Mathematicians – Companies Interactions

Marc Lebrun

09 January, 2015

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

My Experience

• Master 2 Mathématiques, Vision et Apprentissage (ENS Cachan),

• Internship at the Centre d'Energie Atomique (3 months),

• Internship at DxO Labs. (10 months),

• PhD at the CMLA in collaboration with DxO (3 years),

• Post-doc at Technicolor (since the 1st of october, 2014).

Subjects studied

• Vignetting, chromatic aberrations (DxO),

• Denoising (DxO, CMLA),

• Noise estimation (CMLA),

• Blur metric, deblurring (Technicolor).

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

DxO Labs is a french company, world first in its category:

- About 100 employees (*),
- Two sophisticated lab,
- About 20 engineers (*),
- About 1 scientist (*),
- Two main domains: embedded and Optics Pro,
- One main idea: calibration.
- (*) When I was working with them.

Advantage of the calibration

- Small need of huge and difficult theories,
- A lot of optic default may be calibrated,
- DxO were the first to do that ¹,
- Tabulated corrections are simple to use,
- Give objective tools for measurement².

¹They own a patent on it, which is joyfully violated by Adobe. ²Used by *FNAC and some major magazine on photography*.

Drawback of the calibration

- Expensive cost,
- Time consuming (especially for per-unit calibration),
- Need a model to fit the data,
- Too much camera/optic to calibrate every year,

Embedded

Two main problems. Physical constraints:

• operation per pixel,

NI-means: $\sim 10^3$ op. per pixel NI-Bayes: $\sim 10^6$ op. per pixel.

• memory (read, write),

reachable lines: 3 NI-means neighbourhood: up to 35×35 NI-Bayes neighbourhood: up to 45×45

• image acquisition (line by line),

Embedded

New optical defaults:

• Vignetting (luminance, chrominance),

• Depth of Focus, autofocus.

Spectral Sensitivity Characteristics Excludes lens characteristics and light source characteristics

• White balance,

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- show room of the expertise of DxO,
- Commercial software designed for pro and semi-pro photographs,
- From one raw image, gives the best jpeg result

Optics Pro

Correct all optic defaults:

• denoising,

contrast enhancement,

• dehazing,

Optics Pro

Correct all optic defaults:

• chromatic aberration,

- optic distorsion.

<ロ> (四)、(四)、(日)、(日)、

- E

Special case of the denoising

Were among **the first** to propose a denoising of raw images.

- Calibration of the noise curves,
- Collaboration with the CMLA to adapt NL-means to raw images,
- Multi-scale approach,
- Very fast ³
- Obtained the best results on the market.

³A lighter solution of the same algorithm has been embedded \rightarrow (\equiv) (\equiv) (\equiv) (\equiv) (\equiv)

Limitations

• Rival products achieved comparable and even better solution,

Original image

Lightroom

Capture One

Optics Pro 8

・ロト ・西ト ・ヨト ・ヨ

• Source code became **really complex**, no one knows what exactly this is about ⁴

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Slightly becomes inefficient due to complex upgrades,
- Need of a **new** theory...
- ... but no time/engineer to do that...
- ... solution: academic research with a PhD student.

⁴Typical of (this) company.

Cifre PhD – How it works?

- Specification of the problem (company),
- **Study** of the state-of-the-art (lab),
- Test state-of-the-art algorithms ⁵(lab/company),
- **Develop** a new theory/algorithm to solve the problem (lab),
- S Adapt it to the specific use-case of the company (lab/company),
- Intense test of the algorithm (company),
- Modification and adaptation (lab/company),
- Solution of the algorithm (company),
- Sinal implementation of the solution (company).

 $^{^5} In$ my case, no source code were available, so I had to analyse and implement the alorithms. $(\Box \succ (\Box) \leftarrow (\Box$

Academic work \neq real life (caricatural)

	Academic	Company
Specification	Gaussien noise	Signal-dependent noise
	Model for the noise	Noise curve calibrated
	Can be implemented in	Must be efficient
	matlab, $C++$, python	(C++), parallelized
Theory	Look state-of-the-art	Look on what we have
development	Try to improve existing theory	Try to upgrade by
	or create a new one	small steps
Evaluation	PSNR	Visually
	~ 10 images	>100 images
	mostly 1 channel	4 channels
	up to $512 imes512$	>15 Mp
Case of	Very ugly result	Too slow
failure		One tiny detail on
		one image looks weird

Advantages of both sides

Academic

- Knowledge of the state-of-the-art,
- Understand it quite easily,
- Build breakthrough theories,
- Can adapt the theory,
- Knows theoretically what/why it would/should (not) work.

Company

- Bring specific problems to solve,
- Interesting set of test images,
- Really good intuitions,
- Remains practical,
- The final solution/product will be **effectively used**.

◆□▶ ◆舂▶ ◆産≯ ◆産≯ 「産」

Small overview of what today's companies are working on:

Professional content:

Medical images,

Compression (video and still images), ۲

• Drone, 3D reconstruction,

- Original
- JPEG
- JPEG-2000

Satellite images,

Small overview of what today's companies are working on:

Professional content:

• Video surveillance,

• HDR,

• 4K movies (reframing),

• Detection, content understanding

User Generic Content:

video stabilization,

• denoising,

・ロト ・ 日下 ・ モート

• deblurring,

contrast enhancement,

User Generic Content:

• upscaling,

smart rescaling,

• smart sort of content,

smartphone

Conclusion

Without academic research, a company dies:

- Out-of-date solutions,
- Need to understand the state-of-the-art,
- No breakthrough with small upgrades,
- Google research, Microsoft research, Technicolor, ...

Without real-life interactions, the pure academic research is doomed to get lost:

- Companies have really interesting problems,
- Need to look at the result, and not only to the theory (PSNR),
- Solutions are used by mankind, not abandoned after the PhD.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで