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Morphological Grayscale Reconstruction in Image
Analysis: Applications and Efficient Algorithms

Luc Vincent, Member, IEEE

Abstract— Morphological reconstruction is part of a set of
image operators often referred to as geodesic. In the binary case,
reconstruction simply extracts the connected components of a
binary image I (the mask) which are “marked” by a (binary)
image .J contained in /. This transformation can be extended
to the grayscale case, where it turns out to be extremely useful
for several image analysis tasks. This paper first provides two
different formal definitions of grayscale reconstruction. It then
illustrates the use of grayscale reconstruction in various image
processing applications and aims at demonstrating the usefulness
of this transformation for image filtering and segmentation tasks.
Lastly, the paper focuses on implementation issues: The standard
parallel and sequential approaches to reconstruction are briefly
recalled; their common drawback is their inefficiency on con-
ventional computers. To improve this situation, a new algorithm
is introduced, which is based on the notion of regional maxima
and makes use of breadthfirst image scannings implemented via
a queue of pixels. Its combination with the sequential technique
results in a hybrid grayscale reconstruction algorithm which is an
order of magnitude faster than any previously known algorithm.

I. INTRODUCTION

ECONSTRUCTION is a very useful operator provided

by mathematical morphology [17], [18]. Although it can
easily be defined in itself, it is often presented as part as a set
of operators known as geodesic ones [7]. The reconstruction
transformation is relatively well-known in the binary case,
where it simply extracts the connected components of an
image which are “marked” by another image (see Section II).
However, reconstruction can be defined for grayscale images
as well. In this framework, it turns out to be particularly inter-
esting for several filtering, segmentation and feature extraction
tasks. Surprisingly, it has attracted little attention in the image
analysis community.

The present paper has three major goals: The first one is
to provide a formal definition of grayscale reconstruction in
the discrete case. In fact, we propose below two equivalent
definitions: The first one is based on the threshold superposi-
tion principle and the second one relies on grayscale geodesic
dilations. The second part of the paper illustrates the use of
binary and especially grayscale reconstruction in image analy-
sis applications: Examples proving the interest of grayscale
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Fig. 1. Portion of square grid in 4- (a) and 8-connectivity (b).

Fig. 2. Portion of hexagonal grid.
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(a) The elementary ball B in 4-, 6- and 8-connectivity; (b) Ng(p)
and Vg (p) in 8-connectivity.

Fig. 3.

reconstruction for such tasks as image filtering, extrema,
domes and basins extraction in grayscale images, “top-hat”
by reconstruction, binary and grayscale segmentation, etc.,
are discussed. Lastly, in Section IV, we introduce efficient
algorithms for computing reconstruction in grayscale images.
Up to now, the execution times required by the known gray-
scale reconstruction algorithms make their practical use rather
cumbersome on conventional computers. Two algorithms are
introduced to bridge this gap. The first one is based on
the notion of regional maxima and uses breadth-first image
scannings enabled by a queue of pixels [24]. The second one
is a combination of this scanning technique with the classical
sequential one [14], and it turns out to be the fastest algorithm
in almost all practical cases.

1057-7149/93$03.00 © 1993 IEEE
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Fig. 4. Binary reconstruction from markers.

Fig. S.

We shall be exclusively concerned here with the discrete
case. The algorithms are described in 2D, but their extension
to images of arbitrary dimensions is straightforward. In order
to be as precise as possible, these algorithm descriptions are
done in a pseudo-language which bears similarities to C and
Pascal.

II. DEFINITIONS

A. Notations Used Throughout the Paper

In the following, an image I is a mapping from a finite
rectangular subset Dy of the discrete plane 72 into a discrete
set {0.1,.--.N — 1} of gray levels. A binary image I can

Geodesic distance d¢;(r.y) within a set 4.

only take values 0 or 1 and is often regarded as the set of its
pixels with value 1. In this paper, we often present notions for
discrete sets of Z? instead of explicitly referring to binary
images. Similarly, gray-level images are often regarded as
functions or mappings.

The discrete grid G C Z? x Z? provides the neighborhood
relationships between pixels: p is a neighbor of ¢ if and only
if (p,q) € G. Here we shall use square grids, either in 4- or in
8-connectivity (see Fig. 1), or the hexagonal grid (see Fig. 2).
Note, however, that the algorithms described below work for
any grid, in any dimension. The distance induced by G on 7?
is denoted dg: dg(p, q) is the minimal number of edges of the
grid to cross to go from pixel p to pixel ¢. In 4-connectivity,
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Boundaries of the successive geodesic dilations of a set (in black) within a mask.

