

Second Conference on Forward Modelling of Sedimentary Systems

From Desert to Deep Marine Depositional Systems

25-28 April 2016 Trondheim, Norway

A Numerical Implementation of Landscape Evolution Models Marc Lebrun, Jean-Michel Morel

Alex Chen, Jérôme Darbon

CMLA, ENS Cachan

www.eage.org

What's Landscape Evolution?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What's Landscape Evolution?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What's Landscape Evolution?

<ロ> (四) (四) (三) (三) (三)

What's Landscape Evolution?

- Landscape evolution based on sedimentation, erosion, fluid flow;
- Also depends on **environmental factors** : soil conditions, human interference, wind, etc.
- Our model is based on previous studies that :
 - rely heavily on empirical law rather than physical principles;
 - contain a large number of equations and parameters;
 - Relative similarity between landscapes :

Goals :

- Find a simple landscape model describing common morphology in nature;
- Direct numerical simulations on full landscapes.

AGE Variables and parameters

Variables :

- **z** = land surface elevation ;
- $\blacksquare \ \theta = water height;$
- $\blacksquare \ \rho = \text{sediment density in water};$
- **z** + θ = landscape altitude;
- $\nabla (z + \theta) = \text{landscape slope};$

Parameters :

- Uniform rain r at all spatial locations;
- Sedimentation rate s;
- Erosion rate e;
- Creep rate c.

- Creep (c) is the diffusion of soil/rock due to gravitational effects and stress;
- It depends mainly on steepness, with secondary causes in vegetation and soil type;
- It should be distinguished from sedimentation and erosion effects which are based on water transport;
- Creep causes hills to be **convex upslope** and **concave downslope**
- It tends to smooth the landscape by $c\Delta z$

Creep causes the fence to tilt downslope, as soil

shifts downward.

・ロト ・ 一下・ ・ ヨト

EAGE Erosion - stream incision law

- Erosion should be based on stream power at a certain point;
- Based on amount of water and velocity;
- Its rate $\frac{\partial z}{\partial t}$ is related to the **slope** of the channel $\nabla (z + \theta)$ and the area of the drainage basin A;

$$\frac{\partial z}{\partial t} = -eA^{m}|\nabla\left(z+\theta\right)|^{n}$$

The Loess Plateau in China has the most erodible soil in the world due to wind and water erosion and man-made factors.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

with n = 2m in many cases.

Empirical law, but with intuitive **physical sense** when θ is used in place of drainage area *A*.

- Sedimentation occurs as sediments in the water layer settle at the interface between the water and land surface layers;
- Not based on the total amount of sedimentation in the water, but rather the concentration;
- Only sediments from the layer of water directly above the land surface layer will settle at the bottom;
- This gives the sedimentation equation :

$$\frac{\partial z}{\partial t} = s\rho$$

イロト 不得下 不足下 不足下 一日

Water level

- The water transport flux is based on the slope of the landscape $\nabla(z + \theta)$ and the amount of water θ present;
- It follows a transport equation

$$\frac{\partial \theta}{\partial t} = div \left[\theta \left(\nabla \left(z + \theta\right)\right)\right] + r$$

Sediment

- The total sediment θρ is a product of the sediment concentration and the water level;
- It also follows a transport equation

Three-equations LEM :

- Water conservation and transport law (eq. 1);
- Landscape evolution (eq. 2);
- Sedimentation mass conservation (eq. 3).

$$\frac{\partial \theta}{\partial t} = \operatorname{div}\left[\theta \nabla \left(z + \theta\right)\right] + r \tag{1}$$

$$\frac{\partial z}{\partial t} = c\Delta z - e\theta^{m} |\nabla (z + \theta)|^{2m} + s\rho \qquad (2)$$

$$\frac{\partial (\theta \rho)}{\partial t} = \left(c \Delta z - \frac{\partial z}{\partial t} \right) + div \left[\theta \rho \nabla \left(z + \theta \right) \right]$$
(3)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= 900

E Algorithms details

8 neighbours;

The scheme is conservative by construction and consistent with the PDE;

Both transport equations are approximated by a (half-centred) finite volume scheme;

The Water network must be initialized;

Impossibility to get an absolute amount of time for a given evolution.

