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Abstract—In spite of many interesting attempts, the problem of
automatically finding alignments in a 2D set of points seems to be
still open. The difficulty of the problem is illustrated here by very
simple examples. We then propose an elaborate solution. We show
that a correct alignment detection depends on not less than four
interlaced criteria, namely the amount of masking in texture, the
relative bilateral local density of the alignment, its internal regularity,
and finally a redundancy reduction step. Extending tools of the a
contrario detection theory, we show that all of these detection criteria
can be naturally embedded in a single probabilistic a contrario
model with a single user parameter, the number of false alarms.
Our contribution to the a contrario theory is the use of sophisticated
conditional events on random point sets, for which expectation we
nevertheless find easy bounds. By these bounds the mathematical
consistency of our detection model receives a simple proof. Our
final algorithm also includes a new formulation of the exclusion
principle in Gestalt theory to avoid redundant detections. Aiming
at reproducibility, a source code and an online demo open to any
data point set are provided. The method is carefully compared to
three state-of-the-art algorithms and an application to real data is
discussed. Limitations of the final method are also illustrated and
explained.

Index Terms—point alignment detection, clustering, a contrario
methods, Poisson point process

1 INTRODUCTION

We will consider the problem of finding collinear sub-
sets within a planar set of points. This problem arises
in many contexts of data analysis: Alignments are
among the simplest structures observable in a point
set and 3D alignments are viewpoint-invariant struc-
tures. They constitute a classic example in statistical
shape analysis [55]. Alignment detection is relevant in
geology, where the alignment of features, for example
earthquake epicenters, reflects underlying faults and
joints [47], [28], [29]. In archaeology, geometric config-
urations of post holes, in particular alignments, often
reveal the disposition of buildings even in presence of
overlaps from different time periods [55], [44], [8]. The
computer vision applications include the detection of
grids [18], calibration patterns [21] or vanishing points
[31], [70], and the interpretation of high resolution
remote sensing images [63].
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Fig. 1. Illustration of the complexity of the point align-
ment problem: Exactly the same set of aligned dots is
present in the three images, but it is only perceived
as such in the first one. The second one is a classic
“masking by texture” case and the third shows a “mask-
ing by structure”, often called “Gestalt conflict”.

Dot patterns are often used in the study of visual
perception. Several psychophysical studies led by Ut-
tal have investigated the effect of direction, quantity
and spacing in dot alignment perception [62], [59],
[60], [61]. The detection of collinear dots in noise
was the target of other studies attempting to assess
quantitatively the masking effect of the background
noise [56], [39], [58], [53]. A recent work by Preiss
analyzes various perceptual tasks on dot patterns
from a psychophysical and computational perspective
[54]. An interesting computational approach to detect
gestalts in dot patterns is presented in [1], although
the study is limited to very regularly sampled pat-
terns. The work described here was initiated in the
context of a psychophysical research; here we concen-
trate, however, on the general problem of detection of
point alignments in noise.

While it may seem that point alignments are simple
structures, Fig. 1 shows how complex an alignment
event can be. From a purely factual point of view,
the same alignment is present in the three figures.
However, it is only perceived as such by most viewers
in the first one. The second and the third figures
illustrate two occurrences of the masking phenomenon
discovered by gestaltists [36]: the masking by texture,
which occurs when a geometric structure is sur-
rounded by a clutter of randomly distributed similar
objects or distractors, and the masking by structure,
which happens when the structure is masked by other
perceptually more relevant structures, a phenomenon
also called perceptual conflict by gestaltists [49], [50],
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[35]. The magic disappearance of the alignment in the
second and third figures can be accounted for in two
very different ways. For the first one, a probabilistic
a contrario model [15] can lead to a quantitative pre-
diction. The second one is explained by the winning
intervention of three more powerful grouping laws,
good continuation, convexity and closure in the percep-
tual conflict [34].

