23]. Despite of that we will neglect the im-

age oversampling as we observed that it rarely affects

the matching results.

Figure 4 illustrates a situation in which sampling

the cost function at 1 pixel steps is insufficient to obtain

the correct match. Sampling the cost function at inte-

ger disparity steps can produce incorrect results as the

global minimum of the underlying cost may remain hid-

den between samples. Failures are less common when

sampling at 1/2 pixel intervals but can still occur, while

we never observed such errors when sampling at 1/4

pixel intervals.

Although more expensive, sampling the cost func-

tion at rates higher than the critical sampling (steps

smaller than 1/2 pixel intervals) permits to sample closer

to the minimums and at the same time make possible

to interpolate the costs using compact interpolation fil-

ters [26] (recall that at the critical sampling rate only

sinc should be used). Looking at Figure 3 we can con-

firm that at least for finely textured objects sampling

the cost function at quarter-pixel steps significantly im-

proves the matching performance. Thus, in this work we

estimate the disparities with quarter-pixel precision.

3 Rejection criteria

The rejection tests are applied to the disparity maps

independently of the mechanism that generated them.

These tests decide based on the matching costs and the

content of the images. The modularization simplifies

the evaluation of the stereo chain. As a good stereo

algorithm is made of a good mechanism for generating

candidate disparity maps and a good set of rejection

tests. Several rejection criteria are proposed and will
be described in what follows.

Left-Right consistency. The Left-Right consistency test

[8,9] predicts stereo mismatch where the left-based dis-

parity values are not the inverse mapping of the right-

based disparity values. The test rejects a match if |dR(x+

dL(x)) + dL(x)| > τ, where the threshold τ is usually

set to 1 and x+dL(x) denotes the position in the right

image of the homologous point of x (in the left image).

This test consistently detects occluded pixels and

some, but not all, dis-occluded pixels. In some cases it

also detects some repetitive and textureless areas. The

foreground fattening associated to dis-occlusions is not

detected by this test.

Self-similarity. Intuitively a match is uncertain or am-

biguous if the same local structure appears repeatedly.

A common criterion used to detect these situations con-

sists in comparing the costs of the best and second best
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Reference Secondary

Ground truth No test LR consistency

Min-diff Self-similarity All criteria

Fig. 5 Application of reject criteria with a 5× 5 patch. The
disparity is displayed with rejected pixels by each criterion
marked in red. From top to bottom and left to right: pair
images, ground truth, disparity with no criteria applied, LR
consistency, min-diff, self-similarity and all criteria at once.

Reference Secondary

Ground truth No test LR consistency

Min-diff Self-similarity All criteria

Fig. 6 Application of reject criteria with a 5× 5 patch. The
committed error is displayed with rejected pixels by each
criterion marked in red. Error image displayed with range
[0, 1.5]. From top to bottom and left to right: pair images,
ground truth, disparity with no criteria applied, LR consis-
tency, min-diff, self-similarity and all criteria at once.

match candidates in the secondary image [7,13], let c1
and c2 be respectively these costs. This test is also used

in correspondence algorithms such as SIFT [18] which

rejects matches if the ratio c1/c2 exceeds a fixed 80%

threshold.

Manduchi and Tomasi [19] observed that the con-

tent of the reference image can be used to predict how

ambiguous the match would be. For that they define

Cauto
C1

Reference Secondary

Fig. 7 Self-similarity. This criterion compares the cost c1 of
the best match candidate in the secondary image and the
cost cauto of the best match in the reference image itself. If
cauto < c1 then the match is considered ambiguous.

the distinctiveness of an image position as the percep-

tual distance to the most similar other position in the

same image within a search window. Distinctive points

are not necessarily rich in texture, but its features are

unique as they look like nothing else in the picture (at

least along the epipolar line). Particularly, in [19] the

authors studied the case of the auto-SSD function (Sum

of Squared Differences computed in the same image),

and proposed to reject all pixels with auto-SSD above

the average cost value for the entire image.

