
The Noise Clinic

Miguel Colom, Marc Lebrun, Jean-Michel Morel
miguel.colom@cmla.ens-cachan.fr, marc.lebrun.ik@gmail.com, morel@cmla.ens-cachan.fr

CMLA, ENS Cachan

September 2012

Miguel Colom, Marc Lebrun, Jean-Michel Morel miguel.colom@cmla.ens-cachan.fr, marc.lebrun.ik@gmail.com, morel@cmla.ens-cachan.frThe Noise Clinic

http://mcolom.perso.math.cnrs.fr
mailto:miguel.colom@cmla.ens-cachan.fr
mailto:marc.lebrun.ik@gmail.com
mailto:morel@cmla.ens-cachan.fr
http://mcolom.perso.math.cnrs.fr
mailto:miguel.colom@cmla.ens-cachan.fr
mailto:marc.lebrun.ik@gmail.com
mailto:morel@cmla.ens-cachan.fr

Outline I

Miguel Colom, Marc Lebrun, Jean-Michel Morel miguel.colom@cmla.ens-cachan.fr, marc.lebrun.ik@gmail.com, morel@cmla.ens-cachan.frThe Noise Clinic

http://mcolom.perso.math.cnrs.fr
mailto:miguel.colom@cmla.ens-cachan.fr
mailto:marc.lebrun.ik@gmail.com
mailto:morel@cmla.ens-cachan.fr

Noise Model

The noise model

Noise Model

ũ = u + n

where u is a (non-available) ideal image, n an additive corrupting noise
and ũ the noisy image.

u is a (non-available) ideal image,

n an additive corrupting noise, and

ũ the noisy image.

We want to measure the measure the variance of n, only
knowing a single instance of ũ.

Noise Model

An example with n ∼ N (0, σ2) (uniform noise) with σ = 50:

ũ = u + n

images/noise_model/dice_g50.pngimages/noise_model/dice.pngimages/noise_model/noise_g50.png

Figure: ũ (left) = u (center) + n (right). Actually, the image on the right has
an offset of 127, in order to visualize the negative values of noise.

Noise Model

Actually, noise in a real photography is never uniform: its variance
depends on u:

ũ = u + n(u)

Due to the quantum nature of light, the photon emission by a body
is not uniform but impulsive.

It can be modelled as a Poisson random process:

f (k ;λt) =
e−λt(λt)k

k!
∼ Pois(λt)

where k is the number of incident photons counted by the CCD and
λ the expected number of incident photons/time unit.

If k is large enough, Pois(λt) ∼ N (λt, λt).

Any noise estimation method that assumes that the noise is
uniform is not realistic.

Noise Model: Signal-Dependent (SD) noise
In general, the variance of the SD-noise can be modeled as
Var (ni) = a + bui where a, b ∈ R+ ∪ {0} are parameters of the noise
and i the pixel position.

images/noise_model/flowers2.pngimages/noise_model/flowers2_a1_b15.png

Figure: Left: noise-free image. Right: corrupted image with SD-noise with
Var (ni) = 1 + 15ui

General Principles of Noise Estimation

General Principles of Noise
Estimation

General Principles of Noise Estimation

The general principles of noise estimation:

1 Pre-filter the image in order to get rid of deterministic tendencies.

2 Local estimations: get a local estimation of the variance and the
mean at each pixel of the image using a small environment (a
“block”).

3 Classify the estimations by their mean, in order to estimate
SD-noise.

4 Discard those blocks whose variance is explained mostly by the
geometry of the image and not by the noise.

5 Use some statistic on the list of estimations to get a single robust
measure of the noise. Examples: a percentile, the median, the
mean, etc.

6 Correct the noise estimation if it is biased because a percentile
has been applied.

General Principles of Noise Estimation: Pre-filtering
Pre-filter the image in order to get rid of deterministic tendencies.

The geometry of the image may contain L1, L2, . . . signals. This
signals contribute to the variance measured on the noisy image and
therefore they have to be removed.
Convolving the image with some normalized discrete low-pass filters
is useful.
For example, the 3-Laplacian filter removes the L1, L2 and L3 signals
in the image. Other kinds of filters are possible, like those based on
the DCT or directional derivatives.

images/principles/LapLapLap_stencil.png

images/principles/gradient.pngimages/principles/gradient_filtered.png

Figure: Left: Stencil of the discretized 3-Laplacian filter. Middle: Noise-free
gradient signal contributing to the measured variance. Right: the image after
begin filtered with the 3-Laplacian; σ̂ = 0 is measured.