These examples show that a mathematical defini-
tion of point alignment perception is required before
even starting to discuss how to detect them. A purely
geometric-physical description is clearly not sufficient
to account for the masking phenomenon. Indeed, an
objective observer making use of a ruler would be
able to state the existence of the very same alignment
at the same precision on all three figures. But this
statement would contradict our perception, as well as
any reasonable computational (definition and) theory
of alignment detection.

A classic approach to this problem uses the Hough
transform [33], [19], first used for the detection of
subatomic particles in bubble chamber pictures [32].
To compute the Hough transform, each point votes
in a parameter space for the lines that pass through
it. After accumulation of the votes of all points, the
lines that correspond to local maxima in the parameter
space are selected as detections. Several variations
of the basic method were proposed; in particular,
the methods proposed in [57], [41], [42] are robust
to errors in the point positions. When the Hough
transform is applied to a random set of points, it will
still find a local maximum which does not correspond
to a significant collinear subset. A threshold on the
number of votes is usually imposed to cope with this
problem. Even if the Hough transform methods pro-
vide successful solutions in many applications [65], a
sound criterion for setting this threshold is missing.

Other approaches use point clustering methods es-
pecially adapted to elongated clusters [52]. Using a
particular distance between points and clusters [12],
general clustering algorithms can be used to detect
collinear subsets [24], [22]. The same problem can
be approached using a parametric model fitting [11],
[23]. Given a parametric model, a criterion for point
compatibility with the model, and a final validation
criterion for the model, RANSAC [23] is an efficient
heuristic for fitting the searched model to the data.
RANSAC, however, provides no solution on how to
choose these criteria for a given model or application.

We are particularly interested in methods that pro-
vide an evaluation of the statistical significance of the
detected aligned structures. An example in astronomy
may illustrate the importance of such evaluation: In
1980 the discovery of several very precise alignments
of quasars in the sky raised the question of a the-
ory explaining this presence [5]. These alignments,
however, were later dismissed by a statistical anal-
ysis, first by simulations [20] and then analytically

[71], showing that alignments of such precision could
easily occur just by chance.

The expected number of events where k among n
random points are to be found in some rectangle of
a given shape was already computed in 1950 using a
Poisson random model [48]. This could be the origin
of the strip method for defining alignments as a large
number of points covered by a thin rectangle (the
thinner, the more precise). The same random model
was used in [8], now explicitly used for detecting
point alignments. But the alignment was defined dif-
ferently: three points are considered aligned when the
triangle formed by them is flat enough. Alignments of
more points are evaluated by all the possible triangles
observed among the points. Various theoretical results
about the flat triangles methods are described in [37],
where Poisson as well as Gaussian distributions are
considered in different domain shapes.

Since then, many different algorithms have been
proposed, most of them variations of the strip
method. Monte Carlo simulations of random points
provide the estimate of the significance in [69] while
a binomial model is used in [3]. A set of heuristics
are added in [4]. The method in [28] also applies the
strip method with a Poisson model, but the density is
estimated locally. A refined statistical test, including
angular statistics, is proposed in [29]. Another ap-
proach combines a concatenation of center-surround
operators with a meaningfulness evaluation [46].

Here we develop a method derived from the a con-
trario methodology proposed by Desolneux, Moisan
and Morel [14], [15]. It is a mathematical formalization
of the non-accidentalness principle proposed for percep-
tion [67], [2], [66] (sometimes called Helmholtz princi-
ple). In a nutshell, an observed structure is relevant
if it would rarely occur by chance. This scheme has
been repeatedly used in the past. In the words of
David Lowe, “we need to determine the probability
that each relation in the image could have arisen by
accident, P (a). Naturally, the smaller that this value
is, the more likely the relation is to have a causal inter-
pretation” [45, p.39]. The difference in the a contrario
methodology is that the expectation of the number of
false detections is controlled instead of the probability
of observing a false detection. The resulting statistical
framework provides estimates of significance similar
in spirit to the methods mentioned before.