Stopping criteria : number of iterations or percentage of landscape erosion.

EAGE Full evolution - La Réunion

Original landscape - DEM

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

EAGE Full evolution - La Réunion

Final landscape (10.5%) - DEM

Initial water

EAGE Full evolution - La Réunion

Final water

◆□> ◆圖> ◆国> ◆国> 三国

EAGE Full evolution - La Réunion

Final sediment

Original landscape - false color

Final landscape (10.5%) - false color

Influence of creep - $c = 10^{-4}$

Final landscape

EAGE

EUROPEAN ASSOCIATION OF GEOSCIENTISTS &

Final landscape

Final water

Sediment

<ロ> (四) (四) (三) (三) (三) (三)

10.5% of the landscape have been removed.

Influence of creep - $c = 5.10^{-3}$ ASSOCIATION OF

Final landscape

EAGE

EUROPEAN

GEOSCIENTISTS &

Final landscape

Final water

Sediment

11.2% of the landscape have been removed.

Influence of sedimentation - $s = 10^{-7}$

Final landscape

Final landscape

Final water

Sediment

10.5% of the landscape have been removed.

Influence of sedimentation - $s = 10^{-5}$

Final landscape

Final water

Sediment

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1.6% of the landscape have been removed.

Influence of erosion - e = 1

Final landscape

Final landscape

Final water

Sediment

10.5% of the landscape have been removed.

Influence of erosion - e = 2

Final landscape

Final landscape

Final water

Sediment

21.5% of the landscape have been removed.

Application to Sharpening River Networks

 DEM generally comes with noise/blur/quantification, are imprecise.

Idea :

EAGE

Problem :

Apply short time evolution with small erosion and no sedimentation/creep.

Advantage :

- River networks can be extracted clearly;
- DEM becomes hydrologically coherent;
- Gain of networks precision.

Final sediment

Original landscape

Final landscape

-

Initial water

Final water

Landscape Evolution Model

article demo archive

This algorithm models a lanscape evolution. The input image must be in gray level (whiter means higher).

First the landscape will be initialized by a Fast Water Initialization, then the three-equation LEM will be applied.

Select Data

Click on an image to use it as the algorithm input.

image credits

Upload Data

Upload your own image files to use as the algorithm input.

input image	Parcourir	Aucun fichier sélectionné.	upload

http://dev.ipol.im/~ibal/ipol_demo/LEM/(user:demo,pwd:demo)

Some popular landscape models :

- Can describe evolution of certain landscapes well;
- Often have too many parameters for generality;
- Based on empirical observations.

Presentation of a landscape evolution model :

- based on mathematical conservation laws;
- restricted to 3 equations with 3 variables, 4 parameters;
- able to work on full SRTMs within a minute;
- verifies several commonly observed landscape features.

Future work :

Automatic selection of parameters to ensure that for mature landscapes the evolved landscape stays close in character to the original.

As for all evolutions, works on 8 neighbours;

Evolved **separately** from erosion and sedimentation for efficiency;

Input : previous landscape height h_f^{n-1} .

Output : current landscape height h_f^n .

for
$$(i,j) \in [0, NR - 1] \times [0, NC - 1]$$

$$\Delta_1 = h_f^{n-1}(i,j-1) + h_f^{n-1}(i,j+1) + h_f^{n-1}(i-1,j) + h_f^{n-1}(i+1,j) - 4h_f^{n-1}(i,j)$$

$$\Delta_2 = h_f^{n-1}(i-1,j-1) + h_f^{n-1}(i-1,j+1) + h_f^{n-1}(i+1,j-1) + h_f^{n-1}(i+1,j+1) - 4h_f^{n-1}(i,j)$$

$$h_f^n(i,j) = h_f^{n-1}(i,j) + \delta_t c \left(\Delta_1 + \frac{1}{\sqrt{2}}\Delta_2\right)$$
endfor

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Water and sedimentation evolution

Input : previous water level θ^{n-1} ; **Input** : landscape height h_f ; **Input** : previous water times concentration λ^{n-1} .