"Pile" of sets

Fig. 7. Threshold decomposition of a graylevel image.

this distance is often called city-block distance whereas in 8-
connectivity, it is the chessboard distance [2]. The elementary
ball in distance dg is denoted Bg, or simply B. We denote
by N (p) the set of the neighbors of pixel p for grid G. In the
following, we often consider two disjoined subsets of Ng(p),
denoted N (p) and N (p). NZ (p) is the set of the neighbors
of p which are reached before p during a raster scanning of
the image (left to right and top to bottom) and N (p) consists
of the neighbors of p which are reached after p. These notions
are recalled in Fig. 3.

B. Reconstruction for Binary Images

1) Definition in Terms of Connected Components: Let I and
J be two binary images defined on the same discrete domain
D and such that J C I. In terms of mappings, this means
that; Vp € D, J(p) = 1 = I(p) = 1.J is called the marker
image and [ is the mask. Let Iy, Ia, -+ , I, be the connected
components of 1.

Definition 2.1: The reconstruction pr(.J) of mask I from
marker .J is the union of the connected components of / which



VINCENT:MORPHOLOGICAL GRAYSCALE RECONSRUCTION

Fig. 8.

contain at least a pixel of J

pr(J) = U I.

JNI #0

This definition is illustrated by Fig. 4. It is extremely simple,
but gives rise to several interesting applications and extensions,
as we shall see in the following sections.

2) Definition in Terms of Geodesic Distance: Reconstruc-
tion is most of the time presented using the notion of geodesic
distance. Given a set X (the mask), the geodesic distance
between two pixels p and ¢ is the length of the shortest
paths joining p and ¢ which are included in X. Note that
the geodesic distance between two pixels within a mask is
highly dependent on the type of connecticity which is used.
This notion is illustrated by Fig. 5. Geodesic distance was
introduced in the framework of image analysis in 1981 by
Lantu¢joul and Beucher [6] and is at the basis of several
morphological operators [7]. In particular, one can define
geodesic dilations (and similarly erosions) as follows:

Definition 2.2: Let X C 7% be a discrete set of Z? and
Y C X. The geodesic dilation of size n > 0 of ¥ within X
is the set of the pixels of X whose geodesic distance to Y is
smaller or equal to n:

§8(Y) = {p € X|dx(p,Y) < n}.

From this definition, it is obvious that geodesic dilations
are extensive transformations, i.e., ¥ C 6‘({,1)(3’). In addition,
geodesic dilation of a given size n can be obtained by iterating
n elementary geodesic dilations

51(‘?)()/) - 553) 06§)0~~-05$)(Y)- 1)

n times

Fig. 6 illustrates successive geodesic dilations of a marker
inside a mask, using 4- and 8-connectivity. The elementary
geodesic dilation can itself be obtained via a standard dilation
of size one followed by an intersection

sP(Y)=(YoB)NX. @

This last statement is absolutely wrong when nonelementary
geodesic dilations are considered. In this latter case, one
merely gets the conditional dilation of set Y, defined as the
intersection of X and the standard dilation of Y. Note that

179

Grayscale reconstruction of mask f from marker g.

some authors use a different terminology and utilize the word
“conditional” for what this paper calls “geodesic” {5].

When performing successive elementary geodesic dilations
of a set Y inside a mask X, the connected components of
X whose intersection with Y is nonempty are progressively
flooded. The following proposition can thus be stated:

Proposition 2.3: The reconstruction of X from Y C X is
obtained by iterating elementary geodesic dilations of Y inside
X until stability. In other words

px(Y) =[P ).

n>1

This proposition is at the basis of one of the simplest
algorithms for computing geodesic reconstructions in both the
binary and the grayscale cases (see Section IV-A).

C. Grayscale Reconstruction

1) Definition Using Threshold Superposition: It has been
known for several years that—at least in the discrete case—any
increasing transformation defined for binary images can be
extended to grayscale images [17], [18], [30], [19]. By
increasing, we mean a transformation 1 such that

YCX=¢(Y)CuX), VYXYcz’. (3

In order to extend such a transformation ¢ to grayscale
images I taking their values in {0,1,---, N — 1}, it suffices
to consider the successive thresholds Ty (I) of I, for k = 0
to N -1

Tw(I) = {p € Di|I(p) > k}.

They are said to constitute the threshold decomposition of

I [10], [11]. As illustrated by Fig. 7, these sets satisfy the

following inclusion relationship
Toll) € Teoa(D),  VEE€[LN—1].

When applying the increasing operation # to each of these

sets, their inclusion relationships are preserved. Thus we can
now extend 1) to grayscale images as follows

Vpe Dy, ¢(I)(p) = max{k € [0, N-1]|p € $(Ti(I))}-

Q)
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Fig. 9. Use of opening by reconstruction for filtering; (a) original image; (b) opening by a disc of radius 2, and (c); reconstructed image.