As a simple example to introduce the methodology,
Desolneux et al. showed a point alignment detector
using a simple strip method with a Poisson model
[15, Sect. 3.2]. Even before, [38] used a similar idea for
setting thresholds in the voting space of the Hough
transform. Our goal in this work is to extend these
initial methods into a working algorithm that can be
used to successfully solve real image processing prob-
lems [43]. To cope with obvious objections and coun-
terexamples, we shall prove that three new features
are necessary to handle the variety of alignments. We
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shall show that a reliable algorithm requires: a) a local
Poisson density estimation, b) an evaluation of the
regularity of the spacing of the points in the alignment,
and c) a criterion to select the best interpretation among
redundant detections. This work concentrates on the
criteria for obtaining the best possible result with
an unsupervised algorithm, neglecting the efficiency
concerns, which remains as a future line of research.

The rest of this article is organized as follows:
Section 2 introduces the basic concepts and techniques
used in the state-of-the-art point alignment detectors,
and describes the classic strip method. Sections 3, 4
and 5 improve this basic method by incorporating
local point density estimation, lateral estimation, and
measurements of the regularity of the point spacing.
Section 6 discusses how to cope with the redundancy
of detections. Section 7 analyses the complexity of the
final algorithm and Sect. 8 shows experiments and
comparisons. Sect. 9 briefly presents an application
of the method to vanishing points detection. Sect. 10
concludes the paper.

2 BASIC POINT ALIGNMENT DETECTOR

Consider a set of N points defined in a domain D
with area SD, see Fig. 2. We are interested in detecting
groups of points that are well aligned. A reasonable
a contrario hypothesis H0 for this problem is to sup-
pose that the N points are the result of a random
process where points are independent and uniformly
distributed in the domain. Citing Lowe again, “One
of the most general and obvious assumptions we can
make is to assume a background of independently po-
sitioned objects in three-space, which in turn implies
independently positioned projections of the objects in
the image.” [45, p.39] This does not mean that the
method will only work when the background points
follow exactly this hypothesis. What is important
is that this is a good model for isotropic elements
where any alignment is accidental. As we will see
in practice, the method discriminates well between
accidental alignments and causal ones. The question
is then to evaluate whether the presence of aligned
points contradicts the a contrario model or not.

Given an observed set of N points x = {xi}i=1...N

and a rectangle r (a candidate for alignment), we
will denote by k(r,x) the number of those points
observed inside r. The decision of whether to keep
this candidate or not is based on two principles: a
good candidate should be non-accidental, and any
equivalent or better candidate should be kept as well.
The degree of non-accidentalness of a rectangle r can
therefore be measured by how small the probability
P
[
k(r,X) ≥ k(r,x)

]
is, where X denotes a random set

of N points following H0. In the same vein, a rectangle
r′ will be considered at least as good as r given the
observation x, if P

[
k(r′,X) ≥ k(r′,x)

]
≤ P

[
k(r,X) ≥

k(r,x)
]
.

Fig. 2. A schematic representation of the evalu-
ated rectangle. In a domain with N points, there are
N(N−1)

2 W possible rectangles. In this example, N = 47
and k(r,x) = 8 among them are inside the rectangle r.

The question is how to control the expected number
of accidental detections [15]. Given that Ntests candi-
dates will be tested, the expected number of rectangles
which are as good as r under H0 is less than

Ntests · P
[
k(r,X) ≥ k(r,x)

]
. (1)

The H0 stochastic model fixes the probability law of
the random number of points in the rectangle, k(r,X).
The discrete nature of this law implies that (1) is not
actually the expected value but an upper bound of it
[15], [27]. Let us now analyze the two factors in (1).

Under the a contrario hypothesis H0 (a planar Pois-
son process [51]), the probability that one point falls
into the rectangle r is p = Sr

SD
, where Sr is the area

of the rectangle and SD the area of the domain. As
a consequence of the independence of the random
points, k(r,X) follows a binomial distribution. Thus,
the probability term P

[
k(r,X) ≥ k(r,x)

]
is given by

P
[
k(r,X) ≥ k(r,x)

]
= B

(
N, k(r,x), p

)
(2)

where B(n, k, p) is the tail of the binomial distribution

B(n, k, p) =
n∑

j=k

(
n

j

)
pj(1− p)n−j . (3)

