
Published in Image Processing On Line on YYYY–MM–DD.
Submitted on YYYY–MM–DD, accepted on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol

2
0
1
3
/
0
7
/
1
9

v
0
.4

IP
O
L

a
rt
ic
le

c
la
ss

Piecewise Affine Image Segmentation Based on

Mumford-Shah Functional

Gabriele Facciolo1

1 CMLA, ENS Cachan, France (facciolo@cmla.ens-cachan.fr)

PREPRINT January 5, 2014

Abstract

This document describes and illustrates how to use the IPOL LATEX class, created to produce a
uniform layout for IPOL articles. The restrictions imposed on articles to be published in IPOL
are briefly discussed.

Keywords: segmentation

1 Introduction

Segmenting an image means finding its homogeneous regions (homogeneous characteristics: color,
texture, etc...) and its borders. Hopefully these regions will correspond to real world objects, while
the edges will correspond to separation between them. Finding homogeneous regions, which fit a
certain model, and the borders of the objects can be considered as two different problems, but one
of the most studied mathematical models in image processing addresses both simultaneously. The
Mumford-Shah functional (Eq. (1)) resumes elegantly the requisites of a segmentation penalizing
the excessive length of borders, reducing the model error and imposing smoothness on the result. In
the book by Morel and Solimini [4], this functional is studied in deep mathematical rigorosity. They
propose a variational implementation strategy that will be used as guide for the present work.

There are many other approaches to segmentation: in some cases we could be just interested on
determining one single region while in other cases we want to obtain a full partition of the image.
Some segmentation techniques allow for determining overlapping regions (like the circles depicted in
figure 8), while others enforce the fact that the regions are disjoint. But in [4] is shown that the
majority of methods, in some way, are minimizing a variational energy, giving more or less importance
to different terms of the minimization, i.e. edge length, region regularity.

Most of the recent work is centered on unifying frameworks of different techniques [7] and defining
more accurate models for the segmented regions. For instance, [6] uses: 1. Stochastic processes to
model the regions, and 2. The level set framework to minimize the functional.

http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dx.doi.org/10.5201/ipol

Gabriele Facciolo

Figure 1: Different edge configurations that correspond to the same partition.

1.1 How big is the segmentation search space?

Before presenting the strategy we will spend a little time discussing the problem. We know that
the Mumford-Shah conjecture is not fully proved yet [4], then we cannot assure the uniqueness of
a solution. Instead of trying to answer this question, let’s just try to figure out the size of the
space of all possible segmentations, just to appreciate the complexity of the problem of finding one
segmentation.

Clearly in a digital image of n×n pixels there is a finite amount nP of possible partitions, but the
exact number of possible partitions is not known. The best we can do is try to bound this quantity:

• On one side we can consider the partition as all possible configurations of boundaries between
the pixels. In an image of n × n pixels there are 2 × n × (n − 1) edges between the pixels. A
configuration with all the boundaries set as “active” corresponds to one region per pixel, while
and 0 boundaries corresponds to 1 complete region. The total amount is :

nP < 22n(n−1)

Which for 10 × 10 pixels image corresponds to: 1.53 × 1054 possible configurations. We can
observe that this bound considers a lot of configurations that correspond to the same partition
as shown in figure 1.

• Another possibility is to consider all possible ways of labelling the n2 pixels in k regions Cn2

k ,
then sum for all the possible regions:

nP <
n2∑
k=1

C
(n2)
k = 2n2

This bound is tighter than the previous, for an image of 10 × 10 pixels leads to: 1.26 × 1030,
but is also considering useless configurations with disconnected regions, because it models the
pixels as independent.

Considering the size of the search space we must accept that all the algorithms have to be heuristic
or based on weakened restrictions. For instance, the algorithmic approach we are going to use was
proposed in [4] and has been demonstrated to find the unique minimum in the subset 2-normal
segmentations. The 2-normal segmentations are “minimal” in the sense that, any further merging of
their regions will increase energy function, instead of decreasing.

2

Piecewise Affine Image Segmentation Based on Mumford-Shah Functional

1.2 Mumford-Shah Image Segmentation

As mentioned before, minimization of the Mumford-Shah functional (Eq. (1)) produces a boundary
set B and a piecewise smooth approximation f of the image u.