Here we propose a new criterion inspired by [19], one

that compares the costs of the best candidate in the sec-

ondary image c1 and the cost of the best match in the

reference image itself cauto (see Figure 7). The idea is

that when the auto-similarity cost of a patch (cauto) is

smaller than the cost of its best match in the second

image (c1), then patch is likely to be part of a portion

of a repetitive pattern and thus non-distinctive. The

differences due to the samplings in both images might

interfere with this comparison. That is, these costs will

be comparable only if all patches are sampled at the

same sub-pixel position, which is not usually the case.

For this reason, we compensate for this fact by intro-

ducing a sampling term. The final criterion rejects a

match if

c1 > cauto −max(cauto(x,x + p/2), cauto(x,x− p/2))

where cauto(x,x+p/2) and cauto(x,x−p/2) denote the

cost of matching a window of the reference image with

itself but shifted by p/2 pixels, in our case p = 1/4 is

the disparity step. Note that cauto acts as an adaptive

threshold for the match, thus if the patch belongs to

a repetitive structure, then the test is more restrictive.

Unlike the tests based on the second best match, this

test needs no parameter tuning.

Textureless regions are also discarded by this method

since they are detected as ambiguous.

Min-diff. The method of shiftable correlation windows

[2,6] computes the disparity at each position by consid-

ering the costs of all the possible windows that contain

it (not only the one centered at it). This well known

technique significantly reduce the foreground fattening
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near the occlusion boundaries of the scene. When the

window is uniformly weighted, the shiftable correlation

can be computed by the so-called min-filtering, which

is a post-process of the costs computed with centered

windows [24]. Min-filter replaces the disparity of the

current pixel by the disparity of the pixel that real-

izes the minimum cost within the window. However the

min-filter post-process creates shocks on regions with

smooth disparities and sometimes it may also propa-

gate incorrect disparities near texture-less areas. Here

we will take advantage of min-filter for detecting fore-

ground fattened pixels.

The min-diff criterium is based on the observation

that the foreground fattened disparities at occluded and

dis-occluded pixels are significantly modified by min-

filter. Thus, min-diff compares the output of min-filter

(dMF ) with the original disparity (d), and if the differ-

ence exceeds a threshold the pixel is rejected. The test

is summarized as:

|dMF (x)− d(x)| > s.

We fix the threshold to s = 1 which allows for small

changes due to the shocks introduced by min-filter. In-

deed the shocks on smooth areas are usually small in

magnitude, one pixel at most. When min-filter mod-

ifies significantly the disparity at a position this sug-

gests that a better disparity hypothesis can be found

by using a shifted window. This is usually associated

to mismatches at the dis-occlusions and occlusions, in

which case this criterion marks the position as invalid.

The min-diff test has a tendency to under-estimate

the fattened regions. This happens particularly at the

occlusions boundaries where there is no real alternative

to the foreground fattening because the area is not vis-

ible in the second image. We found that dilating the

rejection mask by 1 pixel improves the detection of the

occlusions at the expense of few false rejections.

Removal of isolated matches. This last criterion rejects

all accepted points that are “isolated”, meaning that

they are surrounded by many rejected points. This cri-

terion rejects a point if more than 75% of its matching

window has been rejected already. The rationale of this

test is that an isolated valid point is more likely to be

a mismatch than a proper match. In the eventuality of

being a proper match, an isolated point would still be

a too small feature for the current window size.

Comparison of rejection criteria. Figure 5 show the dis-

parity computed with ZSSD and the rejection masks for

each of the proposed criteria. Figure 6 show the errors

committed by the matching algorithm and the points

rejected by each criteria.

As expected the Left-Right consistency test rejects

points on the occlusion and dis-occlusion parts of the

image because in those regions the same patch doesn’t

exist in both images. However, some of the occlusion

and dis-occlusion points may produce consistent matches

because of the fattening effect. In those cases the corre-

spondence match is dominated by the occluding edge,

which is visible in both images. In Figure 6 can also

be seen that this consistency check may detect some

incorrect matches due to the lack of texture or auto

similarity of patches.