The number of tests Ntests corresponds to the total
number of rectangles that could contain an alignment,
which in turn is proportional to the number of pairs
of points defining such rectangles. With a set of N
points this gives N(N−1)

2 different pairs of points.
The set of rectangle widths to be tested must be
specified a priori as well. In the a contrario approach,
a compromise must be found between the number
of tests and the precision of the structures that are
being sought for. The larger the number of tests, the
lower the statistical relevance of detections, but also
the more precise. However, if the set of tests is chosen
wisely, structures fitting accurately the tests will have
a very low probability of occurrence under H0 and
will therefore be more significant.

For a particular problem, one may have reasons
to restrict the shape of rectangles. Nevertheless, this
inquiry is not aimed at any particular application.
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Thus, we will rely on the following general criteria.
An alignment should be an elongated structure, so a
minimal ratio between the length and the width of
the rectangle must be fixed. Then, a fixed number
of widths must be tested, decreasing geometrically
from the maximal width. (The choice of a geometric
series is justified by the obvious scale invariance of
the detection problem.) Our implementation uses a
length/widthmax ratio of 10 and a geometric series of
8 width values with a factor 1/

√
2. The total number

of widths to be tested will be denoted by W . Then the
total number of tested rectangles is

Ntests =
N(N − 1)

2
W. (4)

The fundamental quantity of an a contrario approach
is the Number of False Alarms (NFA) associated with
a rectangle r and a set of points x,

NFA1(r,x) = Ntests · P
[
k(r,X) ≥ k(r,x)

]
(5)

=
N(N − 1)

2
W · B

(
N, k(r,x), p

)
.

This quantity gives a precise meaning to Eq. (1). It
will be interpreted as a bound of the expected number
of rectangles containing enough points to be as rare
as r under H0. When the NFA associated with a
rectangle is large, this means that such an event is to
be expected under the a contrario model and therefore
is not relevant. On the other hand, when the NFA
is small, the event is rare and probably meaningful.
A rarity threshold ε must nevertheless be fixed for
each application. Rectangles with NFA1(r,x) ≤ ε will
be called ε-meaningful rectangles [15], constituting the
detection result of the algorithm. We will refer to this
method as Algorithm 1.

Theorem 1 ([15]).

E

[∑
r∈R

1NFA1(r,X)≤ε

]
≤ ε

where E is the expectation operator, 1 is the indicator
function, R is the set of test rectangles, and X is a random
set of points under H0.

The theorem states that the average number of ε-
meaningful rectangles under the a contrario model H0

is bounded by ε. Thus, the number of detections in
noise is controlled by ε and it can be made as small
as desired. In other words, this detector satisfies the
non-accidentalness principle.

As shown in [15], the detection result is not
very sensitive to the value of ε. Following Desol-
neux et al. [14], [15], we shall therefore fix ε = 1
for our experiments. This corresponds to accepting on
average at most one false detection per data set in the
a contrario model.

Fig. 3 shows the results of the basic algorithm in
two simple cases. The results are as expected: the vis-
ible alignment in the first example is detected, while

(a) (b)

(c) (d)

Fig. 3. Results from the basic point alignment detector
(Algorithm 1). (a) and (c) are the input data, and (b)
and (d) are the corresponding results. Each detection
is represented by a rectangle. In (b) the algorithm
correctly detects the obvious alignment. Notice that
multiple and redundant rectangles were detected; this
issue will be dealt with in Sect. 6. The data set (c)
contains the same set of points in (a) plus added
noise points. The aligned points are still present but
hardly perceptible. The algorithm handles correctly this
masking phenomenon and produces no detection.

no detection is produced in the second. Actually, the
points in the first example are also present in the
second one, but the addition of random points masks
the alignment to our perception. The first example
produces many redundant detections; this issue will
be addressed in Sect. 6.