 $\begin{array}{l} \mathbf{Output}: \text{current water level } \theta^n \text{;} \\ \mathbf{Output}: \text{current water times concentration } \lambda^n. \end{array}$

```
for (i, j) \in [[0, NR - 1]] \times [[0, NC - 1]]
```

 $\tau_{\theta} = \tau_{\lambda} = 0$

FAGE

Compute the transfers over the 8 neighbors

for $(i_n, j_n) \in \{(0, \pm 1), (\pm 1, 0), (\pm 1, \pm 1), (\pm 1, \mp 1)\}$

Compute the steep steep = $\theta^{n-1}(i_n, j_n) + h_f(i_n, j_n) - \theta^{n-1}(i, j) - h_f(i, j)$

Udpate the transfer

if steep > 0

$$\tau_{\theta} = \tau_{\theta} + \omega * \delta_t * steep * \theta^{n-1}(i_n, j_n)$$

$$\tau_{\lambda} = \tau_{\lambda} + \omega * \delta_t * steep * \lambda^{n-1}(i_n, j_n)$$

else

$$\tau_{\theta} = \tau_{\theta} + \omega * \delta_t * steep * \theta^{n-1}(i,j)$$

$$\tau_{\lambda} = \tau_{\lambda} + \omega * \delta_t * steep * \lambda^{n-1}(i,j)$$

endif

endfor

Update the water and water times concentration level $\theta^n(i,j) = \theta^{n-1}(i,j) + \tau_{\theta} + \delta_t * r$ $\lambda^n(i,j) = \lambda^{n-1}(i,j) + \tau_{\lambda}$ endfor

Where ω is a ponderation : $\omega = 1$ if $(i_n, j_n) = (0, \pm 1)$ or $(\pm 1, 0)$ and $\omega = \frac{1}{\sqrt{2}}$ otherwise.

Algorithm - landscape evolution

Input : previous landscape height h_f^{n-1} ;

Input : current water level θ ;

FAGE

Input : previous water times concentration λ^{n-1} .

Output : current landscape height $h_f{}^n$; **Output :** current water times concentration λ^n .

 $\begin{array}{l} \text{for } (i,j) \in \llbracket 0, \textit{NR} - 1 \rrbracket \times \llbracket 0, \textit{NC} - 1 \rrbracket \\ \delta_e = 0 \end{array}$

Compute the erosion over the 8 neighbors

$$\begin{split} h_{\pm 1} &= h_f^{n-1}(i,j) + \theta(i,j) - h_f^{n-1}(i,j\pm 1) - \theta(i,j\pm 1) \\ v_{\pm 1} &= h_f^{n-1}(i,j) + \theta(i,j) - h_f^{n-1}(i\pm 1,j) - \theta(i\pm 1,j) \\ \delta_e &= \delta_e + (\max\{\max\{h_{\pm 1}, h_{-1}\}, 0\})^2 + (\max\{v_{\pm 1}, v_{-1}\}, 0\})^2 \end{split}$$

$$\begin{split} l_{\pm 1} &= h_f^{n-1}(i,j) + \theta(i,j) - h_f^{n-1}(i \pm 1, j \pm 1) - \theta(i \pm 1, j \pm 1) \\ r_{\pm 1} &= h_f^{n-1}(i,j) + \theta(i,j) - h_f^{n-1}(i \pm 1, j \mp 1) - \theta(i \pm 1, j \mp 1) \\ \delta_e &= \delta_e + \frac{1}{2} \left(\max\{\max\{l_{\pm 1}, l_{-1}\}, 0\} \right)^2 + \frac{1}{2} \left(\max\{r_{\pm 1}, r_{-1}\}, 0\} \right)^2 \end{split}$$

Get the final amount to erode $\delta_e = -e_e \left(\theta(i,j)\right)^m (\delta_e)^m$

Compute the sedimentation

 $\delta_s = e_s \frac{\lambda^{n-1}(i,j)}{\theta(i,j)}$

Landscape to erode $\delta = \delta_t (\delta_e + \delta_s)$

Update the landscape height $h_f{}^n(i,j) = h_f{}^{n-1}(i,j) + \delta$

Update the water times concentration $\lambda^n(i,j) = \lambda^{n-1}(i,j) - \delta$ for

endfor