General Principles of Noise Estimation: Block-based noise
estimation

Local estimations.
The noise is estimated using a small environment (called a
“block”), that is centered at each pixel of the image. Usually the
blocks are small (21× 21 at most).
The sample variance of the pixels of the block is computed.
Finally, a estimation of the variance of almost each pixel of the
image is obtained. Its mean is also kept.

images/noise_model/dice_block.png

Figure: A 8× 8 pixels block centered at some pixel in the dice image.

General Principles of Noise Estimation: Classify the
estimations by their mean

Classify the estimations by their mean.
A local estimation of the variance and mean of each pixel is known.
The blocks are classified into disjoint in mean sets called bins.
Each bin contains those blocks whose mean belongs to a certain
interval.
This allows for the creation of a “noise curve”, that is, a link
between the intensity of the pixels and their variance.

images/perc_ponom_comparison/input.pngimages/perc_ponom_comparison/curve_ponom.png

Figure: Left: noisy image. Right: its noise curve using 8× 8 overlapping blocks
and the Ponomarenko et at. method.

General Principles of Noise Estimation: Discard blocks
Discard those blocks whose variance is explained mostly by the
geometry of the image.

The geometry of the image increases the measured variance of the
blocks, giving overestimations.

To solve this problem, a small percentile of the variances of the
blocks inside each bin is considered.

images/principles/noisy_g10.pngimages/principles/computer_g10.png
images/principles/plot_computer_vs_noise.png

Figure: Left: pure noise of σ = 10. Center: noise-free image with noise of
σ = 10 added. Right: plot of the sorted variances. Only small percentiles
give a good estimation of σ2.

General Principles of Noise Estimation: Use some statistic
on the list of estimations to get a single robust measure

Use some statistic on the list of estimations to get a single robust
measure.

To get a robust estimate of the noise, some statistic has to be
applied to the list of variances.

Typically: a small percentile or the mean or median of the values
below a small percentile.

General Principles of Noise Estimation: Correct the noise
estimation

Correct the noise estimation.
When a percentile is used, the variance of the noise is biased and it
must be corrected.
The correction depends on the percentile, the size of the block
and the pre-filter operator. It can be empirically determined by
simulations on pure noise.
For example, with percentile p = 0.005, blocks 21× 21 and the
3-Laplacian filter this empirical factor learned on pure noise is
≈ 1.21.

images/principles/plot_noise.png

Figure: Ordered variances obtained with a 8× 8 block obtained in an image of
pure noise of σ = 10. Any percentile different from the median gives a biased
estimation that must to be corrected.

State of the Art Noise Estimation Algorithms

State of the Art Noise
Estimation Algorithms

Algorithm: Percentile

Pre-filter: DCT filter with support 8× 8.

Blocks of size from 5× 5 (small images) to 21× 21 pixels (big
images).

About 42000 samples/bin needed.

Discards blocks using the 0.5% percentile.

Statistic: value at percentile.

Correction: multiplicative factor to correct the percentile.

Reference [?]: Secrets of image denoising cuisine. Acta Numerica, 2012.

(Lebrun, M. and Colom, M. and Buades, A. and Morel, J.M.)

Algorithm: Ponomarenko et al.

High-pass filter: the noise is estimated only with the middle and
high frequency coefficients of the 8× 8 block once it has been
decomposed by the DCT-II transform.

Blocks of size 8× 8.

About 42000 samples/bin needed.

Discards blocks using the 0.5% percentile.

Statistic: median of the variances under the percentile.

Correction: NONE.

Reference [?]: An Automatic Approach to Lossy Compression of AVIRIS

Images. IEEE International Geoscience and Remote Sensing Symposium, 2007.

(N. N. Ponomarenko and V. V. Lukin and M. S. Zriakhov and A. Kaarna and

J. T. Astola.)

Algorithm: Ponomarenko et al.

There is a significant difference between the Percentile and the
Ponomarenko algorithms:

Percentile sorts the blocks according with its variance and the
applies a percentile after filtering the blocks with a low-pass filter.

