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Random Phase Textures: Theory and Synthesis
B. Galerne, Y. Gousseau and J.-M. Morel

Abstract—This paper explores the mathematical and algo-
rithmic properties of two sample-based texture models: random
phase noise (RPN) and asymptotic discrete spot noise (ADSN).
These models permit to synthesize random phase textures. They
arguably derive from linearized versions of two early Julesz
texture discrimination theories. The ensuing mathematical anal-
ysis shows that, contrarily to some statements in the literature,
RPN and ADSN are different stochastic processes. Nevertheless,
numerous experiments also suggest that the textures obtained
by these algorithms from identical samples are perceptually
similar. The relevance of this study is enhanced by three technical
contributions providing solutions to obstacles that prevented the
use of RPN or ADSN to emulate textures. First, RPN and ADSN
algorithms are extended to color images. Second, a preprocessing
is proposed to avoid artifacts due to the non-periodicity of
real-world texture samples. Finally, the method is extended to
synthesize textures with arbitrary size from a given sample.

Index Terms—texture synthesis, random phase, shot noise, spot
noise

I. INTRODUCTION

A. Texture Perception Axioms and their Formalization

OPPENHEIM and Lim [1] state that “spectral magnitude
and phase tend to play different roles” for digital images

and that, in some situations, the phase contains many of the
important features of images. However when it comes to tex-
tures, perception theory suggests that some of the main texture
characteristics are contained in their Fourier magnitude. In his
early work on texture discrimination Julesz [2] demonstrated
that many texture pairs having the same second-order statistics
could not be discerned by human preattentive vision. This
hypothesis is referred to as the first Julesz axiom for texture
perception [2]. As a consequence, textures having the same
second-order statistics share a common auto-covariance and
therefore a common Fourier magnitude. Even though coun-
terexamples to the first Julesz axiom exist [2], [3], [4], it
is believed that Fourier magnitude is more important than
phase for the perception of textures [5]. This conclusion is
still considered valid by several more recent contributions [6],
[7]. For example, working on texture classification, Tang and
Stewart [6] conclude that “the Fourier transform magnitudes
contain enough texture information for classification” whereas
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“the Fourier phase information is a noise signal for texture
classification.”

Thus, a weak form of the first Julesz assumption is that
the perception of a texture is characterized by its Fourier
modulus. Under this assumption, its perception should not
vary when the texture phase is randomized. This fact turns
out to be true for a large class of textures which we shall call
in the sequel micro-textures. More generally, any two images
obtained by randomizing the phase of any given sample image
are perceptually very similar. As the experiments displayed
here show, this is true regardless of whether the sample image
is a texture or not. We shall call in the sequel random phase
texture any image that is obtained by a phase randomization.

The second Julesz approach to texture preattentive discrim-
ination theory introduced the notion of textons (blobs, termi-
nators, line crossings, etc.) [3]. The texton theory assumes
that the density of local indicators (the textons) is responsible
for texture preattentive discrimination: images with the same
texton densities should not be discriminated. A main axiom
of the texton theory is that texture perception is invariant to
random shifts of the textons [3]. The shift invariance of this
second Julesz theory can be made into a synthesis algorithm
building a texture from initial shapes by random shifts. In the
Julesz toy algorithm used in his discrimination experiments,
this construction was a mere juxtaposition of simple shapes
on a regular grid, with random shifts avoiding overlap. This
random shift principle can be used to make realistic textures
provided a linear superposition is authorized, by which the
colors of overlapping objects are averaged. Textures obtained
by the combined use of random shifts and linear superpo-
sition will be called random shift textures. We shall discuss
thoroughly their relation to random phase textures.

Random phase and random shift textures belong to a linear
world where the superposition principle dominates. A sound
objection is that linear superposition is not always adapted for
natural image formation. Several authors prefer an occlusion
principle yielding the stochastic dead leaves model [8], [9],
[10]. Indeed, most visible objects do not add up visually in
the image ; they hide each other.