The min-diff criterion rejects points mainly in dis-

occlusions parts of the scene as shown in Figure 5. Usu-

ally, in a dis-occlusion part there exists a shifted win-

dow visible in both images that matches with a smaller

cost. Some incorrect matches are also detected in the

occlusion parts, this is because occluded patches usu-

ally match with a random disparity but a high cost,

thus they are rejected if any neighboring pixel matches

with smaller cost and significantly different disparity.

The biggest limitation of the min-diff test is that it is

biased towards the detection of fronto-parallel surfaces.

Indeed the threshold s = 1 limits the maximum sur-

face inclination it can accept, which leads to many un-

necessary rejections. Nonetheless, for the current work

we keep it with its limitations and leave its refinement

for future work.

The self-similarity criterion correctly rejects points

in auto similar or ambiguous zones (see the rooftop in

the top left corner of the image in Figure 5). It also

might reject pixels in occluded parts since it might hap-

pen that the auto-similarity cost is smaller than the

matching cost just because the patch does not exist

in the secondary image. Moreover, as mentioned be-

fore, the self-similarity test also detects almost com-

pletely the textureless regions, leaving only some iso-

lated points which are later removed by the isolated

pixel criterion.

It is important to note that the rejection criteria

must be applied in a specific order, so that once a

point has been rejected by a test it is no longer con-

sidered in the subsequent tests. Concretely the removal

of isolated matches should be applied last, and min-diff

should be applied after the self-similarity and left-right

consistency check.

4 Multiple window orientations

A drawback of the block-matching methods is that the

fronto-parallel assumption is often invalid. That is, if

the disparity function is not constant within a win-

dow, then the corresponding region in the second im-

age appears distorted, thus the two image patches could
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Fig. 8 Correlation windows with different orientations bet-
ter adapt to different slanted planes, because with the correct
window orientation the depth of the underlying surface is al-
most constant. Top row: oriented windows used in the exper-
iments (with color code), corresponding to a 5 × 5 window.
Bottom row from left to right. The reference image from a
stereo pair. The computed disparity map with some isolines
highlighted. Overimposed are shown some windows whose ori-
entation best fit the surfaces. An illustration of the actual
window orientation as determined by the algorithm.

not be compared directly. The SSD minimization is ro-

bust against slight deformations, but fails in presence

of stronger ones. An extreme case of this failure oc-

cur when the window contains a discontinuity (two dif-

ferent depths). In this case it is impossible to find a

unique correspondence leading to the occlusions and

dis-occlusions artifacts.

The consequences of the fronto-parallel assumption’s

failure are two fold. First, the algorithm is unable to

correctly match points near disparity discontinuities,

thus the reject criteria invalidates these matches. This

is illustrated by previous experiences (Figures 5 and

6) where a band of invalid points (with the width of

matching window) covers the disparity discontinuities.

Second, mismatches appear on highly slanted surfaces

because of the strong distortions suffered by the image

within the window.

To cope with both problems we propose to perform

the block-matching for each pixel using elongated win-

dows with different orientations and then choosing the

window yielding the minimum matching cost. This ap-

proach differs from the shiftable window proposed in

[2,6,24]. We propose to use only windows centered in

the reference pixel but with different shapes. The shape

of the window giving the minimum matching cost intu-

itively will be the one for which the disparity function

varies the least. That is, the window being as fronto-

parallel as possible (see Figure 8).

Using elongated and oriented windows permits to

improve the matching on slanted surfaces and to match

pixels closer the disparity discontinuities. Near a dis-

parity discontinuity the chosen window will be the one

wider in the direction of the discontinuity and narrower

in the direction orthogonal to the discontinuity, thus

permitting to match and validate closer to the discon-

tinuity. Whereas on a slanted surface the chosen win-

Algorithm 1: Multi-window block-matching al-

gorithm. dMin and dMax are images indicating

the search ranges for all the pixels. disp contain

both disparity maps LR and RL.