E(B, f) = λ1

∫
(x,y)∈Ω

[f(x, y)− u]2dA+ λ2

∫
Ω\B
|∇f |2dA+ λ3

∫
B
ds (1)

The first term minimizes the error between f(x, y) and u, the second term imposes smoothness of
the approximation f over all image Ω, except on the boundaries B, and the third term minimizes the
length of the set B of all the boundaries. We will refer to from Morel and Solimini’s [4] work for the
variational framework, where a simplified segmentation model without smoothing term is considered
(Eq. (2)). Additionally, we will impose the piecewise affine model fa(x, y) = ax+ by + c.

E(B, f) =
∫

(x,y)∈Ω
[fa(x, y)− u]2dA+ λ

∫
B
ds (2)

If the value of λ is too small, the boundaries have no penalization an the resulting the segmentation
is trivial (one region per pixel). With a higher value of λ, a couple of regions O1 and O2 (with
common boundary denoted as ∂(O1, O2) and its length as `(∂(O1, O2))) will be passible of merging
if: E(B\∂(O1, O2), f ′) < E(B, f), replacing in Eq. (2), and observing that the modification in f ′

are local and that the difference in boundary length is just the length of the common boundary, we
obtain: ∫

O1∪O2

(fa − u)2dA− λ
∫
∂(O1,O2)

ds <
∫
O1

(fa − u)2dA+
∫
O2

(fa − u)2dA

err(O1 ∪O2)− λ`(∂(O1, O2)) < err(O1) + err(O2)

λ >
err(O1 ∪O2)− err(O1)− err(O2)

`(∂(O1, O2))
(3)

Finally, all the boundaries that met the merging criterion of equation (3) are removed until no
more boundaries can be removed. The resulting segmentation will be 2-normal (according to the
previous definition). In [4] has been proven that this strategy leads to a unique segmentation since the
λ value acts as a scale parameter: increasing its value increases the tension of the borders, reducing
the boundaries that met the criterion and producing a coarser segmentation.

2 Description of the algorithm

In [3] it is proposed that any region merging algorithm can be defined by establishing tree concepts:
Region Model, Merging Criterion and Merging Order.

It is possible to describe the algorithm that minimizes the simplified Mumfors-Shah functional,
described in the previous section, in terms of these concepts: The Region Model is the piecewise
affine model and affects the values of the err function (Eq. (3)). The Merging Criterion is given by
the equation (3): all the boundaries that met the criterion are removed. And the Merging Order is
given by the usage of the scale parameter λ which allows for merging small regions first, and then
increase their size.

In other words, the method will choose an initial (small) λ and will merge all the regions that
have edges that don’t met the criterion. Then the λ is increased and the previous process is repeated
until reaching some stop condition.

3

Gabriele Facciolo

Figure 2: Region-Edge duality and Region Adjacency Graph.

This definition of the algorithm finds a partition from a bottom-up perspective, which corresponds
to merging smaller regions into bigger ones. But there are methods that use a top-down region
splitting. In any case, when a decision of merging or splitting is made, this decision is never revisited,
hence the algorithm is greedy.

As we are going to use a region merging strategy, the data structure should allow to perform
merging operations between the regions easily. This structure is the Region Adjacency Graph.

In this graph, nodes correspond to regions and edges between nodes represent the neighborhood
relationship. Two nodes (regions) would be connected by an edge if they are neighbors. The merging
algorithm is then a procedure to remove edges from the graph and merge the corresponding nodes.
Usually the process of removing edges is performed in an iterative fashion. At each step, only two
neighboring regions are evaluated and eventually merged. In other cases it is possible to consider
more than two regions for each step [1].

2.1 Affine region model

Our segmentation algorithm uses an affine region mode. This means that the pixels contained in a
region are modeled by a linear equation: fi(x, y) = ax+ by + c.

For every region of the resulting segmentation, it will provide three parameters of the model.
There are many ways to fit information to a model by estimating its parameters. Probably the most
known technique is least squares fitting [5].

Provided the data u(x, y) of inside the region T to fit to a model ax + by + c, the least squares
method minimizes the quadratic error between the model and the points:

min
a,b,c

err(T) = min
a,b,c

∑
(xi,yi)∈T

[(axi + byi + c)− u(xi, yi)]
2

This minimization problem can be seen as an over-determined system of linear equations, then it
is possible to rewrite it in matrix form:

min
x

(Ax− d)2 (4)

4

Piecewise Affine Image Segmentation Based on Mumford-Shah Functional

where:

A =

x1 y1 1
x2 y2 1
x3 y3 1
...