However, thin, small, or semitransparent objects obey an
additive superposition principle due to the blur inherent to
image formation. More generally, all homogeneous image
regions made of small objects, when seen at a distance where
individual shapes vanish, obey the linear superposition princi-
ple. Indeed, when individual texture constituents are close to
pixel size, the camera blur linearly superposes their colors
and geometric features. Thus, many homogeneous regions
in any image should be micro-textures obeying the linear
superposition principle and the random shift principle. Fig. 1
shows an example. Five rectangles belonging to various ho-
mogeneous regions were picked in a high resolution landscape
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Fig. 1. Some examples of micro-textures taken from a single image (water with sand, clouds, sand, waves with water ground, pebbles). The emplacements
of the original textures are displayed with red rectangles. Each micro-texture is displayed together with an outcome of the RPN algorithm to its right. These
micro-textures are reasonably well emulated by RPN. Homogeneous regions that have lost their geometric details due to distance are often well simulated by
RPN

(1762 × 1168 pixels). These textures are displayed in pairs
where on the left is the original sub-image and on the right is
a simulation obtained by the RPN algorithm elaborated in this
paper. These micro-textures are reasonably well emulated by
the RPN algorithm. This success encourages RPN simulation
attempts on the homogeneous regions of any image. Yet, many
images or image parts usually termed textures do not fit to the
micro-texture requisites. Typically, periodic patterns with big
visible elements, such as brick walls, are not micro-textures.
More generally, textures whose building elements are spatially
organized, such as the branches of a tree, are not micro-
textures (see Fig. 13). Nonetheless, each textured object has
a critical distance at which it becomes a micro-texture. For
instance, as illustrated in Fig. 2, tiles at a close distance are a
macro-texture, and are not amenable to phase randomization.
The smaller tiles extracted from the roofs in Fig. 16 can instead
be emulated.

B. Random Phase and Random Shift Algorithms

The two texture models under study have been used either
to create new textures from initial spots, or to analyze texture
perception. Emulating real texture samples by these algorithms
requires the solution of several technical obstacles which will
be treated in Sect. V. Here, we first sketch the mathematical
and algorithmic discussion.

Random phase textures are produced by random phase
noise (RPN) which is a very simple algorithm performing
phase randomization. Random shift textures correspond to a
classical model in signal processing called shot noise [11].

(a) Input (b) RPN ×1.5

(c) Input (d) RPN ×1.5

(e) Input (f) RPN ×1

Fig. 2. The first two inputs are rectangles taken from the tiled roofs in
Fig. 16. The third input is again a piece of tiled roof taken at a shorter
distance. RPN does well on tiles viewed at a distance at which they make a
micro-texture. RPN fails instead on the third sample, which is a macro-texture
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Julesz theory Texture model Algorithm(s)
1st Random phase RPN

2nd (textons) Random shift (A)DSN

Fig. 3. Julesz theories, corresponding linear texture types, and the algorithms
generating them. RPN stands for random phase noise and (A)DSN for
(asymptotic) discrete spot noise

Spot noise, the two-dimensional shot noise, was introduced
by van Wijk [12], [13] to create new textures from simple
spot images (Fig. 4). In this paper we call discrete spot noise
(DSN) the corresponding discrete model.

Van Wijk [12] claimed that the asymptotics of discrete spot
noise (DSN) is obtained by uniformly randomizing the phases
of all Fourier coefficients. In short, it is claimed that the DSN
asymptotic process is the random phase noise (RPN). Our first
result here is that the limit of DSN is not RPN but is another
process, which we shall call asymptotic discrete spot noise
(ADSN). The difference between the two models lies in the
modulus of the Fourier transform of their outcomes. For RPN,
it is given by the Fourier magnitude of the spot whereas for
ADSN, it is subject to pointwise multiplication by a Rayleigh
noise.

The two investigated algorithms and the corresponding
Julesz theories and texture models are summarized in the table
of Fig. 3.

It will be shown that ADSN and RPN, in spite of their
theoretical differences, give perceptually similar results and
therefore justify van Wijk’s approach [12] (see Fig. 6 and 11).
These experiments show that the perception of random phase
textures is actually robust to the pointwise multiplication of the
Fourier magnitude by a Rayleigh noise. By contrast, natural
images containing macroscopic structures are in no way robust
to this same perturbation (Fig. 16). Hence the perceptual
invariance of random phase textures to a multiplicative noise
on their magnitude possibly characterizes this kind of texture.

In short, mathematical arguments clarify the asymptotics
of DSN and also establish a link between Julesz’s first and
second texture perception theories: their linearized versions
give perceptually equivalent textures.

This mathematical and experimental study is completed
by three important improvements of the texture synthesis
algorithms that stem from both considered randomization
processes. The ADSN and RPN algorithms are first extended
to color images. The study of the color ADSN shows that this
extension should be performed by preserving the phase coher-
ence between color channels (Fig. 7). Second, artifacts induced
by the non periodicity of the input sample are avoided by
replacing the input sample with its periodic component [14].
Eventually, a natural extension of the method permits to
synthesize RPN and ADSN textures with arbitrary size.