MultiWindowMatching(u0, u1, dMin, dMax);

Input: image pair u0 and u1.
Input: min & max disp. range images dMin and dMax,
minimum & maximum disparity for each pixel.

Output: Fixed precision disparity disp.

for each window w do
// Compute left and right disparity maps

dispw = ZSSDMatching(u0, u1, dMin, dMax,w)

// Apply the rejection criteria to dispw
Update dispw applying the LR criterion
Update dispw applying the MIN-DIFF criterion
Update dispw applying the Self-similarity criterion
Update dispw removing the ISOLATED MATCHES

end for

disp = Combine all the dispw

// Ensure consistency of disp after combining

Update disp applying the LR criterion
Update disp removing the ISOLATED MATCHES

dow will adapt to the direction of least variation of the

disparity, thus matching with a lower cost.

The rejection criteria of Section 3 are straightfor-

wardly adapted to any window shape. Moreover, we

observed that the matches are much easily validated

for the correct window shape, thus improving the over-

all performance of the rejection stage. For each window

shape, the matching and rejection stages are applied in-

dependently. Then for each pixel the choice for the opti-

mal window shape is made considering only the window

orientations validated at that pixel. Algorithm 1 details

the complete process. Although in the algorithm the

matching process is repeated for each window orienta-

tion, all the orientations can be efficiently computed

by combining smaller support windows as proposed by

Hirschmüller et al. [13].

The performance of ZSSD block-matching using 5×
5 windows and the proposed multi-window algorithm

using 5 and 9 window orientations is compared in Fig-

ure 9. We use the vertical, horizontal and diagonal win-

dows shown in Figure 8, all windows have roughly the

same area. Figure 9 illustrates how pixels are correctly

matched nearer the occlusions and dis-occlusions and

more pixels are correctly matched and validated in slanted

parts of the scene. The window orientations, illustrated

with the color code of Figure 8, coincide as expected

with the direction of least variation of the disparity.

We observe in the same figure that there is little dif-

ference between using 5 and 9 window orientations. In
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1 orientation 5 orientations 9 orientations

Fig. 9 Comparison of single and multiple window orienta-
tions (book and wood pairs from Figure 11). Using respec-
tively 1, 5 or 9 windows orientations with support equiva-
lent to 5× 5 windows, using all filters and exhaustive search
with precision of 1/4 of pixel. This figure illustrates how the
elongated windows adapt to the surface orientations, thus im-
proving the matching and leading to denser results.

spite of that we will use 9 window orientations in the

rest of the paper.

5 Multi-scale algorithm

The range of disparities considered by the block-matching

might be fixed globally depending on scene and the

camera parameters (extrinsic and intrinsic). The dis-

parity range has a direct impact in the computation

time but also affects the ambiguity of the matching.

That is, as the range increases so does the probability of

matching by chance due to repetitive patterns or noise.

So when considering larger search ranges we should use

larger patches in order to keep the ambiguities from

growing. A patch must contain enough information to

match meaningfully, but it should also be small enough

to avoid fattening artifacts.

In order to satisfy above requirements a multi-scale

approach seems to be the most suitable solution. The

proposed multi-scale approach uses the disparity com-

puted at coarser scale in order to restrict the search

range at the current scale. This permits to reduce the

computation time and to maintain a small window size

while retaining meaningfulness of the matches. All re-

jection criteria are applied at each scale, and the points

rejected at the previous (coarser) scale are searched over

the entire disparity range at the current scale. While the

validated points are assigned a disparity range that de-

Reference 1 scale, 1
window

1 scale, 5
window orient.

Secondary 4 scales, 1
window

4 scales, 5
window orient.