3 LOCAL DENSITY ESTIMATION
The basic point alignment detector of section 2 takes
as a contrario assumption a uniform point density in
the whole domain and evaluates alignments as a local
excess with respect to this global density. This com-
parison is nevertheless too restrictive, because these
alignments have been detected as local violations of a
global uniformity. Consider instead a configuration of
points with two zones of different point density, like
in Fig. 4 (a). Applying the basic alignment detector
yields an unexpected detection shown in Fig. 4 (b).
Each of the detected rectangles certainly has a non-
accidental excess of points in the rectangles with
respect to the global density, but this is definitely not
what we are looking for. This example shows that
we are actually interested in non-accidental events
with an excess of points conditioned to the observa-
tion of a local density (which may well be lower or
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(a) (b) (c) (d)

Fig. 4. Local vs. global density estimation. (a) The set of points. (b) Alignments found using global density
estimation (Algorithm 1). The many detected rectangles indeed have a high point density compared to
the average image density used as background model. (c) Alignments found using local density estimation
(Algorithm 2). The local density is lower on the border, hence the deceptive detection. (d) No alignment is found
when the local density is estimated by the maximum density on both sides of the alignment (Algorithm 3).

Fig. 5. Left: The point density is estimated in the local
window R surrounding the alignment r. Right: In a
refined version of the algorithm, the density of points
is measured on each side of the evaluated rectangle.
The maximum of the densities in R1 and R3 is taken as
an estimation of the point density in both R1 and R3.

higher than the global density). Such local density
estimations for the random point models have been
used in [3], [28], [29]. In the interpretation proposed
here, a more sophisticated definition of the alignment
event should not measure the non-accidentalness by
an unusually small probability, but by an unusually
small conditional probability.

The local density is estimated by counting the
points in a rectangular local window, with the same
length as the alignment and a given width. To account
for the scale invariance of the detection, the width
of the local window is proportional to the length
of the alignment. For every alignment, a number
of proportion ratios or scales are tried. The largest
window is square of side equal to the length of the
alignment. Then a fixed number L = 8 of widths in
geometric series are tried. The choice for a geometric
series with factor 1/

√
2 is again justified by the scale

invariance of the detection problem. The number of
tests Ntests corresponds to the total number of ob-
servations performed, which in turn is related to the
number of rectangles and the different local windows
evaluated for each rectangle. For N points and L

different sizes of local windows, this gives N(N−1)
2 WL

different tests.
When the rectangle to be tested lies near the bor-

der of the domain, the local window may be partly
outside it, where no point information is available,
leading to a wrong density estimation. This also
happens when the rectangle covers the diagonal of
the domain. A symmetric extension of the point set
across the domain boundary is used to estimate the
point density in windows meeting the outside. The
candidates are still selected among the original points.

Let R be the local window surrounding the align-
ment r, as shown in Fig. 5 (left). The probability of one
point in R falling in r is p = Sr

SR
where Sr and SR are

the areas of r and R respectively. The degree of non-
accidentalness of an observation will be measured by
the probability that a rectangle has a higher density
than its surroundings, conditioned by the observation
of the surrounding density. The NFA for the new
detector is accordingly defined as

NFA2(r,R,x) =

Ntests · P
[
k(r,X) ≥ k(r,x)

∣∣∣n(R,X) = n(R,x)
]

=
N(N − 1)

2
WL · B

(
n(R,x), k(r,x), p

)
, (6)

where n(R,x) is the number of points observed in
x inside R. We will call this method Algorithm 2. A
theorem similar to Th. 1 can be proved (see supple-
mentary material, Th. 2).

4 LATERAL DENSITY ESTIMATION

While the local density estimation can provide a more
adjusted background model, it can also introduce
new problems such as a “border effect”, as shown
in Fig. 4 (c). Indeed, the density estimation is lower
on the border of the left half of the image than
inside it. Thus, the previous algorithm (Algorithm 2)
detects alignments on the border with non-accidental,
meaningful excess with respect to the local density.