In the present case, binary geodesic reconstruction is an

Definition 2.4: (Grayscale Reconstruction, First Definition):
increasing transformation in that it satisfies

Let .J and I be two grayscale images defined on the same

domain, taking their values in the discrete set {0,1,---, N—1}
Y1CYe, X1 CXp, V1 C X1, Y2 C Xy and such that J < I (i.e., for each pixel p € Dy, J(p) < I(p)).
= px, (V1) C px, (Y2). (6) The grayscale reconstruction pr(.J) of I from J is given by
Vp € Dy, J)(p
Therefore, following the threshold superposition principle P r p1(7)(p)

of (5), we define grayscale reconstruction as follows [26]. = max {k € [0.N —1]|p € pr, (Tk(J))}-
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(a)

Fig. 10. Use of grayscale reconstruction for image segmentation: (a) original image of blood vessels, (b) supremum of openings by
segments, (c) reconstructed image, (d) microaneurisms obtained after substraction of (c) from (a) and thresholding step.

Fig. 8 illustrates this transformation. Just like binary recon-
struction extracts those connected components of the mask
which are marked, grayscale reconstruction extracts the peaks
of the mask which are marked by the marker-image. This char-
acteristics is taken into account in the examples of application
presented in Section IIL.

2) Alternative Definition of Grayscale Reconstruction: The
former definition does not provide any interesting computa-
tional method to determine grayscale reconstruction in digital
images. Indeed, even if a fully optimized binary reconstruction
algorithm is used, one has to apply it 256 times to determine
grayscale reconstruction for images on 8 bits! Therefore, it is
most useful to introduce this transformation using the geodesic
dilations presented in Section 11-B-(2)

Following the threshold decomposition principle, one can
easily define the elementary geodesic dilation of 6}1)(.1) of

grayscale image J < [ “under” [

s =(JeB)AL )

In this equation, A stands for the pointwise minimum and
J @ B is the dilation of J by flat structuring element B
[17], [18]. These two notions are the direct extension to the
grayscale case of respectively intersection and binary dilation
by B. The grayscale geodesic dilation of size n > 0 is then
given by

507 (1) :b&l)obgl)o"-oégl)(ﬁ' (8)

n times

This leads to a second definition of grayscale reconstruction:
Definition 2.5: (Grayscale Reconstruction, Second Defini-
tion): The grayscale reconstruction pr(J) of [ from J is
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obtained by iterating grayscale geodesic dilations of J “under”
I until stability is reached, i.e.,

pr(7)=\] 677(7).

n>1

It is straightforward to verify that both this definition and
Definition 2.4 correspond to the same transformation.

Similarly, the elementary geodesic erosion 551)(J ) of
grayscale image J > I “above” I is given by

DN =JeB)VI 9)

where V stands for the pointwise maximum and J © B is
the erosion of .J by flat structuring element I3 [17], [18]. The
grayscale geodesic erosion of size n > 0 is then given by

=Moo 0. (10)

~~
n times

(b)
(Continued).

We are now able to define the dual grayscale reconstruction
in terms of geodesic erosions:

Definition 2.6: (Dual Reconstruction): Let I and J be two
grayscale images defined on the same domain Dy and such
that I < J. The dual grayscale reconstruction p}(.J) of mask
I from marker J is obtained by iterating grayscale geodesic
erosions of J “above” I until stability is reached:

P = N\ ).

n>1

III. APPLICATIONS

In this section, we underscore the tremendous interest
of binary and grayscale reconstruction in image analysis.
Surprisingly enough, reconstruction is not a very well known
transformation, particularly in the grayscale case. The ex-
amples presented below provide a nonexhaustive catalog of
applications of reconstruction in image analysis.
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A. Filtering by Opening Reconstruction

In the binary case, the opening by a disc (or other types of
structuring elements) is commonly used to filter out the image
parts which cannot hold the disc. Recall that the opening of
a binary image I by a disc is the union of all the possible
positions of the disc when it is totally included in the image
I (17}, [21}.

In some cases, one wishes to filter out all the connected
components which cannot contain the disc while preserving
the others entirely. The way to do so is to reconstruct the
original image I from its opening by the disc. The resulting
transformation is often called opening by reconstruction and
belongs to the category of the algebraic openings [19]. An
example is shown on Fig. 9: After opening by a disc of radius
2, several connected components of the original image have
been removed, but the shape of some of the remaining ones has
been dramatically modified. After reconstruction, the original

(©
(Continued).

shape of the not totally removed particles is restored. Opening
by reconstruction extends to the grayscale case in a straight-
forward manner. It turns out to be a particularly interesting
operation, especially when large structuring elements are used
in the opening step.