Ponomarenko sorts the blocks according with its variance computed
using the low-frequency coefficients of the block, but estimates
the noise with the middle and high frequency coefficients.

This difference with the Percentile makes Ponomarenko give better
results, since it separates better the noise from the signal.

images/perc_ponom_comparison/ponom_block.png

Figure: Ponomarenko method block. In green, the low-frequency coefficients
used to sort the blocks. In blue, the medium and high frequency coefficients
used to measure the noise of the block.

Algorithms: RMSE performance

To measure the performance of the algorithms, the following RMSE is
used:

E
(1)
i,σ =

√√√√ 1

|B|

|B|−1∑
b=0

|σ̂i,b − σ|2

|I | is the number of images.

i is the image index (0 ≤ i < |I |)
B the number of bins

b the index of the bin (0 ≤ i < |B|)
σ is the standard deviation of the simulated noise.

σ̂i,b the estimated noise for the image i at the bin b

Algorithms: Percentile. RMSE performance. Test images

images/images_test/bag.pngimages/images_test/building1.pngimages/images_test/computer.pngimages/images_test/dice.pngimages/images_test/flowers2.png

images/images_test/hose.pngimages/images_test/leaves.pngimages/images_test/lawn.pngimages/images_test/stairs.pngimages/images_test/traffic.png

Figure: Set of noise-free images used to test the noise estimation algorithms
with uniform noise. From left to right and from top to bottom: bag, building1,
computer, dice, flowers2, hose, leaves, lawn, stairs and traffic.

Algorithms: RMSE performance of Percentile

Image / E
(1)
i,σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 0.77 0.67 0.52 0.45 0.96 1.03 2.76

building1 0.35 0.25 0.56 0.69 0.93 1.48 1.71

computer 0.37 0.40 0.61 0.70 0.93 1.06 2.73

dice 0.13 0.14 0.18 0.25 0.60 1.60 2.00

flowers2 0.17 0.14 0.17 0.30 0.87 1.59 3.32

hose 0.88 0.64 0.52 0.47 0.50 1.60 1.83

leaves 1.45 1.14 1.03 0.83 0.84 1.22 1.94

lawn 1.00 1.22 0.91 0.69 0.81 1.45 1.95

stairs 0.94 0.91 0.68 0.60 0.78 0.83 1.25

traffic 0.46 0.45 0.62 0.68 1.01 1.55 2.30

Flat image 0.03 0.03 0.17 0.16 0.16 1.44 2.34

ALL 0.73 0.67 0.61 0.57 0.80 1.37 2.26

Table: Percentile E
(1)
i,σ RMSE with simulated uniform noise for the images of

Fig. 9 using 8× 8 blocks, percentile 0.5% and 7 bins. The last row is the
RMSE using the estimated σ̂i,b of all the images.

Algorithms: RMSE performance of Ponomarenko

Image / E
(1)
i,σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

bag 0.85 0.48 0.33 0.58 0.44 1.24 1.67

building1 0.19 0.12 0.07 0.18 0.27 0.80 1.53

computer 0.21 0.12 0.16 0.25 0.32 1.97 1.18

dice 0.12 0.08 0.15 0.17 0.34 1.05 1.80

flowers2 0.18 0.09 0.10 0.29 0.38 1.53 1.10

hose 0.87 0.61 0.38 0.45 0.60 1.62 1.13

leaves 1.47 1.09 0.62 0.58 0.49 1.49 2.50

lawn 1.52 1.23 0.66 0.51 0.29 1.31 1.69

stairs 0.61 0.34 0.38 0.32 0.44 1.03 1.05

traffic 0.13 0.10 0.22 0.21 0.63 1.33 0.85

flat image 0.02 0.05 0.05 0.13 0.38 1.35 0.83

ALL 0.77 0.56 0.35 0.37 0.43 1.37 1.47

Table: Ponomarenko E
(1)
i,σ RMSE with simulated uniform noise for the images

of Fig. 9 using 8× 8 blocks, percentile 0.5% and 7 bins. The last row is the
RMSE using the estimated σ̂i,b of all the images.