...
...

xi yi 1

 d =

u(x1, y1)
u(x2, y2)
u(x3, y3)

...
u(xi, yi)

 x =

 a
b
c

The minimum value of equation (4) is reached when: At(Ax−d) = 0, which leads to the solution:

x = (AtA)−1Atd

The computations needed to obtain the value of the parameters x are linearly related to the
amount of the data points. But observing the solution we can use some interesting properties that
allow to improve computation of the parameters.

MT = AtA =

∑
x2
i

∑
xiyi

∑
xi∑

xiyi
∑
y2
i

∑
yi∑

xi
∑
yi

∑
1

 NT = Atd =

∑
xid(xi, yi)∑
yid(xi, yi)∑
d(xi, yi)

We can observe that all the elements of the matrixes are accumulators of some kind, only related

to the data. Additionally, the inversion of a matrix and the product of two fixed size matrixes takes
a constant time.

Applying this to our case, these observations allow to speed-up the computation of the parameters
for the merged region to a constant time. Simply by: 1. Reusing (and adding) the accumulators from
the component regions to obtain the accumulators corresponding to the merged regions (MTi∪Tj

=
MTi

+ MTj
and NTi∪Tj

= NTi
+ NTj

), 2. A constant job to compute the inverse of AtA, and 3. The
parameters for the new region without traversing all the pixels of the merged region.

This observation leads to a speed improvement on determining the model during the merging
procedure and reducing the cost from linear (in the amount of pixels) to constant. But we also need
the residual errors of the model. For the moment, the only way to obtain these values is by traversing
all the pixels and computing the error function:

err(T) =
∑

(xi,yi)∈T
[(axi + byi + c)− u(xi, yi)]

2 (5)

2.2 Data structures

To model the Region Adjacency Graph we can choose between different data structures: 1. The
adjacency matrix, which is too expensive ((200× 200)2 slots for representing the edges of a squared
200 pixel image), 2. The edge list representation, is quite inefficient for removing the region (because
it requires searching for the specific edge in a single list), or 3. The region adjacency list stores a list
of edges for each region which can be easily concatenated on a merging event.

Figure 3 displays a sketch of the graph structure using an adjacency list. Notice that each edge
is shared among two lists and that it contains references to the nodes. This facilitates the removal
of the edges and merging of the neighboring regions.

Another fundamental data structure will be the priority queue for storing the edges: all the edges
are candidates to removal but is only removed the one that have least λ value in each step. The
sorting of the queue is just partial as we only need the smallest element. This allows to obtain a

5

Gabriele Facciolo

Node1

Node2

heap location

merged parameters

List EdgesNodes Edges

listedges

pixels

area

border_lenght

parameters

Figure 3: Representation of the graph as adjacency list (List Edges is a chained list). Each Node has
a reference to the list of references of its edges and each Edge has a reference to the two connected
Nodes.

faster implementation that will determine the final speed of the algorithm, because (as we’ll see later)
most of the time spent by the algorithm will be extracting the maximum value from the priority
queue and updating the value of the remaining nodes in it.

The priority queue is implemented with a binary heap, where the most common operations are
find max with O(lg(n)), and updating a value on the heap which is also O(lg(n)).

All the data structures were specifically built for the usage in the region merging algorithm. This
decision is due to the fact that edges of the graph structure are linked with the heap elements and
the tested library (boost.org) did not allow to perform this kind of linking.

Further characteristics of data structures will be described next:

• pixels: All pixels of the image are represented by a structure containing the position of the
pixel in the image (x-pos, y-pos), its gray-level information and a reference to the next pixel.
The most common operations over the pixels are:

1. full traversal of the list: O(n) (for the computation of the model).

2. the merging operation: Merging of two pixel lists (for the merging of the regions).

In order to accelerate to O(1) a reference to the last element of the list, is quite useful.

• regions: The regions will reference the first pixel of a null terminated chained list, which will
contain all the pixels of the region. At the beginning of the execution, every pixel will be
considered as a region.

• nodes: The nodes of the graph are the regions of the image to be segmented. Each node has
a reference to a list of edges. The nodes also contain all the information referent to the region,
for instance: a chained list of all its pixels, a boundary length counter, an area counter and the
representation parameters.

The most common operation over the nodes is merging. A merging triggers multiple operations:
Fusion of the edge lists of the two regions, update of the reference to the actual region for each

6

Piecewise Affine Image Segmentation Based on Mumford-Shah Functional

neighboring region, computation of a new fitness for each fused edge, and update of the heap
of edges.