The resulting algorithms are fast algorithms based on fast
Fourier transform (FFT). They can be used as powerful texture
synthesizers starting from any input image. Both these claims
are asserted by the companion online demo [15] which enables
to test the RPN texture synthesis algorithm. As explained
above, the algorithms under consideration do not reproduce
all classes of textures: they are restricted to the so-called

(a) n = 102 (b) n = 103 (c) n = 104 (d) n = 105

Fig. 4. Outcomes of the DSN associated with the binary image of a small
disk for different values of n. As n increases the random images fn converge
towards a stationary texture

micro-textures. Exemplar-based methods like those of [16]
and the numerous variants that have followed, see e.g. [17],
successfully reproduce a wide range of textures, including
many micro- and macro-textures. However, these methods are
also known to be slow, highly unstable, and to often produce
garbage results or verbatim copy of the input (see Fig. 14).
In contrast, RPN and ADSN are limited to a class of textures,
but are fast, non iterative and parameter free. They are also
robust, in the sense that all the textures synthesized from
the same original sample are perceptually similar. Speed and
stability are especially important in computer graphics, where
the classical Perlin noise model [18] has been massively used
for 25 years. Similarly to ADSN, the Perlin noise model (as
well as its numerous very recent variants [19], [20], [21])
relies on stable and fast noise filters.

The plan of the paper is as follows. The two discrete
mathematical models corresponding to Julesz first and second
axioms are presented in Sections II and III. The mathematical
difference between these two processes is emphasized in Sec-
tion IV. The corresponding micro-texture synthesis algorithms
are introduced in Section V, and their performance illustrated
in Section VI.

II. Asymptotic Discrete Spot Noise

A. Discrete Spot Noise

We consider the space RM×N of discrete, real-valued
and periodic rectangular images. The components
of an image f ∈ RM×N are indexed on the
set Ω = {0, . . . ,M − 1} × {0, . . . , N − 1}, and by
periodicity f(x) = f(x1 mod M,x2 mod N) for all
x = (x1, x2) ∈ Z2.

Let h be a real-valued image and let Xp, p = 1, 2, . . .
be independent identically distributed (i.i.d.) random variables
(RV), uniformly distributed on the image domain Ω. We define
the discrete spot noise (DSN) of order n associated with the
spot h as the random image

fn(x) =
n∑
p=1

h(x−Xp), x ∈ Ω. (1)

Fig. 4 shows several realizations of the DSN for several
values of n where the spot h is the binary image of a small
disk. It appears clearly that as n increases the random images
fn converge towards a texture-like image. Our purpose is to
rigorously define this limit random texture and determine an
efficient synthesis algorithm.



4 IEEE TRANSACTIONS ON IMAGE PROCESSING

B. Definition of the Asymptotic Discrete Spot Noise

In order to define an interesting limit to the DSN sequence
we need to normalize the images fn. As fn is the sum of n
i.i.d. random images, the normalization is given by the central
limit theorem. This limit will be called the asymptotic discrete
spot noise (ADSN) associated with h.

Let X be a uniform RV on Ω and let H(x) = h(x−X).
A direct computation shows that the expected value of H is
E(H) = m1 where m denotes the arithmetic mean of h and
1 is the image whose components are all equal to 1. Similarly
the covariance of the random image H is shown to be equal
to the autocorrelation of h, that is for all (x, y) ∈ Ω2

Cov (H(x), H(y)) = Ch(x, y),

where

Ch(x, y) =
1

MN

∑
u∈Ω

(h(x− u)−m) (h(y − u)−m) . (2)

The central limit theorem ensures that the random sequence
n−1/2 (fn − nm1) converges in distribution towards the MN -
dimensional normal distribution N (0, Ch), yielding the fol-
lowing definition.

Definition 1. (Asymptotic discrete spot noise)
With the above notations, the asymptotic discrete spot
noise (ADSN) associated with h is the normal distribution
N (0, Ch).

C. Simulation of the ADSN

It is well known that applying a spatial filter to a noise image
results in synthesizing a stochastic texture, the characteristic
features of which are inherited from the filter and from the
original noise [22], [23]. In this section we show that the ADSN
associated with h can be simulated as a convolution product
between a normalized zero-mean copy of h and a Gaussian
white noise. We recall that the convolution of two (periodic)
images f, g of RM×N is defined by

(f ∗ g) (x) =
∑
u∈Ω

f(x− u)g(u), x ∈ Ω.