B. Use of Top-Hat by Reconstruction for Segmentation

Let us now illustrate on an example one of the possible
uses of grayscale reconstruction for picture segmentation: Fig.
10(a) represents an angiography of eye blood vessels in which
microaneurysm have to be detected. They are small compact
light spots which are disconnected from the network of the
(light) blood vessels and mainly located in the dark central
area of the image. Obviously, it is impossible to detect these
microaneurysm via simple thresholdings. Similarly, a top-hat
transformation [12] consisting in subtracting from the original
image its morphological opening with respect to a small disc
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would extract all the “white” features, i.e., aneurysms and
blood vessels, which is not desirable.

To correctly segment these microaneurysm, one has to
account for the fact that they are compact whereas the blood
vessels are elongated. A series of morphological openings of
Fig. 10(a) with respect to segments of different orientations
is thus performed. These segments are chosen to be longer
than any possible aneurism, so that all the aneurysms are
removed by any such opening. On the other hand, there will
be at least one orientation for which the vessels are not
completely removed by opening. After taking the supremum
of these different openings, one gets Fig. 10(b), which is still
an algebraic opening of Fig. 10(a) [18]. It is used as marker to
reconstruct the blood vessels entirely. Fig. 10(c) is the result
of the grayscale reconstruction of Fig. 10(a) from Fig. 10(b).
Since the aneurysms are disconnected from the blood vessels,
they have not been reconstructed. Thus, by algebraic difference

(C)

(Continued).

between Fig. 10(a) and Fig. 10(c), followed by a relatively
simple thresholding, the microaneurysm shown in Fig. 10(d)
are extracted. The succession of operations used for the present
segmentation task is an extension of the family of the top-hat
transformations, often referred to as top-hat by reconstruction.

C. Regional Maxima and Dome Extraction

Reconstruction turns out to provide a very efficient method
to extract regional maxima and minima from grayscale images.
Furthermore, the technique extends to the determination of
“maximal structures,” which we call h-domes and h-basins.
Let us first briefly review the notion of regional maximum:

Definition 3.1: (Regional Maximum): A regional maximum
M of a grayscale image I is a connected components of pixels
with a given value h (plateau at altitude h), such that every
pixel in the neighborhood of M has a strictly lower value.
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Fig. 11. Extracting the regional maxima of I by reconstruction of I from I — 1.
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Fig. 12. Determination of the h- domes of grayscale image I.

Regional maxima should not be mistaken with local max-
ima. Recall that a pixel p of I is a local maximum for grid
G if and only if its value I(p) is greater or equal to that of
any of its neighbors. All the pixels belonging to a regional
maximum are local maxima, but the converse is not true: For
example, a pixel p belonging to the inside of a plateau is a
local maximum, but the plateau may have neighboring pixels
of higher altitude and thus not be a regional maximum.

An alternative definition can also be proposed for the notion
of regional maximum [22]:

Definition 3.2: A regional maximum at altitude h of
grayscale image I is a connected component C of T (1) such
that CNTh41(1) = 0. (Recall from (4) that T}, (1) is threshold
of I at level h.)

Determining the regional maxima of a grayscale image is
relatively easy and several algorithms have been proposed in
literature, some of which are reviewed in [22]. One of the
most efficient methods makes use of grayscale reconstruction
and is based on the following proposition:

Proposition 3.3: The (binary) image M(I) of the regional
maxima of I is given by

MI)y=1-p/(I-1).

Proof: According to Definition 3.2, a connected com-
ponent C of Ty(I) is a maximum at level h if and only if
C N Ty (I) = CNTy(I —1) = 0. In other words, the set
M,, of the pixels belonging to a maximum of I at altitude A
is given by

My, = Tu(D\pr, (1) (Th (I — 1)) (11)
Now, for any h,h',h # b, M N My = 0. This means that
by replacing the set difference (\) by an algebraic difference
and using the threshold superposition principle, formula (11)
can be extended to the grayscale case. a

This proposition is illustrated by Fig. 11.

Now, instead of subtracting value 1 in Proposition 3.3, an
arbitrary gray-level constant h can be subtracted from I. This
provides a useful technique for extracting “domes” of a given
height, that we call h-domes. The following definition can be
proposed:

Definition 3.4: The h-dome image Dy(I) of the h-domes
of a grayscale image I is given by

Dy(I) =1 = pi(I = h).
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Fig. 13. Extraction of cell markers in images of corneal endothelial tissue. (a) original image; (b) after grayscale reconstruction; (c) h-domes, and;
(d) cell markers.

Geometrically speaking, an h-dome can be interpreted the
same way maxima are: an h-dome D of image I is a connected
component of pixels such that:

— every pixel p neighbor of D satisfies: I(p) <

min{I(q)lq € D},

— max{I(g)|lg € D} — min{I(q)|lq € D} < h.

In addition, the value of pixel p of A- dome D in image Dy, (1)
is equal to I(p) — min{I(q)|qg € D}.