In order to avoid this effect, the more sophisticated
Algorithm 3 used in Fig. 4 (d) takes, as a conservative
estimation of the background density, the maximum of
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Fig. 6. Left: Dot pattern with two point clusters but
no alignment. Center: Result of Algorithm 3. A thin
rectangle with a high point density was found, hence a
false detection. Right: Algorithm 4 divides the rectan-
gle into boxes and counts the occupied ones, avoiding
this misleading cluster effect. The occupied boxes are
marked in red. No alignment is detected.

the densities measured on both sides of the alignment.
In short, to be detected, an alignment must show a
higher point density than in both regions immediately
on its left and right. This local alignment detector is
therefore similar to a classic second order Gabor filter
where an elongated excitatory region is surrounded
by two inhibitory regions. The local density estima-
tion is calculated as illustrated in Fig. 5 (right): The
local window is divided in three parts. R1 is the
rectangle formed by the area of the local window on
the left of the alignment. R3 is the area of the local
window on the right of the alignment, and R2 is the
rectangle which forms the candidate alignment. Next,
the algorithm counts the numbers of points M1, M2,
and M3 in R1, R2 and R3, respectively, and defines the
conservative estimate of the local number of points as

n∗(R,x) = 2max(M1,M3) +M2. (7)

We then define the NFA of the event “the density in
R2 has a significant excess with respect to the density
estimated in R” by

NFA3(r,R,x) =

Ntests · P
[
k(r,X) ≥ k(r,x)

∣∣n(R,X) = n∗(R,x)
]

=
N(N − 1)

2
WL · B

(
n∗(R,x), k(r,x), p

)
. (8)

Indeed, conditioned to the fact that we assume
n(R,X) = n∗(R,x) under the model H0, the n∗(R,x)
points in R are still uniformly and independently dis-
tributed. We call this method Algorithm 3. A theorem
similar to Th. 1 can be proved (see supplementary
material, Th. 3).

5 ALIGNMENT REGULARITY

There is still an objection to Algorithm 3: One can stir
wrong detections by introducing small point clusters
as shown in Fig. 6 (left). The detected alignment in
Fig. 6 (center) seems clearly wrong. It is nevertheless
explainable in the setting of Algorithm 3: there is
indeed a meaningful point density excess inside the

red rectangle. But this excess is caused by the clusters,
not by what could be termed an alignment. While
the algorithm counted every point, human perception
seems to group the small clusters into a single entity,
and to count them only once. This unwanted result is
a consequence of the fact that Algorithm 3 is search-
ing for elongated clusters of higher density without
any cluster regularity requirement. As suggested in
other studies [54], [58], [59], the density is not the
only property that makes an alignment perceptually
meaningful; another characteristic to consider is the
uniform spacing or regularity of the points in it, which
the gestaltists call the law of constant spacing. To cope
with both issues (avoiding small clusters and favoring
regular spacing) a more advanced version of the
alignment detector divides each candidate rectangle
into equal boxes. Instead of counting the total number
of points, the algorithm counts the number of boxes
that are occupied by at least one point. We call them
occupied boxes. In this way, the minimal NFA is at-
tained when the points are perfectly distributed along
the alignment. In addition, a concentrated cluster in
the alignment has no more influence on the alignment
detection than a single point in the same position.

We want to estimate the expected number of occu-
pied boxes in the background model H0. The probabil-
ity of one point falling in one of the boxes is p0 = SB

SL
,

where SB and SL are the areas of the boxes and
the local window respectively. Then, the probability
of having one box occupied by at least one of the
n∗(R,x) points (i.e., of an occupied box) is

p1(R, c) = 1− (1− p0)n
∗(R,x). (9)

We will denote by b(r, c,x) the observed number of
occupied boxes in the rectangle r when divided into
c boxes. Finally, the probability of having at least
b(r, c,x) of the c boxes occupied is

B
(
c, b(r, c,x), p1(R, c)

)
. (10)

A set C of different values are tried for the number
of boxes c into which the rectangle is divided, and
the one producing the lowest NFA is taken. Thus, the
number of tests must be multiplied by its cardinality
#C = C. In practice we set C =

√
N and that leads to

Ntests =
N(N − 1)

2
WLC =

N(N − 1)

2
WL
√
N. (11)

The NFA of the new event definition is then

NFA4(r,R, c,x) =

Ntests · P
[
b(r, c,X) ≥ b(r, c,x)

∣∣n(R,X) = n∗(R,x)
]

=
N(N − 1)

2
WLC · B

(
c, b(r, c,x), p1(R, c)

)
. (12)

Fig. 6 (right) shows an example of the resulting al-
gorithm and we will show more in section 8. Algo-
rithm 4 presents the pseudo-code for this final refined
version of the alignment detector.
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Theorem 4.