Theorem 2. (Simulation of ADSN)
Let Y ∈ RM×N be a Gaussian white noise, that is, a random
image whose components are i.d.d. with distribution N (0, 1).
Let h be an image and m be its arithmetic mean. Then the
random image

1√
MN

(h−m1) ∗ Y (3)

is the ADSN associated with h.

Proof: Denote

h̃ :=
1√
MN

(h−m1)

and Z := h̃ ∗ Y the random image defined by Equation (3).
Since the convolution product is a linear operator, Z is Gaus-

sian and E(Z) = h̃ ∗ E(Y ) = 0. Besides, for all (x, y) ∈ Ω,

Cov (Z(x), Z(y)) = E (Z(x)Z(y))

= E

[(∑
u∈Ω

h̃(x− u)Y (u)

)(∑
v∈Ω

h̃(y − v)Y (v)

)]
=
∑
u∈Ω

h̃(x− u)h̃(y − u),

since E (Y (u)Y (v)) = 1 if u = v and 0 otherwise.
Using Equation (2) and the definition of h̃, we obtain
Cov (Z(x), Z(y)) = Ch(x, y). Hence Z is Gaussian with
distribution N (0, Ch).

III. RANDOM PHASE NOISE

In this section we analyze a stochastic process, the random
phase noise (RPN) which was used by van Wijk and his co-
workers as a technique to synthesize stationary textures [12],
[24]. Using a random phase to obtain a texture from a given
Fourier spectrum was first evoked by Lewis in [25].

The RPN associated with a discrete image h is a random
real image that has the same Fourier modulus as h but has a
random phase. We first define a uniform random phase, which
is a uniform random image constrained to be the phase of a
real-valued image.

Definition 3. (Uniform random phase)
We say that a random image θ ∈ RM×N is a uniform random
phase if

1) θ is odd: ∀x ∈ Ω, θ(−x) = −θ(x),
2) each component θ(x) is either uniform on the interval

(−π, π] if x /∈
{

(0, 0) ,
(
M
2 , 0

)
,
(
0, N2

)
,
(
M
2 ,

N
2

)}
, or

uniform on the set {0, π} otherwise,
3) for every subset S of the Fourier domain which does

not contain distinct symmetric points, the family of RV
{θ(x)|x ∈ S} is independent.

Definition 4 (Random phase noise). Let h ∈ RM×N be an
image. A random image Z is a random phase noise (RPN)
associated with h if there exists a uniform random phase θ
such that

Ẑ(ξ) = ĥ(ξ)eiθ(ξ), ξ ∈ Ω.

It is equivalent to define RPN as the random image Z

such that Ẑ(ξ) =
∣∣∣ĥ(ξ)

∣∣∣ eiθ(ξ), where θ is a uniform random
phase. This is because if φ is the phase of a real-valued image
and θ is a uniform random phase then the random image
(θ + φ) mod 2π is also a uniform random phase. One of
the assets of this second definition is to emphasize that the
RPN associated with an image h only depends on the Fourier
modulus of this image. However, as developed in Section V-A,
the first definition permits to extend RPN to color images.

IV. SPECTRAL REPRESENTATION OF ADSN AND RPN

The ADSN associated with an image h is a convolution
of a normalized zero-mean copy of h with a Gaussian white
noise whereas the RPN is obtained by multiplying each Fourier
coefficient of h by a uniform random phase.
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(a) Gaussian spot (b) ADSN (c) (d)

Fig. 5. ADSN 5(b) associated with a Gaussian spot 5(a) and their respective
Fourier modulus 5(d) and 5(c) represented on logarithmic scale. The modulus
of the ADSN is the pointwise multiplication of the modulus of h by a white
Rayleigh noise

(a) Input (b) RPN (c) ADSN (d) ADSN

Fig. 6. Differences between the outcomes of the RPN and the ADSN
associated with the bisinusoidal image6(a). The RPN 6(b) is always a
translation of the original image 6(a) whereas the ADSN randomly favors
one of the two frequencies (two different realizations are displayed in 6(c)
and 6(d))

ADSN is easily described in the Fourier domain. A Gaussian
white noise image has a uniform random phase, its Fourier
modulus is a white Rayleigh noise and its Fourier phase and
modulus are independent [26, Chapter 6]. Consequently, the
convolution theorem ensures that the phase of the ADSN is
a uniform random phase whereas its Fourier modulus is the
pointwise multiplication of the Fourier modulus of h by a
Rayleigh noise.