Another common operation over the nodes is the traversal of all the nodes. This is possible
because the nodes are stored in a vector.

• edge: An edge contains references to the nodes it connects and the representation parameters

of the merged region in case of removing it. Also, for simplicity, it contains a reference to its
location in the priority queue of edges as most of the time the edge weight is being updated.

2.3 Pseudo-code of the Region Merging Algorithm

The following pseudo-code describes with more detail the steps of the algorithm:

1. Initialize the graph structure: one region per pixel and one edge for each boundary.

2. For each edge e of the structure compute the maximal λ value of eq. (1): for which the
neighboring regions will be merged, store the λ and the edge in a priority queue.

3. Extract the maximum value (maxλ) of the λs from the priority queue

4. For each edge e that has λ ≤ maxλ do:

(a) Remove e from the priority queue

(b) Merge the nodes connected by to the edge e: merge the pixel lists, update the area, the
length of the boundaries, determine and remove the edges that are redundant after the
merging.

(c) Remove all the merged edges from the priority queue

(d) For all the edges of the new region: recompute merging value λ with its neighbors,and
update the priority queue.

5. If the stop condition (number of nodes or maxλ value) is not met return to step 3.

2.4 Time Complexity Analysis

In order to study time complexity of the current implementation, we are going to deduce a recurrence
relation. It is possible to consider the algorithm as recursive since, in every iteration, it performs the
same task only decreasing by one the number of regions.

The same average case analysis will be useful for the piecewise affine segmentation and for the
constant affine (which is simpler), but we’ll find that for the first (affine) the average case analysis is
not sufficient to describe the algorithm.

Let’s first define some variables that will make the recurrence relation more readable1:

• N : is the total amount of regions currently represented in the graph.

• N0: the initial amount of regions. This constant number corresponds to the area of the image
measured in pixels .

1Notice that all the variables are defined relative to N .

7

Gabriele Facciolo

01234567

x 10
4

3.5

4

4.5

5

5.5

6

Number of remaining regions

M
e
a
n

 c
o

n
n

e
c
ti

v
it

y
 o

f
th

e
 r

e
g

io
n

s

hat

gt

lena

gradient

Figure 4: Mean number of neighbors per region, during the execution of the region merging algorithm
with different test images. Notice that the mean value never exceeds the 6 neighbors.

• E: the total amount of edges between regions. Notice that the initial number of edges in an
image with m× n pixels is 2m(n− 1) but for simplicity we take E ∼ 2N .

• V : is the mean number of neighbors for a region. This value can be computed by taking
V = 2 ∗ E/N , but experimental verification (as can be seen in Figure 4) has shown that it’s
V ∼ 5.

• A: the mean area of a region (measured in pixels), we can compute it by taking A = N0/N ,
but we’ll see that not always the algorithm behaves like expected.

If during the loop only two regions are merged at a time, the recurrence relation of the region
merging loop is simply:

T [N] = T [N − 1] +Merge Two Regions[N]

and developing it leads to:

T [N] =
N∑

n=1

Merge Two Regions[n]

To determine the exact cost of Merge Two Regions[n] let’s study the complexity of each opera-
tion involved in the the region merging, resumed for simplicity in the table 1.

2.4.1 Constant piecewise segmentation case

For the constant piecewise segmentation case, the model for a merged region, as well as the error, can
be computed in constant time. This is accomplished by considering the area of the merged regions
since the means can be updated easily [4] (steps 5.1 & 5.2 of table 1). Resulting in the following
cost:

Merge Two Regions[n] = 11 + 2 lg(2n) + 10 [3 + lg(2n)]

= 41 + 12 lg(2n)

8

Piecewise Affine Image Segmentation Based on Mumford-Shah Functional

Step Algorithm step description Complexity

1 Obtain the max of the e = edges heap const.
2 Remove the top of edges heap O(lgE)
3 Merge the regions (of edge e) Ri = Ri ∪Rj

3.1 - concatenate the adjacency lists O(V) ∼ 5
3.2 - remove duplicated edges from the list O(V) ∼ 5
4 Delete the duplicated edges in Ri from egdes heap O(lgE)
5 Update the merging cost ∀ edge e of Ri ×2V ∼ ×10
5.1 - compute the merged model if removing e O(2A) or const.
5.2 - compute the err = model − data if removing e O(2A) or const.
5.3 - compute Mumford-Shah functional const.
5.4 - update location of e in edges heap O(lgE)

Table 1: Time complexity detail corresponding to the stages of the region merging inner loop.