The h-dome transformation is illustrated on Fig. 12. Unlike

classical top hats, the h-dome transformation extracts light

structures without involving any size or shape criterion. The
only parameter (h) is related to the height of these structures.
This characteristic is of interest for complex segmentation
problems.

As an example, let us consider Fig. 13(a), which is an image
of the corneal endothelial tissue of the eye, obtained using a
wide-field specular microscope. The analysis of images of this
kind is detailed in [27]. The first step of their segmentation
consists in extracting a marker for each cell. As explained in
[27], the large variations in contrast and in cell sizes across the
image make it difficult to use top-hat transformations. On the
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other hand, the cells can be viewed as light domes separated by
thin dark valleys. The previously described h-dome operator
can thus be automatically applied: after subtraction of a
constant h from Fig. 13(a) and reconstruction, one gets Fig.
13(b). The choice of h turns out not to be a critical operation,
since a range of values yield correct results. Then, subtracting
Fig. 13(b) from Fig. 13(a) results in Fig. 13(c), the h-domes
of Fig. 13(a). An easy thresholding of this image yields Fig.
13(d), which is an accurate set of cell markers.

Additional examples of application of the h-dome transfor-
mation can be found in [22], [28], [3], and more details can be

(b)
(Continued.)

found in [4]. Note that the results of this section can easily be
“inverted” to extract minima and h-basins in grayscale images.

D. Grayscale Reconstruction and Binary Segmentation

The examples reviewed above illustrate the use of grayscale
reconstruction in several image analysis tasks. However, it
is probably for binary and grayscale segmentation that this
operation is most useful. This section briefly deals with binary
segmentation, which morphologists often refer to as the task
consisting in separating overlapping particles in a binary image
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[21], [22]. For example, Fig. 14(a) is a binary image of coffee
beans, and one may want to disconnect them properly in order
to perform individual measurements on them. To achieve this
goal, following the approach described in [21], the idea is to
first mark the coffee beans. By marker of an object, we mean
a connected component of pixels located inside the object to
be extracted. Once correct markers have been obtained, the
watershed transformation (1] allows us to achieve the desired
segmentation automatically.

It is therefore crucial to design robust marking procedures.
In the case where the objects to be separated are roughly
convex, the ultimate erosion usually provides a satisfactory

©

(Continued.)

marking [21]. This transformation is obtained as the regional
maxima of the distance function of the original binary image
[2], [15]—Recall that the distance function dist(]) of binary
image I assigns with every pixel p its distance to the back-
ground, i.e., to the closest pixel with value 0. However, in
many cases, due to the fact that we work in a discrete space,
the resulting markers are poor (see Fig. 14(c)): there is not a
unique marker per object to be extracted. To get rid of this
drawback, one cannot simply perform a small dilation of the
ultimate erosion image. Indeed, the components of the ultimate
erosion which have to be connected into a single marker can
be arbitrarily far away from each other. The correct method
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consists in reconstructing the distance function dist(I) from
dist(I) — 1. The maxima of the resulting function provides
a correct marking of our objects, thereby yielding a correct
segmentation, as illustrated by Figs. 14(d), (e). For more
details on the use of watersheds and grayscale reconstruction
for binary segmentation, see [21], [25].

E. Watershed Segmentation of Grayscale Images

Similarly, the markers/watersheds methodology applies to
grayscale segmentation. This task consists in extracting objects

* »
F S
L Y

(d)
(Continued.)

from a gray-level image as precisely as possible. Let us
consider for example the classic image shown in Fig. 15(a). It
represents a 2-D electrophoresis gel, whose spots need to be
extracted as precisely as possible. Its watershed segmentation
was originally proposed by Beucher in [1].

The watershed lines are the highest crest lines separating the
regional minima [25]. It seems therefore natural to compute the
watersheds of the morphological gradient of Fig. 15(a), which
is shown in Fig. 15(b). This gradient, obtained by algebraic
difference between a unit dilation and a unit erosion of Fig.
15(a), is shown in Fig. 15(b). The spot contours are located on
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Fig. 14. Use of grayscale reconstruction in binary segmentation.

(a)

The correct markers are obtained as the regional maxima of the

reconstruction of the distance function dist(7) from dist(I) — 1.

crest lines of this gradient, but far too many of these crest lines
are due to noise in the original data. Therefore, the watersheds
of Fig. 15(b) yield the over-segmented result of Fig. 15(c).

As explained in numerous publications [21], [19], [25], [13],
the correct way to use watersheds for grayscale image segmen-
tation consists in first detecting markers of the objects to be
extracted. The design of robust marker detection techniques
involves the use of knowledge specific to the series of images
under study. Not only object markers, but also background
markers need to be extracted. In the present case, describing
the marker technique used for Fig. 15(a) would go beyond the
scope of this paper. The extracted marker image is shown in
Fig. 15(d).