Thus the phases of ADSN and RPN are both uniform
random phases. However, the Fourier modulus of the two
processes have different distributions: The Fourier modulus of
the RPN is by definition equal to the Fourier modulus of the
original image h whereas the Fourier modulus of the ADSN is
the modulus of h degraded by a pointwise multiplication by
a white Rayleigh noise (see Fig. 5). This characteristic of the
limit process is clearly visible on Fig. 3 and 4 of the recent
paper [21] where the noisy Fourier spectra of some spot noise
textures are displayed.

To highlight the differences between ADSN and RPN,
consider the effect of both processes on a single oscil-
lation h(x) = sin(λx1 + µx2). Because of the phase shift,
the RPN associated with h is a random uniform translation
sin(θ + λx1 + µx2) of h whereas the ADSN associated with
h is a random uniform translation of h multiplied by a random
Rayleigh amplitude R that is R sin(θ + λx1 + µx2). In the
same way, if h is the sum of two oscillations then the RPN
is still a translation of h whereas the ADSN may favor one of
the two frequencies as illustrated by Fig. 6.

V. TEXTURE SYNTHESIS ALGORITHMS

Theorem 2 and Definition 4 yield two fast synthesis al-
gorithms based on FFT. To preserve the mean of outcomes,
the mean value m of the input image is added to the ADSN

outcomes, while for RPN, the condition θ(x) = 0 is enforced if
x = 0. Observe that both processes can produce values outside
the initial range. These values are usually very few and are
simply cut off. An alternative yielding visually similar results
is to stretch the histogram of outcomes.

Two important practical points for the simulation of ADSN
and RPN associated with non periodic color images are
addressed next, and then we consider the issue of synthesizing
ADSN and RPN textures having larger size than their initial
sample.

A. Extension to Color Images

a) Color ADSN: First observe that the definition of
the discrete spot noise (DSN) is easily extended to color
images by summing colored spots, that is by using vector-
valued spots h = (hr, hg, hb) in Formula (1). This operation
is performed in the RGB space that roughly corresponds
to the frequency content of images. This obviously induces
correlations between the color channels of the resulting image.
Henceforth, the color ADSN is defined as the limit of the
normalized DSN, as in Section II. The central limit theorem
then applies as before and the limit is a Gaussian multivariate
field, with covariance matrix

Ch(x, y) =
1

MN

∑
u∈Ω

(h(x− u)−m)
T

(h(y − u)−m) ,

where as before m is the arithmetic mean of h. Theorem 2
straightforwardly generalizes to this setting, and the limit is
obtained as

1√
MN

(h−m1) ∗ Y, (4)

where as before Y is a scalar Gaussian white noise of
dimension M ×N .

In other words, the color ADSN is thus obtained by convolv-
ing each color channel with the same realization of a Gaussian
white noise. Note that this procedure is much simpler than a
classical approach to color texture synthesis relying on a PCA
transform of the color space [27], [23]. As will be illustrated in
the experimental section, this procedure permits to preserve the
color content of the input image. This provides an interesting
alternative to the use of color lookup tables, the standard way
to obtain colored noises in computer graphics [18], [21].

b) Color RPN: The mathematical extension of the RPN
to the color case is less clear than for ADSN. The question is
how to define a random phase in the vector-valued case. First
observe that the phase of each channel of the color ADSN is a
scalar random phase, as in Definition 3. Moreover, Formula (4)
and the convolution theorem implies that the same random
phase is added to the phase of each color channel of h. By
analogy, the color RPN is defined by adding the same random
phase to the phase of each color channel of the spot. Recall that
in the gray level case, as explained at the end of Section III,
adding a random phase to the phase of the spot is equivalent
to replacing the phase of the spot by a random phase. In the
color setting, this second option (replacing the phase of each
color channel by a random phase) would yield false colors,
as illustrated by Fig. 7. In contrast, adding the same random
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(a) Input (b) RPN (c) Wrong RPN

(d) Input (e) RPN (f) Wrong RPN

Fig. 7. RPN associated with color images. Images 7(a) and 7(d): input RGB
images; Images 7(b) and 7(e): associated color RPN, obtained by adding the
same random phase to each phase of the three color channels. In contrast,
if one imposes the same random phase to each color channel one obtains
images 7(c) and 7(f), the colors of which are not consistent with the original
images

phase to the original phases of each color channel preserves
the phase displacements between channels, which is important
for color consistency (see Fig. 7).

B. Avoiding Artifacts Due to Non Periodicity

Since both ADSN and RPN are based on FFT the periodicity
of the input sample is a critical requirement. A digital image
can always be considered as a periodic image but this results in
creating artificial discontinuities at its boundary. In our case it
is not possible to avoid this problem using a symmetrization
of the image because this would change the features of the
output, for example by creating new characteristic directions.

The goal here is to slightly change the input sample h to
enforce its periodicity. This is done by replacing h with its
periodic component p = per(h) as introduced in [14]. In the
original paper [14], p is defined as the solution of a variational
problem. One can in fact show that p is the unique solution
of the Poisson problem{

∆p = ∆ih

mean(p) = mean(h)
(5)

where ∆ is the usual discrete periodic Laplacian and ∆i is the
discrete Laplacian in the interior of the domain. For a periodic
image f , these discrete operators are defined by

∆f(x) = 4f(x)−
∑
y∈Nx

f(y)

and
∆if(x) = |Nx ∩ Ω| f(x)−

∑
y∈Nx∩Ω

f(y),

where Nx ⊂ Z2 denotes the 4-connected neighborhood of x
and |Nx ∩ Ω| the number of those neighbors that are in Ω.
Note that ∆f and ∆if only differ at the boundary of the
image domain. As a consequence (5) ensures that p and h
have a similar behavior inside the image domain. In particular
if h is constant at its boundary we have p = h.

(a) Input h (b) p (c) s+mean(h)

(d) ADSN(h) (e) ADSN(p) (f) s+ADSN(p)

Fig. 8. First row: periodic and smooth component of the input sample
h = p + s [14]. The mean of h is added to the smooth component s for
visualization. Second row: ADSN associated with the original texture sample
h and ADSN associated to its periodic component p. In 8(d) the vertical
stripes are due to the change of lighting between the left and the right sides
of the input sample 8(a). When using the preprocessed decomposition (8(e))
this artifact due to the non periodicity of the input sample does not appear
(results are similar for the RPN algorithm). Note that for rendering purpose
one can add back the smooth component s to the ADSN associated with p

In the general case p is computed directly by the classical
FFT-based Poisson solver [28] since in the Fourier domain (5)
becomes{(

4− 2 cos
(

2ξ1π
M

)
− 2 cos

(
2ξ2π
N

))
p̂(ξ) = ∆̂ih(ξ), ξ ∈ Ω

p̂(0) = ĥ(0).

The definition of p given by (5) is preferable, in the context
of this paper, to the original one of [14]. Indeed it enables
the direct computation of the Fourier transform of p, which is
useful in view of the synthesis algorithm.

Using the periodic component p in place of the initial image
h permits to avoid strong artifacts due to the non periodicity
of the input samples, as illustrated by Fig. 8. From now on,
this preprocessing will be used in all numerical experiments.

Observe that other solutions exist in the literature for
finding a “good” periodic representative of h, especially for
solving the periodic tiling problem (see [29] for example).
Nevertheless the periodic component p is particularly adapted
to our problem since it has been defined to eliminate the “cross
structure” present in the discrete Fourier transform [14].

C. Synthesizing Textures With Arbitrary Sizes

So far both discussed algorithms synthesize output textures
which have the same size as the original input sample. How-
ever, an important issue in texture synthesis is to synthesize
textures with arbitrary large size from a given sample. In
this section we propose a practical method which solves this
problem for ADSN and RPN textures simply by extending the
spot (see Fig. 10).

Given a spot h of size M1×N1 and an output size M2×N2,
with M2 > M1 and N2 > N1, we synthesize ADSN (resp.
RPN) textures of size M2 × N2 by computing the ADSN
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Fig. 9. Cross section and gray-level representation of the smooth transition
function ϕα used to attenuate the spot along the border of the image. On the
interval [0, α] the function varies as the primitive of the standard C∞ function
t 7→ exp

(
−1/

(
1− (2t/α− 1)2

))
, and it is symmetrically defined on the

interval [1−α, 1]. To preserve the variance of the spot, ϕα is normalized so
that its L2-norm equals 1

(resp. RPN) associated with an extended spot h̃ ∈ RM2×N2

which represents suitably the original spot h ∈ RM1×N1 .
The extended spot h̃ ∈ RM2×N2 is constructed by pasting
a normalized copy of the periodic component p of h in the
center of an image constant to m. More precisely:

h̃(x) = m+

√
M2N2

M1N1
(p(x)−m)1R1

(x), (6)

where 1R1
denotes the indicator function of R1, the centered

rectangle of size M1 × N1 included in Ω2 = {0, . . . ,M2 −
1} × {0, . . . , N2 − 1}. As defined by Equation (6), h̃ has
the same mean and variance as p, and the autocorrelation
of both spots is close for small distances. However h̃ has
discontinuities along the border of R1 which is undesirable
since, as illustrated by Fig. 8, those discontinuities can lead
to artifacts after randomization.