0 2 4 6 8 10 12

x 10
4

0

50

100

150

size of the image (in pixels)

ti
m

e
 (

in
 s

e
c
o

n
d

s
)

gt

gradient

lena

hat

0 2 4 6 8 10 12

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

size of the image (in pixels)

ti
m

e
 (

in
 s

e
c
o

n
d

s
)

gt

gradient

lena

hat

Figure 5: Time simulations with the affine piecewise (left) and constant piecewise (right) implemen-
tations, using the images: ‘gt’, ‘hat’, ‘lena’ and ‘gradient’. The images have been resized (horizontal
axis) to in order to test the time spent by the algorithm.

Then replacing it into the recurrence we obtain:

T [N0] =
N0∑
n=1

(41 + 12 lg(2n))

= 41N0 + 12
N0∑
n=1

lg(2n)︸ ︷︷ ︸
<N0 lg(2N0)

The last sum governs the time complexity of this algorithm being O (n lg(2n)) in the average
case, which is coherent with the results of the simulations shown in figure 5.

9

Gabriele Facciolo

2.4.2 Piecewise affine segmentation case

In the case of piecewise affine regions, computation of the merged model2, as well as the compu-
tation of the error, requires to visit all the pixels O(2A) = O(2N0/N) increasing the merging time
consumption: Merge Two Regions[n] = 21 + 12 lg(2n) + 40N0/n, then the total time becomes:

T [N0] = 21N0 + 12
N0∑
n=1

lg(2n)︸ ︷︷ ︸
<N0 lg(2N0)

+40
N0∑
n=1

N0/n︸ ︷︷ ︸
N0

∑N0
n=1

1
n

Clearly, the total time complexity of the algorithm will be governed by the third term which is
formed by a partial sum of an harmonic series. This series can be bounded by Hn =

∑n
k=1

1
k
< lg(n)+

1
2n

+ γ where γ ∼= 0.577 is the Euler-Mascheroni constant[2]. Therefore, average time complexity
results in O (n lg(2n)).

From the previous analysis, it seems that both algorithms (the piecewise constant and the piece-
wise affine) have the same order of complexity. But observing the results of the affine segmentation
(figure 5), this algorithm is taking considerably more time for some images. This observation led us
to study the worst case.

The average time of the constant piecewise algorithm also coincides with the worst case, but with
the affine piecewise we’ve made the assumption that all the regions have “mostly” the same amount
of pixel size at every stage of the execution. This fact is reflected in the definition A = N0/N . For
the worst case, either all the regions have one pixel or there is only one region that is grown one pixel
at a time. For this worst case, computation of the error and the model (steps 5.1 & 5.2 in the table
1) will take much more time: N0 −N evaluation when there are N regions. This change will affect
the total time complexity in the following manner:

T [N0] = 21N0 + 12
N0∑
n=1

lg(2n)︸ ︷︷ ︸
<N0 lg(2N0)

+40
N0∑
n=1

N0 − n︸ ︷︷ ︸
N0(N0+1)

2

The resulting order of O(n2) explains better the results of the simulations (figure 5) with the
images ‘gt’ and ‘gradient’. The kind of images in which the worst case is more likely to appear, will
be further discussed in the following section.

3 Results and Conclusions

The results of the simulations have been separated in two cases: Natural and synthetic images.

3.1 Synthetic images

The objective of the algorithm was to obtain better segmentations of images that have gradients. In
particular, the elevation models like the one shown in figure 7. For this case, it is clear that roofs
of buildings are better segmented by the affine algorithm because it “sees” the discontinuities in the

2We’ve seen in section 2.1 that the computation of the least squares error can be reduced to a constant time, but
we consider it as linear to be more generic (we just loose a constant in this case).

10

Piecewise Affine Image Segmentation Based on Mumford-Shah Functional

Figure 6: (left) Multichannel piecewise constant segmentation using the channels of the horizontal
and vertical gradients of the image. (right) Piecewise affine segmentation. The result that uses
gradients has straighter borders, but in some places there are false borders product of the filter used
to compute the derivative.

gradient. Nonetheless, the boundaries of some regions are not so regular. One possible improvement
is to impose some extra regularity constraint (besides length) over the boundaries, i.e. curvature.
Another successful example is presented in figure 8, where the constant segmentation is incapable of
determining 4 regions, while the affine finds exactly what we see.