After marker extraction, the rest of the segmentation can
proceed automatically as follows: Grayscale reconstruction is
used to modify the gradient image (7 into an image G’ such

that its only minima are located on the extracted markers, and
its highest crest lines separating markers are preserved.
More specifically, denote by G the gradient image and by M
the binary marker image. Let m be the maximal value of the
pixels of G. The image G’ is defined as the dual reconstruction
of min (G+1, (m+1)M) from (m+1)M (see Definition 2.6):

G = Phin (G+1,(ms1)an) (M + 1)M). 12)

In this process, pixels located on markers are given value
0 in G’ and nonmarked catchment basins get filled up. More
details on this process are given in [21], [22], [19]. The result-
ing modified gradient is shown in Fig. 15(e). Its watersheds
now provide the desired segmentation, as illustrated by Fig.
15(f). This segmentation methodology is commonly used in
morphology and has been successfully applied to various types
of images: NMR images [22], digital elevation models [20],
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corneal endothelial images [27], succession of images used for
motion estimation [3], and many others.

IV. COMPUTING RECONSTRUCTION IN DIGITAL IMAGES

In this section, we are concerned with both the binary
and the grayscale case, but the emphasis is put on grayscale
reconstruction. Indeed, in the binary case, a straightforward
efficient implementation of morphological reconstruction can
be proposed as follows:

1) Label the connected components of the mask image,
i, each of these components is assigned a unique
number. Note that this step can itself be implemented
very efficiently by using algorithms based on chain and
loops [16] or queues of pixels [23], [29].

Determine the labels of the connected components which
contain at least a pixel of the marker image.

2)

(Continued).

3) Remove all the connected components whose label is

not one of the previous ones.

As mentioned earlier, such an algorithm could be extended
to the grayscale case by working on the different thresholds of
the images. However, it would be extremely inefficient, mak-
ing grayscale reconstruction a too cumbersome transformation
to be used in practice. This is the reason why we are now
interested in implementing this transformation as efficiently as
possible. Note, however, that the algorithms described below
also work in the binary case if one considers binary images as
grayscale images taking only values 0 and 1. In the algorithm
descriptions of this section, ‘< refers to the assignment
symbol.

A. Standard Technique
Proposition 2.3 and Definition 2.5 directly yield a compu-
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tational technique for determining grayscale reconstruction in
digital images. The corresponding algorithm is part of a set of
classical methods referred to as parallel ones [22], [24], [28].
It basically works by iterating elementary dilation followed by
pointwise minimum until stability as follows:

Algorithm: parallel reconstruction:
e¢/: mask image (binary or grayscale)

eJ: marker image, defined on D;,J <[
Reconstruction is determined directly in J

e Allocate work imageK defined on Dy
e Repeat until stability (i.e., no more

pixel value modifications):
Dilation step: for every pixel

©

(Continued).

p € Dr - K(p) — max{J(q),q € Na(p) U {p}}
Pointwise minimum: For every pixel
p € Dy — J(p) — min(K(p),I(p))}

In each of the above steps, the image pixels can be scanned
in an arbitrary order, so that the implementation of this
algorithm on a parallel machine is extremely easy and efficient.
However, it requires the iteration of numerous complete image
scannings, sometimes several hundreds. It is therefore not
suited to conventional computers, where its execution time
is often of several minutes.

B. Sequential Reconstruction Algorithm

In an attempt to reduce the number of scannings required
for the computation of an image transform, sequential or
recursive algorithms have been proposed [14]. They rely on
the following two principles:
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Fig. 14. (Continued).

- the image pixels are scanned in a predefined order, e.J: marker image, defined on domain
generally raster or anti-raster, Dy, J <1

+ the new value of the current pixel, determined from the Reconstruction is determined directly in J
values of the pixels in its neighborhood, is written directly
in the same image, so that it is taken into account when e Repeat until stability:
determining the new values of the as yet unconsidered

pixels. Scan D;in raster order:

Here, unlike for parallel algorithms, the scanning order is Let p be the current pixel;
essential. This type of algorithm was first introduced for the J(p) — (max{J(q),q € N&(p)U {p}}) A I(p)
computation of distance functions [15] and then extended to Scan Drin anti-raster order:
a number of morphological transformations [8], [22]. Among Let p be the current pixel;
others, binary and grayscale reconstruction can be obtained J(p) — (max{J(g),q € N;(p) U {p}}) AI(p)
sequentially by using the following algorithm, where informa-
tion is first propagated downwards in a raster scanning and This algorithm usually only requires a few image scannings
then upwards in an anti-raster scanning. (typically a dozen) until stability is reached, and is therefore

Algorithm: sequential reconstruction: much more efficient than the parallel algorithm presented in

e/: mask image (binary or grayscale) the previous section. However, like several other sequential al-
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gorithms [28], it does not deal well with “rolled-up structures”
(connected components in the binary case and crest lines in the
grayscale case): as illustrated by Fig. 16 in the binary case,
the sequential reconstruction of a rolled-up component may
require several complete image scannings in which the value
of only very few pixels is actually modified.