In order to wear off this brusque transition the inner spot
p −m is progressively attenuated at its border. This is done
by multiplying p−m by a smooth transition function ϕα. The
function ϕα, which is precisely described in Fig. 9, is constant
at the center of the domain and decreases smoothly to zero at
the border. All experiments in this paper are performed using
α = 0.1.

The resulting spot extension technique is illustrated in
Fig. 10. In this example α = 0.1. Experiments show that
the value of this parameter is not critical and that for most
images α = 0.1 seems a good compromise between wave
artifact correction and information loss.

Summary of the synthesis method: To conclude this
section we summarize the whole procedure for both ADSN
and RPN texture synthesis algorithms. The input of both
algorithms is a color input sample h of size M1 × N1, the
size M2 × N2 of the output texture and (optionally) a value
for the parameter α involved in the smooth transition function
ϕα.

1) Compute the periodic component p of h.
2) Extends p into h̃ using Equation (6) and the pointwise

multiplication by the smooth transition function ϕα.
3) • ADSN: Simulate a Gaussian white noise Y and re-

turn Z = m+ 1√
M2N2

(
h̃−m

)
∗Y , the convolution

being applied to each color channel of h̃−m.

(a) Spot h (b) Extended Spot h̃

(c) RPN(h) (d) RPN
(
h̃
)

Fig. 10. Spot extension technique: the original spot h 10(a) is extended into
the spot 10(b) by copying its periodic component p in the center, normalizing
its variance (see Equation (6)), and smoothing the transition at the border of
the inner frame by multiplying by the function ϕα (here α = 0.1). The RPN
associated to the extended spot is visually similar to the RPN associated with
the original spot and has an higher size. Results are similar for the ADSN
algorithm

• RPN: Simulate a random phase θ with θ(0) = 0
and compute Z by adding θ to the phase of each
color channel of h̃.

Note that step 1) and step 3) are based on FFT whereas
step 2) has linear complexity. Eventually both algorithms have
a complexity of O (M2N2 log (M2N2)). The slight advantage
of RPN is that it only necessitates the generation of about
M2N2

2 uniform variables versus the M2N2 Gaussian variables
necessary for the ADSN. Moreover, with RPN the Fourier
modulus of the original sample is conserved. As already
mentioned, an online demo [15] enables the interested reader
to test the RPN texture synthesis algorithm.

VI. NUMERICAL RESULTS

A. Perceptual Similarity of ADSN and RPN

Even though the two processes ADSN and RPN have
different Fourier modulus distributions (see Section IV), they
produce visually similar results when applied to natural images
as shown by Fig. 11. In order to better illustrate this perceptual
similarity, we display for each input image the corresponding
ADSN and RPN to which the same uniform random phase was
imposed. Recall that it was shown in Fig. 6 that perceptual
similarity does not hold in the case of images having a sparse
Fourier spectrum.
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Fig. 11. ADSN (middle) and RPN (right) associated with several input textures (left): stone, carpet, pink concrete. In order to compare the results the same
uniform random phase is imposed to both ADSN and RPN. Observe that there is nearly no perceptual difference between the outcome of both algorithms.
This perceptual similarity has been observed for every ADSN and RPN outcomes associated with natural textures, showing that random phase and random
shift textures are perceptually the same class of texture

B. RPN and ADSN as Micro-Texture Synthesizers

This section investigates the synthesis of real-world textures
using RPN. As mentioned above, ADSN produces visually
similar results.

Fig. 12 and Fig. 11 show that the RPN algorithm can be
used to synthesize micro-textures similar to a given original
sample, whereas Fig. 13 illustrates that it gives poor results
with macro-textures. For this kind of texture, resampling
algorithms (e.g. [16] or [30]) can give impressive results if
the parameters (window or patch size, initialization, scanning
order, . . . ) are well-chosen for each input image. However,
as said in the introduction, these algorithms are also known
for their tendency to sometimes produce erratic results or to
excessively use verbatim copying (see Fig. 14), not to mention
their computational cost. Recent inpainting algorithms [31],
[17] partially solve these issues, but instabilities remain in the
case of texture synthesis.