Algorithms: mean RMSE Percentile vs Ponomarenko

Method / E
(1)
i,σ σ = 1 σ = 2 σ = 5 σ = 10 σ = 20 σ = 50 σ = 80

Percentile 0.73 0.67 0.61 0.57 0.80 1.37 2.26

Pononarenko 0.77 0.56 0.35 0.37 0.43 1.37 1.47

Table: Mean E
(1)
i,σ RMSE comparison between Percentile and Ponomarenko.

Conclusion: the Ponomarenko et at. method is currently the best state of the

art noise estimation method. The Percentile method has a similar but lower

performance, with the exception of very low noise for which it gives more

accurate estimations.

Checking the estimations against the GT of the camera

Checking the estimations
against the GT of the camera

Checking against the GT: ISO 1250, t=1/30s

images/gt_ponom_perc/IMG_0187.png

images/gt_ponom_perc/curve_IMG_0187_perc-r_ISO_1250_t30.pngimages/gt_ponom_perc/curve_IMG_0187_ponom-r_ISO_1250_t30.png

Figure: Validation of the Percentile (left) and the Ponomarenko et al. methods
(right) with a raw image with ISO 1250 and exposure time t=1/30s.

Checking against the GT: ISO 1250, t=1/400s

images/gt_ponom_perc/IMG_0991.png

images/gt_ponom_perc/curve_IMG_0991_perc_ISO_1250_t400.pngimages/gt_ponom_perc/curve_IMG_0991_ponom_ISO_1250_t400.png

Figure: Validation of the Percentile (left) and the Ponomarenko et al. methods
(right) with a raw image with ISO 1250 and exposure time t=1/400s.

Checking against the GT: ISO 1600, t=1/250s

images/gt_ponom_perc/IMG_1062.png

images/gt_ponom_perc/curve_IMG_1062_perc_ISO_1600_t250.pngimages/gt_ponom_perc/curve_IMG_1062_ponom_ISO_1600_t250.png

Figure: Validation of the Percentile (left) and the Ponomarenko et al. methods
(right) with a raw image with ISO 1600 and exposure time t=1/250s.

Checking against the GT: ISO 1600, t=1/640s

images/gt_ponom_perc/IMG_1111.png

images/gt_ponom_perc/curve_IMG_1111_perc_ISO_1600_t640.pngimages/gt_ponom_perc/curve_IMG_1111_ponom_ISO_1600_t640.png

Figure: Validation of the Percentile (left) and the Ponomarenko et al. methods
(right) with a raw image with ISO 1600 and exposure time t=1/640s.

Effect of the JPEG encoding

Effect of the JPEG encoding

Effect of the JPEG encoding

As part of the JPEG compression, some high-frequency coefficients
of the 8× 8 blocks are set to zero.

Problem: most noise estimation algorithms measure the noise at
the high-frequency coefficients.

Therefore, the noise estimation algorithm will give a variance close
to zero. But this is not correct, because a low-frequency noise has
been left.

The noise is no longer white but colored.

Solution: estimate the noise using a multi-scale strategy and
down-sample the image.

Multi-scale: Down-sample the image

Down-sampling: creating a new image by substituting each block
of four pixels of an image by its mean.

The low-frequency noise (colored noise) looks like color spots.

The frequency of the noise is related with the size of the spots. The
bigger the spot, the lower the frequency.

If the image is sub-sampled, the size of the spots is divided by two
and therefore the frequency of the noise is increased.

After several down-sampling iterations, the colored noise is
whitened.

Also, the standard deviation of the noise is divided by two after
the down-sampling. Indeed, if ni are samples of the noise, then

Var
(
n1+n2+n3+n4

4

)
= 1

16Var (n1 + n2 + n3 + n4) = 4σ2

16 = σ2

4 ⇒
Std(n1+n2+n3+n4

4) = σ
2 .

Multi-scale: Down-sampling a pure noise image

images/low-freq_noise/I_0_noisy.pngimages/low-freq_noise/I_1_noisy.pngimages/low-freq_noise/I_2_noisy.pngimages/low-freq_noise/I_3_noisy.pngimages/low-freq_noise/I_4_noisy.png

Figure: Four iterations of the down-sampling operation. The spots of the
colored noise increase in frequency when down-sampled. After enough
iterations, the noise can be considered white. σ = 200 at the first scale.
Low-pass filter: convolution with a Gaussian G of σG = 4.8.