Fig. 10 Interaction between multi-scale and multi-window
matching. In the left-most column is shown the image pair.
The second column shows results obtained using a 5×5 pixels
window with 1 and 4 scales, note that the multi-scale result is
denser. The third column shows results obtained using win-
dows with 5 orientations with 1 and 4 scales. With 5 orien-
tations the single scale result is already denser than the one
obtained with a single squared window, and the multi-scale
result is even denser. The multi-scale algorithm is also faster
than the single scale one. With a single window orientation
the computation times for the single scale and multi-scale
are respectively 149s and 99s (for a 1000 × 1000 image on
a 2.3GHz CPU without multithreading). With the current
implementation, the running time of the algorithm with 5
windows roughly increases by a factor 5. However, in addi-
tion to parallelization, the algorithm can be accelerated by
simultaneously computing all the window orientations using
a scheme like the one proposed by Hirschmüller et al. [13].

pends on the minimum and maximum disparity of val-

idated points in the window. Algorithm 2 details this

strategy.

Figure 10 compares the performance of multi-scale

versus single-scale algorithms using windows of 5 × 5

pixels. It is observed that more pixels are correctly

matched with the multi-scale strategy and that the

computation time is also significantly reduced.

Each scale of the multi-scale process invokes the

multi-window matching algorithm described in the pre-

vious section. We denote the resulting algorithm multi-

scale multi-window (MSMW). In Figure 10 we see that

the advantages of the multi-scale add to those of the

multi-window matching: the results are denser and there

are fewer errors. Indeed the narrow windows allow to

pick up narrow features at coarser scales, thus reduc-

ing the corresponding search ranges and considerably

improving the matching.
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Algorithm 2: Recursive multi-scale multi-

window matching algorithm. Initially dMin and

dMax are constant images set to the global mini-

mum and maximum ranges and s = 0.

MultiscaleChain(u0, u1, dMin, dMax, nScales, s);

Input: image pair u0 and u1.
Input: min & max disp. range images dMin and dMax.
Input: number of scales nScales.
Input: current scale s.

Output: Fixed precision disparity disp.
Output: Updated dMin and dMax.

if s < nScales then
su0 = u0 ↓ 2; su1 = u1 ↓ 2;
sdMin = dMin ↓ 2; sdMax = dMax ↓ 2;
sdMin = 0.5 ∗ sdMin; sdMin = 0.5 ∗ sdMin;
s + +;
disp =
MultiscaleChain(su0, su1, sdMin, sdMax, nScales, s);
dMin = sdMin ↑ 2; dMax = sdMax ↑ 2;
dMin = 2 ∗ dMin; dMin = 2 ∗ dMin;

end if

disp = MultiWindowMatching(u0, u1, dMin, dMax)

for each pixel p do
if p is rejected then

Set dMin(p) and dMax(p) to the global minimum
and maximum range.

end if

if p is validated then
Set dMin(p) and dMax(p) to the minimum and
maximum of validated disparities inside the
correlation windows.

end if
end for

Fig. 11 Reference image and ground truth for stereo pairs
used in the experiments section. From left to right the im-
age name, size and disparity range are: aloe, 641× 555, 135;
village2, 512 × 512, 22; wood, 686 × 555, 105 ; cones,
900× 750, 120 and book, 400× 300, 61.

6 Experiments

We compare the results of the proposed multi-scale

multi-window algorithm (MSMW) with other two non

dense matching methods, namely Čech and Šára’s grow-

ing correspondence seeds (GCS) [7] and the five regions

correlator (5REG) proposed by Hirschmüller et al. [13]

(as implemented in BoofCV [1]). The GCS algorithm,

Fig. 12 Top, from left to right: disparity computed by the
graph cut method, the GCS, the 5REG and the MSMW.
Below: image error between computed disparities and ground
truth displayed in range [0, 1.5].

Fig. 13 Top, from left to right: disparity computed by the
graph cut method, the GCS, the 5REG and the MSMW.
Below: image error between computed disparities and ground
truth displayed in range [0, 1.5].
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as ours, favors reliability over completeness of the re-

sults. The algorithm performs a region growing from

“sure” matches selected using Harris interest points.

The 5REG algorithm considers five overlapping 5 × 5

sub-windows for each pixel and the matching cost is

determined adding the cost of the center sub-window

plus the two sub-windows yielding the smallest costs.