In contrast RPN (as well as ADSN), despite being limited
to the synthesis of specific textures, is parameter-free and
non iterative. Besides, it is very fast with a complexity of
O(MN log(MN)). Last but not least, RPN (as well as ADSN)
produces visually stable results: for any given image it always

produces perceptually similar results, as illustrated by Fig. 15.
As said in the introduction, this property is important in
view of an automatic use in the context of computer graphic
applications and explain why older and very simple synthesis
procedures such as Perlin noise [18], also relying on noise
filtering, are still popular today [19], [20], [21].

C. A Perceptual Robustness of Phase Invariant Textures

In Section IV we showed that the ADSN associated to a spot
can be obtained from its RPN by a pointwise product of the
Fourier modulus with a Rayleigh noise. Hence the observed
visual similarity of the outcomes of the ADSN and the RPN
(see Fig. 11) leads us to claim that the perception of random
phase or random shift textures is actually robust to pointwise
multiplication of the Fourier modulus by a Rayleigh noise.

One can wonder wether this robustness is also observed for
every image. The answer is no and Fig. 16 illustrates that
non random phase images are damaged by this multiplication.
Thus, the perceptual invariance of random phase textures to a
multiplicative noise on their magnitude may be a characteristic
of this kind of texture.
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Fig. 12. Examples of well-reproduced textures: RPN (right) associated with different input textures (left): wood, indoor wall, stone wall, wallpaper,
pinewood, dirt, water. All these textures are satisfyingly reproduced by the RPN algorithm, which indicates that they are random phase textures. See [15] for
more examples of successful synthesis

Fig. 13. Examples of failures: RPN (right) associated with different input textures (left): cat fur, salmon, thuja, bricks. All input textures are, to some extent,
not well reproduced by the RPN algorithm and therefore are not random phase textures. On the second line are displayed two highly structured textures to
which the algorithm is clearly not adapted. See [15] for more examples of failures

VII. CONCLUSION

This article presented a mathematical analysis of spot noise
texture models and synthesis methods. Two texture perception
models stemming from Julesz’s theories were recalled. The
first one is the random phase model, which leads exactly to the
RPN algorithm. The second one is the shift invariant texton
model. When applied in conjunction with the superposition
principle, we have seen that this last model yields a stationary
texture model which we called ADSN. Experimental evidence
has shown that random phase textures and random shift

textures generated from the same sample are indistinguishable.
Consequently, an unexpected additional perceptual invariance
property of random phase textures was uncovered: random
phase textures are perceptually invariant under a multiplicative
noise on the Fourier modulus. To the best of our knowledge,
this surprising fact had never been pointed out.

As for the texture synthesis algorithms, three significant
technical points have been developed permitting the synthesis
of textures from real-world texture samples. Numerical results
have shown that ADSN and RPN reproduce satisfyingly well
a relatively large range of textures, namely the micro-textures.
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(a) Input image (b) w = 9 (c) w = 15 (d) w = 21 (e) RPN

Fig. 14. Illustrations of the limitations of exemplar-based algorithms. The pinewood texture 14(a) of size 256 × 256 pixels was used to synthesize twice
larger textures using the Efros-Leung algorithm [16] with several values for the window width w (14(b), 14(c), and 14(d)). These algorithms are prone to
grow garbage at times, as well as to produce verbatim copies of the input textures. In contrast, as illustrated by 14(e), the RPN algorithm is stable

Fig. 15. Several outcomes of the RPN associated with the same input image
(top left). RPN (as well as ADSN) is a visually stable algorithm: indeed even
though the output images are locally quite different they are always visually
similar

Fig. 16. Effect of the pointwise multiplication of the Fourier modulus
by a Rayleigh noise. The non random phase images (left and middle) are
damaged whereas the random phase texture (right) is perceptually robust to
this transformation

The algorithms are ideally fast and produce visually stable
results, two properties which are crucial for computer graphics
applications.

Several new perspectives open up. First, a similar study
should be conducted on perceptually based texture synthesis
methods relying on wavelet decompositions, following the
seminal work of [27]. Second, a strong limitation of the models
discussed here is the exclusive use of a linear superposi-
tion principle, and it is therefore of interest to investigate
asymptotic properties of more elaborate generative texture
models involving an occlusion principle or random transparent
templates.
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[29] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” in
SIGGRAPH ’03. New York, NY, USA: ACM, 2003, pp. 313–318.

[30] A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis
and transfer,” in SIGGRAPH ’01. New York, NY, USA: ACM, 2001,
pp. 341–346.
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de Paris, France, in 1995, and received the Ph.D.
degree in applied mathematics from the University
Paris Dauphine in 2000.

After working as a postdoctoral researcher at
Brown University, Providence, USA, and at the
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