Multi-scale: Example of the four first scales in a JPEG
image

images/JPEG_scales/curve_s0.pngimages/JPEG_scales/curve_s1.png

images/JPEG_scales/curve_s2.pngimages/JPEG_scales/curve_s3.png

Figure: The noise is higher at the deeper scales because after the JPEG
compression the noise has only low-frequencies that can only be detected at
some sub-scales.

Variance Stabilizing Transform

Variance Stabilizing Transform

Variance Stabilizing Transform (VST)

Problem:
1 Most of current state-of-the-art denoising algorithms only deals with

white Gaussian noise, i.e. ũ ' u + σ2n (where n ∼ N (0, 1));
2 In most cases of natural images the noise is signal-dependent, i.e.

ũ ' u + g(u)n;

Solution:

We are looking for a variance stabilizing transform a such that a(ũ)
has uniform deviation;
a(ũ) ' a(u) + a′(u)g(u)n;
Forcing the noise term to be constant, a′(u)g(u) = c we get
a′(u) = c

g(u)
, which leads to

a(u) =

∫ u

0

cdt

g(t)

Variance Stabilizing Transform - example

images_denoising/AnscombeTransform/dog.pngimages_denoising/AnscombeTransform/dogAnscombe.png

Original SD-noise image Uniform noise image
(before VST) (after VST)

Redundancy of Natural Images

Redundancy of Natural Images

Redundancy

one of the most important principles of patch-based denoising
algorithms;

it states that in all natural images similar patches can easily be
found:

images_denoising/redundancy.jpg

then for each patch in the image it is possible to find similar patches.

NL-Bayes denoising algorithm

NL-Bayes denoising algorithm

Bayesian denoising in two slides

patch noise model P(P̃|P) = c · e−
‖P̃−P‖2

2σ2

Bayes’ rule P(P|P̃) = P(P̃|P)P(P)

P(P̃)

assuming that we have a patch Gaussian model

P(Q) = c · e−
(Q−P)tC−1

P
(Q−P)

2

hence the variational problem

max
P

P(P|P̃) ⇔ max
P

P(P̃|P)P(P)

⇔ max
P

e−
‖P−P̃‖2

2σ2 e−
(P−P)tC−1

P
(P−P)

2

⇔ min
P

‖P − P̃‖2

σ2
+ (P − P)tC−1P (P − P).

An empirical covariance matrix CP̃ can be obtained for the patches

Q̃ similar to P̃. P and the noise n being independent,
CP̃ = CP + σ2I; EQ̃ = P

Bayesian denoising in two slides

patch noise model P(P̃|P) = c · e−
‖P̃−P‖2

2σ2

Bayes’ rule P(P|P̃) = P(P̃|P)P(P)

P(P̃)

assuming that we have a patch Gaussian model

P(Q) = c · e−
(Q−P)tC−1

P
(Q−P)

2

hence the variational problem

max
P

P(P|P̃) ⇔ max
P

P(P̃|P)P(P)

⇔ max
P

e−
‖P−P̃‖2

2σ2 e−
(P−P)tC−1

P
(P−P)

2

⇔ min
P

‖P − P̃‖2

σ2
+ (P − P)tC−1P (P − P).

An empirical covariance matrix CP̃ can be obtained for the patches

Q̃ similar to P̃. P and the noise n being independent,
CP̃ = CP + σ2I; EQ̃ = P

Bayesian denoising in two slides

patch noise model P(P̃|P) = c · e−
‖P̃−P‖2

2σ2

Bayes’ rule P(P|P̃) = P(P̃|P)P(P)

P(P̃)

assuming that we have a patch Gaussian model

P(Q) = c · e−
(Q−P)tC−1

P
(Q−P)

2

hence the variational problem

max
P

P(P|P̃) ⇔ max
P

P(P̃|P)P(P)

⇔ max
P

e−
‖P−P̃‖2

2σ2 e−
(P−P)tC−1

P
(P−P)

2

⇔ min
P

‖P − P̃‖2

σ2
+ (P − P)tC−1P (P − P).