C. Regional Maxima and Reconstruction

As detailed in [24], [28], a further step in the design
of efficient morphological processing consists in trying to
consider only the pixels whose value may be modified. A first
scanning is used to detect the pixels which are the process
initiators and are typically located on the boundaries of the
objects or regions of interest. Then, starting from these pixels,
information is propagated only in the relevant image parts. Two
categories of algorithms relying on this principle have been
proposed in literature: the first ones are based on the encoding

(e)

(Continued).

of the objects boundaries as loops and the propagation of these
structures in the image or in some given mask [16], whereas
the algorithms of the second category regard the images
under study as graphs and realize breadth-first scannings of
these graphs starting from strategically located pixels [22],
[28], [29]. These two classes of methods can be used to
efficiently implement such complex morphological operations
as propagation functions [9], [16], watersheds [25], skeletons
[23] and many others [28].

Here, we shall be concerned with the second class of algo-
rithms. The breadth-first scannings involved are implemented
by using a queue of pixels, i.e., a First-In-First- Out (FIFO)
data structure: the pixels which are first put into the queue
are those which can first be extracted. In other words, each
new pixel included in the queue is put on one side whereas a
pixel being removed is taken from the other side [24], [28].
In practice, a queue is simply a large enough array of pointers
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Fig. 15. Watershed segmentation of 2-D clectrophoresis gels.

to pixels, on which three operations may be performed:

« fifo_add(p): puts the (pointer to) pixel p into the queue.

« fifofirst( ): returns the (pointer to) pixel which is at the

beginning of the queue, and removes it.

« fifo_empty( ): returns true if the queue is empty and false

otherwise.

In the binary case, it is extremely easy to implement
reconstruction using a FIFO-algorithm: it suffices to initialize
the queue by loading it with the boundary pixels of the
marker image. Then the value of these pixels is propagated
in the relevant connected components of the mask image. The
corresponding algorithm works as follows:

Algorithm: binary reconstruction using a queue of pixels:

e¢/: binary mask image.

oJ: binary marker image, defined on domain

D;.J CI. Reconstruction is determined
directly in J.

Initialization of the queue with contour
pixels of marker image: For every pixel p€
Dy
1f J(p)=1 and Iq € Ng(p).J(q) =0 and I(p)=1:

fifo_add (p)
Propagation: While fifo_empty() = false
p «— fifo_first()
For every ¢ € Ng(p) (neighbor of p):
1f J(q) =0 and I(g) =1
J(g) < 1
fifo_add(q)

This algorithm is extremely efficient, since after the initial-
ization of the queue, only the relevant pixels are considered.
Besides, the same technique can be implemented using loop-
based algorithms. The typical execution time of this algorithm
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is of 1/4 second on a Sun IPC Workstation, for images of size
256 x 256 pixels.

The extension of this algorithm to grayscale is not imme-
diate: we need to consider the regional maxima of the marker
image (see Definition 3.2). Denoting by R(I) the following
image

I(p),
0,

if p belongs to a maximum,

. v D
otherwise. peLn

(13)

R(D(p) = {

We can state:
Proposition 4.1: Let I and J be two grayscale images
such that J < I. Then

pr(J) = pr(R(J)).

Proof: According to Definition 2.5 of grayscale recon-
struction, it suffices to prove that for every threshold level

he {01, N—1}
o1 (T () = pr, (i (Te(R(J))).

R(J) < J implies that T5(R(J)) C Tx(J). Thus binary
reconstruction being an increasing transformation, we have
p1, ) (Tr(J)) 2 pr, (y(Th(R(])))-

Similarly, let C be a connected component of Th(J).
Let hpax = max{J(q),q € C} and let Cyax be the set
of pixels of C' with value hmac. Let C’ be a connected
component of Cyax. C' is obviously a regional maximum of
J at altitude hmay. Thus by definition, Vp € C’, R(J)(p) =
Bmax. Since kb < humay, this implies: Vp € C', T, (R(J))(p) =
1. Therefore, C N T,(R(J)) # @. This being true for every
connected component C of T,(.J), Definition 2.2 implies

o1y {(Tu(J)) € pr,(ny(Th(R(J)))