The matches are then filtered applying the Left-Right

consistency test and comparing the matching cost with

the cost of the second local minimum. The 5REG imple-

mentation we used [1] does not include the border cor-

rection algorithm described by Hirschmüller et al. [13].

For MSMW we use 9 window orientations with areas

comparable to a 5×5 pixel window (shown in Figure 8).

We also compare with the graph cuts method (GC)

introduced in [16]. The algorithm writes as the mini-

mization of a discrete energy containing three terms,

E(f) = Edata(f) + Eocc(f) + Esmooth(f),

where Edata results from the differences in intensity be-

tween corresponding pixels, the occlusion term Eocc im-

poses a penalty for making a pixel occluded and the

smoothness term Esmooth forces neighboring pixels to

have similar disparities. Two parameters must be set in

the graph cuts method, one for the regularity demanded

to the solution and one for the amount of occlusions to

be detected. By default these parameters are tuned au-

tomatically.

Figures 12 - 14 compare the performance of the

four methods mentioned above for different images with

ground truth. The computed disparities and the er-

rors with respect to the ground truth are displayed.

The reference images and ground truth [14,20,22,25,

24] are shown in Figure 11. Both, the GCS and 5REG

algorithms produce fairly dense results. However, they

contain many spurious matches and false detections.

The disparity computed by the MSMW algorithm is

dense and contains fewer errors. The improved rejec-

tion criteria significantly reduce the mismatches while

the multi-scale scheme permits to obtain denser results

by disambiguating some of the matches. Since GCS

and 5REG do not manage fattening many errors are

located around the discontinuities. The graph cut algo-

rithm fails at detecting the occlusions in most of the

examples. We also observe an over-quantization of the

disparity computed by graph cut, which has disparity

steps of two pixels instead of one. This is due to the fact

that in the regularity term discontinuities of disparity

are penalized independently of its amplitude, see [16]

for more details.

The methods compared here produce disparity maps

with different quantizations. GC and GCS operate at

pixel precision, 5REG interpolates the disparities to

subpixel precision, while MSMW compute the maps

at quarter pixel. Instead of normalizing the results to

pixel precision we illustrate each method at its native

precision (Figures 12 - 14). The evaluation below will

contemplate different precisions to cope with this vari-

ability.

To compare the algorithms we evaluate the density

of the disparity maps and the number of mismatches

produced by each method. Note that a density of 100%

cannot be attained unless the disparity maps are inter-

polated. A mismatch is a point validated by the algo-

rithm but whose disparity differs from the ground truth

by more than a certain threshold. We don’t distinguish-

ing between occluded and non-occluded pixels when

computing the mismatches. We consider here three mis-

match thresholds: 0.5 pixels, 1 pixel and 2 pixels.

Table 1 summarizes the obtained results. It is ob-

served that the proposed algorithm attains the low-

est mismatch rate of the four, while keeping a rela-

tively high density. Beside the GC method which is

a global, the highest densities are attained 5REG and

MSMW with small differences between the two. The

5REG method yields high densities but at the expense

of higher mismatch rates. This can be explained by the

filter using the second local minimum of the correlation

function. The test checks if the cost of the best and the

second best match verify c2−c1
c1

> 0.2, but this default

choice of the threshold allows many mismatches. In-

creasing it may reduce the mismatch rate but at the ex-

pense of a much lower density. The graph cuts method

generates dense disparity maps. Although it also de-

tects occlusions, we see in Table 1 that its mismatch

rates are consistently one order of magnitude above the

other methods (except for the Tsukuba image [24]).

Lastly, Figure 14 compares the performance of the

four algorithms applied to a couple of stereo pairs kindly

provided to us by the CNES (Centre national d’études

spatiales). The first one is an airborne pair taken over

Toulouse, while the second is a view of Manhattan ac-

quired by a Pléiades satellite. The unique agility of

the Pleiades satellites allow it to capture small-baseline

pairs in a single passage.