An empirical covariance matrix CP̃ can be obtained for the patches

Q̃ similar to P̃. P and the noise n being independent,
CP̃ = CP + σ2I; EQ̃ = P

Bayesian denoising in two slides

patch noise model P(P̃|P) = c · e−
‖P̃−P‖2

2σ2

Bayes’ rule P(P|P̃) = P(P̃|P)P(P)

P(P̃)

assuming that we have a patch Gaussian model

P(Q) = c · e−
(Q−P)tC−1

P
(Q−P)

2

hence the variational problem

max
P

P(P|P̃) ⇔ max
P

P(P̃|P)P(P)

⇔ max
P

e−
‖P−P̃‖2

2σ2 e−
(P−P)tC−1

P
(P−P)

2

⇔ min
P

‖P − P̃‖2

σ2
+ (P − P)tC−1P (P − P).

An empirical covariance matrix CP̃ can be obtained for the patches

Q̃ similar to P̃. P and the noise n being independent,
CP̃ = CP + σ2I; EQ̃ = P

Bayesian denoising in two slides

patch noise model P(P̃|P) = c · e−
‖P̃−P‖2

2σ2

Bayes’ rule P(P|P̃) = P(P̃|P)P(P)

P(P̃)

assuming that we have a patch Gaussian model

P(Q) = c · e−
(Q−P)tC−1

P
(Q−P)

2

hence the variational problem

max
P

P(P|P̃) ⇔ max
P

P(P̃|P)P(P)

⇔ max
P

e−
‖P−P̃‖2

2σ2 e−
(P−P)tC−1

P
(P−P)

2

⇔ min
P

‖P − P̃‖2

σ2
+ (P − P)tC−1P (P − P).

An empirical covariance matrix CP̃ can be obtained for the patches

Q̃ similar to P̃. P and the noise n being independent,
CP̃ = CP + σ2I; EQ̃ = P

Bayesian denoising in two slides

maxP P(P|P̃)⇔ minP
‖P−P̃‖2
σ2 + (P − P̃)t(CP̃ − σ2I)−1(P − P̃)

One step estimation

P̂1 = P̃ +
[
CP̃ − σ

2I
]

C−1
P̃

(P̃ − P̃),

where empirically:

CP̃'
1

#P(P̃)− 1

∑
Q̃∈P(P̃)

(
Q̃ − P̃

)(
Q̃ − P̃

)t
, P̃' 1

#P(P̃)

∑
Q̃∈P(P̃)

Q̃.

Iteration (“oracle estimation”) :

P̂2 = P̃
1

+ CP̂1

[
CP̂1

+ σ2I
]−1

(P̃ − P̃
1
)

where

CP̂1
' 1

#P(P̂1)− 1

∑
Q̂1∈P(P̂1)

(
Q̂1 − P̃

1
)(

Q̂1 − P̃
1
)t

, P̃
1

' 1

#P(P̂1)

∑
Q̂1∈P(P̂1)

Q̃.

Bayesian denoising in two slides

maxP P(P|P̃)⇔ minP
‖P−P̃‖2
σ2 + (P − P̃)t(CP̃ − σ2I)−1(P − P̃)

One step estimation

P̂1 = P̃ +
[
CP̃ − σ

2I
]

C−1
P̃

(P̃ − P̃),

where empirically:

CP̃'
1

#P(P̃)− 1

∑
Q̃∈P(P̃)

(
Q̃ − P̃

)(
Q̃ − P̃

)t
, P̃' 1

#P(P̃)

∑
Q̃∈P(P̃)

Q̃.

Iteration (“oracle estimation”) :

P̂2 = P̃
1

+ CP̂1

[
CP̂1

+ σ2I
]−1

(P̃ − P̃
1
)

where

CP̂1
' 1

#P(P̂1)− 1

∑
Q̂1∈P(P̂1)

(
Q̂1 − P̃

1
)(

Q̂1 − P̃
1
)t

, P̃
1

' 1

#P(P̂1)

∑
Q̂1∈P(P̂1)

Q̃.

Bayesian denoising in two slides

maxP P(P|P̃)⇔ minP
‖P−P̃‖2
σ2 + (P − P̃)t(CP̃ − σ2I)−1(P − P̃)

One step estimation

P̂1 = P̃ +
[
CP̃ − σ

2I
]

C−1
P̃

(P̃ − P̃),

where empirically:

CP̃'
1

#P(P̃)− 1

∑
Q̃∈P(P̃)

(
Q̃ − P̃

)(
Q̃ − P̃

)t
, P̃' 1

#P(P̃)

∑
Q̃∈P(P̃)

Q̃.

Iteration (“oracle estimation”) :

P̂2 = P̃
1

+ CP̂1

[
CP̂1

+ σ2I
]−1

(P̃ − P̃
1
)

where

CP̂1
' 1

#P(P̂1)− 1

∑
Q̂1∈P(P̂1)

(
Q̂1 − P̃

1
)(

Q̂1 − P̃
1
)t

, P̃
1

' 1

#P(P̂1)

∑
Q̂1∈P(P̂1)

Q̃.

Results

Results

Single Scale VS Multi-Scales

images_denoising/Results/Dice_noisy_60.png

Noisy image (σ = 60)

Single Scale VS Multi-Scales

images_denoising/Results/Dice_nl-bayes_60.png

Single scale algorithm (NL-Bayes)

Single Scale VS Multi-Scales

images_denoising/Results/Dice_msd-mean_60.png

Multi-scales algorithm (3 scales)

Single Scale VS Multi-Scales

images_denoising/Results/Girl_noisy_30.png

Noisy image (σ = 30)

Single Scale VS Multi-Scales

images_denoising/Results/Girl_nl-bayes_30.png

Single scale algorithm (NL-Bayes)

Single Scale VS Multi-Scales

images_denoising/Results/Girl_msd-mean_30.png

Multi-scales algorithm (3 scales)

Influence of the Number of Scales - Noisy Image

images_denoising/Results/synthetic.png

Influence of the Number of Scales - Noise Clinic (3 scales)

images_denoising/Results/synthetic_mean3.png

Influence of the Number of Scales - Noise Clinic (4 scales)

images_denoising/Results/synthetic_mean4.png

Influence of the Number of Scales - Noisy Image

images_denoising/Results/girl_night.png

Influence of the Number of Scales - Noise Clinic (3 scales)

images_denoising/Results/girl_night_area_mean3.png

Influence of the Number of Scales - Noise Clinic (4 scales)

images_denoising/Results/girl_night_area_mean4.png

Results of Natural Images - Noisy Image

images_denoising/Results/Cards.png

Results of Natural Images - Noise Clinic (4 scales)

images_denoising/Results/Cards_mean4.png

Results of Natural Images - Noisy Image

images_denoising/Results/Frog.png

Results of Natural Images - Noise Clinic (3 scales)

images_denoising/Results/Frog_mean3.png

Results of Natural Images - Noisy Image

images_denoising/Results/Postcard.png

Results of Natural Images - Noise Clinic (3 scales)

images_denoising/Results/Postcard_mean3.png

Results of Natural Images - Noisy Image

images_denoising/Results/Lena.png

Results of Natural Images - Noise Clinic (3 scales)

images_denoising/Results/Lena_mean3.png

Results of Natural Images - Noisy Image

images_denoising/Results/Marylin.png

Results of Natural Images - Noise Clinic (3 scales)

images_denoising/Results/Marylin_mean3.png

How to try it

A prototype of noise clinic is currently on line at
http://dev.ipol.im/~colom/ipol_demo/noise_clinic/

(username: demo, password: demo).
Other algorithms at Image Processing On Line http://www.ipol.im/:
BM3D
DCT-denoising
K-SVD
NL-Bayes
NL-means
TV-denoising
Soon: PLE, BLS-GSM

http://dev.ipol.im/~colom/ipol_demo/noise_clinic/
http://www.ipol.im/

Miguel Colom, Marc Lebrun, Jean-Michel Morel miguel.colom@cmla.ens-cachan.fr, marc.lebrun.ik@gmail.com, morel@cmla.ens-cachan.frThe Noise Clinic

http://mcolom.perso.math.cnrs.fr
mailto:miguel.colom@cmla.ens-cachan.fr
mailto:marc.lebrun.ik@gmail.com
mailto:morel@cmla.ens-cachan.fr

	Noise Model
	General Principles of Noise Estimation
	State of the Art Noise Estimation Algorithms
	Checking the methods against the GT of the camera
	Effect of the JPEG encoding
	Variance Stabilizing Transform (VST)
	Redundancy
	NL-Bayes
	Results
	References