which completes the proof.
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Fig. 15. (Continued).
In practice, the above proposition means that only the p «— fifo_first()
regional maxima of the marker image J need to be taken For every pixel q € Ng(p)
into account for the computation of p;(.J). The algorithm Look if ¢ is lower than p and
introduced below takes advantage of this fact by propagating if it is necessary to propagate it:
the values of the regional maxima of .J using a FIFO structure: 1f J(g) < J(P) and I(q) # J(q)
Algorithm:grayscale reconstruction using a queue of pixels: J('q) « min {J(p), (@)}
o]: grayscale mask image f.Lfo_an(q).} ) )
oJ: grayscale marker image, defined on The above algorithm constitutes a very clear improvement
domain D;.J < I. Recons truc'tion is with respect to the sequential algorithm presented in the pre-
determinelé d—iréctly in J vious section. Its typical execution time on a Sun SparcStation

is of 2.5 seconds for a 256 x 256 image whereas the sequential

e Compute regional maxima of J:J — R(J): . .
P g /) one may require as much as 10 seconds in some cases.

e Initialization of the queue with
boundaries of maxima:

For every pixel p € Dy: D. A Fast Hybrid Grayscale Reconstruction Algorithm
1f J(p) # 0 and 3q € Ng(p),J(q) =0 Although much faster than the techniques previously pro-
fifo_add(p) posed in literature, the above algorithm is slown down by the

e Propagation: While fifo_empty() = false initial determination of the regional maxima of the marker
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image. Furthermore, contrary to its binary counterpart, some
image regions may be scanned more than once during the
breadth-first scanning step. This is true in particular when
two regional maxima of J with different elevations are next
to each other. On the other hand, the sequential grayscale
reconstruction algorithm does not have this drawback, but as
mentioned earlier, after the first two scannings, it requires
several additional scannings in which only a few pixels are
modified.

These two algorithms have therefore complementary draw-
backs and advantages, and this is the motivation for the hybrid
algorithm introduced now: the idea is to start with the first two
scannings of the sequential algorithm. During the second one
(anti-raster), every pixel p such that its current value could still
be propagated during the next raster scanning, i.e., such that

dq € Ng(p)- J(q) < J(p)and J(q) < I(q)

(Continued).

is put into the queue. The last step of the algorithm is
then exactly the same as the breadth-first propagation step
of the FIFO algorithm proposed in the previous section.
However, the number of pixels to be considered during this
step is considerably smaller than previously. This algorithm is
described below in pseudo-code:

Algorithm: fast hybrid grayscale reconstruction:
e/: mask image (binary or grayscale)
eJ: marker image, defined on domain

D;.J <I. Reconstruction is determined directly

in J
e Scan D; in raster order:
Let p be the current pixel;
J(p) — (max{J(q).q € N*G(p)U {p}}) A I(p)
e Scan D; in anti-raster order:
Let p be the current pixel;

J(p) — (max{J(q).q € Ng(p)U {p}}) A I(p)
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If there exists q € N;(p) such that

J(g) < J(p) and J(q) < I(q)
fifo_add(p)
e Propagation step: While fifo_empty()

= false

p — fifo_first()

For every pixel g € Ng(p):

1f J(q) < J(p) and I(q) # J(q)
J(q) — min{J(p).1(q)}
fifo_add(q).}

This algorithm seems to offer the best compromise for
computing grayscale reconstructions. It takes advantage of
the strong points of both the algorithms described in the last
two sections without retaining their drawbacks. A mean case
complexity analysis would be extremely difficult to perform on
this kind of algorithm, since it would involve the design of a
model for the different kind of input images that may be used.
It would go beyond the scope of the present paper. However,

©

(Continued).

from an experimental point of view, the execution time of this
algorithm is of less than a second on a Sun ]PC Workstation,
for almost any input image of size 256 x 256. Note that the
algorithm works equally well for binary images and that its
extensions to any kind of grid and to multidimensional images
are straightforward. These characteristics make it the fastest
known algorithm on conventional computers.

V. SUMMARY

In this paper, grayscale reconstruction has been formally
defined for discrete images. Its relations to binary reconstruc-
tion and to morphological geodesic transformations have been
underscored. Some of the applications of binary and grayscale
reconstruction in image analysis have then be reviewed. They
illustrate the flexibility and usefulness of this transformation
for such tasks as filtering and segmentation.
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The known algorithms for computing binary and grayscale
reconstruction are respectively of parallel and sequential type.
They have been described, and the study of their drawbacks
led us to propose a new method, based on the regional
maxima of the marker image and making use of a queue
of pixels (FIFO structure). Although more efficient than both
the parallel and the sequential method, this new technique is
not fully satisfactory. A last “hybrid” algorithm was therefore
introduced, which takes advantage of the strong points of both
the sequential and the FIFO algorithm. Its execution time is
usually of less than a second on a Sun Sparc Station, for
256 % 256 images. This is an order of magnitude faster than any
previously known technique. All the algorithms described ex-
tend to the three-dimensional case in a straightforward manner.
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