This type of high-resolution quasi-simultaneous im-

agery is leading to an increase in the demand of auto-

matically generated and reliable digital elevation mod-

els with reduced number of outliers. The automatic con-

struction of high quality digital elevation models justi-

fies our interest on obtaining sparse and reliable dis-

parity maps. In the figure we observe that among the

considered algorithms the proposed one produces the

least outliers, while producing fairly dense results.
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Fig. 14 Experiments on airborne and satellite stereo pairs kindly provided by the CNES (Centre national d’études spatiales).
From left to right are shown: the reference image, the disparities computed by the graph cut method, GCS, 5REG and MSMW.
The first row corresponds to an airborne pair taken over Toulouse (size 900 × 900 pixels), the second row corresponds to a
satellite view of Manhattan (size 1200× 900 pixels).

Table 1 Evaluation of the results. The table below compares the outputs of the proposed algorithm (MSMW) with: the graph
cuts algorithm (GC) from Kolmogorov and Zabih [16], Čech and Šára’s [7] growing correspondence seeds (GCS) and the 5
regions algorithm (5REG) from Hirschmüller et al. [13]. We report the Density (D) of the obtained disparity maps and the
Mismatches as percentage of pixels yielding errors above two pixels (M2), above one pixel (M1) and above 0.5 pixels (M05).

GC [16] GCS [7] 5REG [13] MSMW
Image D M2 M1 M05 D M2 M1 M05 D M2 M1 M05 D M2 M1 M05
aloe 90.5 8.58 13.9 21.7 73.7 2.63 4.25 7.97 79.1 1.49 2.91 8.12 78.3 0.26 0.68 2.87
wood 87.1 16.6 25.3 37.1 73.7 0.57 1.72 5.27 75.4 0.92 2.21 9.15 79.5 0.09 0.53 3.75

village2 97.5 0.25 0.28 10.7 95.5 0.49 0.70 1.77 96.9 0.39 0.42 0.72 96.1 0.01 0.02 0.19
village1 95.2 4.79 17.7 45.6 90.3 1.18 2.22 7.97 91.6 0.78 1.33 3.17 89.9 0.35 0.53 1.78
cones 89.8 5.63 9.39 20.1 65.1 2.52 4.00 8.89 68.2 2.54 3.83 12.8 70.9 1.22 2.22 7.72
book 88.8 7.19 30.4 53.2 49.8 2.68 4.88 8.10 83.4 2.98 6.27 12.1 82.1 0.25 1.85 4.52
teddy 90.7 9.45 18.9 33.4 52.8 2.84 4.67 9.41 54.3 4.41 6.06 14.0 58.2 1.27 2.29 7.25

tsukuba 96.8 2.08 2.33 9.15 69.2 3.69 5.89 13.8 87.6 3.81 6.25 13.4 82.7 1.47 2.47 7.88
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7 Discussion and conclusions

We have proposed a principled block-matching algo-

rithm for stereo. Our work builds upon existing ideas

of match validation to obtain a virtually parameter-

less algorithm for non dense block matching. We high-

light the importance of detecting ambiguous matches,

and propose two new match validation filters: the self-

similarity and min-diff filters. We singled out the fronto-

parallel assumption as a source of mismatches and pro-

posed a new scheme with oriented windows to handle

it. The oriented windows align with the 3D geometry

of the scene and unlike adaptive windows permit to

match correctly on slanted surfaces. The multi-scale

and multi-window features of the proposed algorithm

permit to deal with slanted surfaces and outliers, lead-

ing to higher matching densities. Compared to other

stereo algorithms, the proposed algorithm yields excel-

lent performances in terms of density and mismatch

rates.

The natural continuation of the present work should,

on one hand, improve the performance of parameter-
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less rejection criteria, for example with min-diff, or the

detection of dis-occlusions. On the other hand, should

seek ways to improve the matching process. Exploring

the combination of information from windows of vari-

ous sizes. Or combining oriented windows with adaptive

windows, which seems to be the best way to adequately

handle the scene geometry. In the present work we only

considered images with low noise levels, which allowed

us to fix the window size, but the noise level is critical

to establish the window size. These will be the object

of future research.
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