As the affine regions have constant gradients (vertical and horizontal) it is possible to segment
the image of derivatives with a constant piecewise algorithm (which is faster). The result of this
experiment is compared in figure 6 with the piecewise affine version. Notice that boundaries found
by the constant algorithm are more regular, possibly due to the filtering introduced by gradients
computation. Also, due to the filtering is the dilatation of the structures and the appearance of some
false borders around some buildings (in upper left corner).

3.2 Natural images

In reality, images with constant gradients are not very common in nature and when they appear,
they are not linear gradients like the ones we are finding. Anyway we analyzed two real images to
test performance. Results with real images (figure 9 and 10) do not have perfect segmentation of
the objects because gradients are not uniform. Nevertheless, reconstructions are interesting as they
have better visual impact than the constant piecewise reconstruction.

In terms of times, as mentioned before, some images may have a bigger time complexity using
the affine piecewise algorithm. In general, natural images are best featured to reach the average case
performance because of the many little details or textures common in the natural images. During
the execution of the merging algorithm these structures are merged in small groups, then the groups
are merged with each other and so on. Then no region grows out of control, escaping the worst case.

11

Gabriele Facciolo

Figure 7: Segmentation of a syntectic image ‘gt’ in 1000 regions. Comparison between the original
image (upper left), borders of the affine segmentation(upper right), result of the constant segmenta-
tion (lower left) and reconstruction of the affine segmentation (lower right).

12

Piecewise Affine Image Segmentation Based on Mumford-Shah Functional

Figure 8: Segmentation of a syntectic image ‘gradient’ in 4 regions. Comparison between the original
image (upper left), borders of the affine segmentation(upper right), result of the constant segmenta-
tion (lower left) and reconstruction of the affine segmentation (lower right).

13

Gabriele Facciolo

On the other hand, synthetic images have uniform regions (remember that uniform in the affine
case includes uniform gradients) that are grown since the first iteration of the algorithm and many
small unassigned pixels fall in the worst case.

3.3 Conclusions

We can conclude that the resulting segmentation algorithm meets the objective of segmenting cor-
rectly affine regions (roofs) present in digital elevation models. Additionally, the resulting imple-
mentation of the algorithm can now be used as an extensible framework to experiment with other
Mumford-Shah functionals using different models.

Image Credits

c© IPOL (there’s no need to credit this image, here is used as an example.)

References

[1] L. Demaret, N. Dyn, M. Floater, and A. Iske. Adaptive thinning for terrain modelling and image
compression, 2004.

[2] Eric W. Weisstein et al. Harmonic number. from mathworld - a wolfram web resource.

[3] L. Garrido and P. Salembier. Region based analysis of video sequences with a general merging
algorithm. In IX European Signal Processing Conference, EUSIPCO’98, 1998.

[4] J.M. Morel and S. Solimini. Variational Methods in Image Segmentation. Birkhauser, 1995.

[5] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
Recipes in C. Cambridge University Press, second edition, 1995.

[6] A. Tsai, Yezzi, A, Jr, and A. S. Willsky. Curve evolution implementation of the Mumford-Shah
functional for image segmentation, denoising, interpolation, and magnification. IEEE Tr. Im.
Proc., 10(8):1169–1186, August 2001.

[7] Song Chun Zhu, Tai Sing Lee, and Alan L. Yuille. Region competition: Unifying snakes, region
growing, energy/bayes/MDL for multi-band image segmentation. In ICCV, pages 416–, 1995.

14

Piecewise Affine Image Segmentation Based on Mumford-Shah Functional

Figure 9: Segmentation of the natural image ‘hat’ in 1000 regions. Comparison between the original
image (upper left), borders of the affine segmentation(upper right), result of the constant segmenta-
tion (lower left) and reconstruction of the affine segmentation (lower right).

15

Gabriele Facciolo

Figure 10: Segmentation of the natural image ‘lena’ in 1000 regions. Comparison between the
original image (upper left), borders of the affine segmentation(upper right), result of the constant
segmentation (lower left) and reconstruction of the affine segmentation (lower right).

16

	Introduction
	How big is the segmentation search space?
	Mumford-Shah Image Segmentation

	Description of the algorithm
	Affine region model
	Data structures
	Pseudo-code of the Region Merging Algorithm
	Time Complexity Analysis
	Constant piecewise segmentation case
	Piecewise affine segmentation case

	Results and Conclusions
	Synthetic images
	Natural images
	Conclusions