E

∑
r∈R

∑
R∈R′(r)

∑
c∈C

1NFA4(r,R,c,X)≤ε

 ≤ ε
where E is the expectation operator, 1 is the indicator
function, R is the set of rectangles considered, R′(r) is
the set of surrounding local windows for each rectangle r,
C is the set of number of boxes tested, and X is a random
set of points under H0.

Proof: We define b̂(r,R, c,M) as

b̂(r,R, c,M) = min

{
β ∈ N,

P
[
b(r, c,X) ≥ β

∣∣n(R,X) =M
]
≤ ε

N(N−1)
2 WLC

}
.

R determines the domain of the local window and M
the number of points in it. The probabilistic model
inside R, conditioned to the fact that the number
of observed points is M , is still uniform and inde-
pendent, and the conditional law of the number of
points inside any subset of R follows a binomial law.
Then, NFA4(r,R, c,X) ≤ ε is equivalent to b(r, c,X) ≥
b̂(r,R, c,M) when M = n∗(R,X). Now,

E

∑
r∈R

∑
R∈R′(r)

∑
c∈C

1NFA4(r,R,c,X)≤ε

 =

∑
r∈R

∑
R∈R′(r)

∑
c∈C

P
[
NFA4(r,R, c,X) ≤ ε

]
=

∑
r∈R

∑
R∈R′(r)

∑
c∈C

2N∑
M=0

P
[
NFA4(r,R, c,X) ≤ ε

∣∣
n(R,X) =M

]
· P
[
n(R,X) =M

]
=∑

r∈R

∑
R∈R′(r)

∑
c∈C

2N∑
M=0

P
[
b(r, c,X) ≥ b̂(r,R, c,M)

∣∣
n(R,X) =M

]
· P
[
n(R,X) =M

]
. (13)

Note that, because of the maximum density estimation
n∗(R,x), the estimated number of points inside a
rectangle can theoretically be as large as 2N , and thus
the range for M . By definition of b̂(r,R, c,M),

P
[
b(r, c,X) ≥ b̂(r,R, c,M)

∣∣n(R,X) =M
]
≤
ε

N(N−1)
2 WLC

,

and using #R = N(N−1)
2 W , #R′(r) = L, #C = C and

2N∑
M=0

P
[
n(R,X) =M

]
= 1

Algorithm 4: Point alignment detector with boxes
input : A set x of N points [W = 8, L = 8, ε = 1]
output: A list out of point alignments

1 for i = 1 to N do
2 for j = 1 to i− 1 do
3 l← distance(xi, xj)
4 w ← l/10
5 for 1 to W do
6 r ← rect(xi, xj , w)
7 wL ← l
8 for 1 to L do
9 R1 ← local-win-left(xi, xj , wL)

10 R3 ← local-win-right(xi, xj , wL)
11 for c ∈ C do
12 Compute NFA4(r,R, c,x) [eq.12]
13 if NFA4(r,R, c,x) ≤ ε then
14 out← r
15 end
16 end
17 wL ← wL/

√
2

18 end
19 w ← w/

√
2

20 end
21 end
22 end

we get E

∑
r∈R

∑
R∈R′(r)

∑
c∈C

1NFA4(r,R,c,X)≤ε

 ≤
∑
r∈R

∑
R∈R′(r)

∑
c∈C

ε
N(N−1)

2 WLC

2N∑
M=0

P
[
n(R,X) =M

]
= ε,

which concludes the proof.

6 REDUNDANCY

As was observed in Fig. 3, all the described align-
ment detectors may produce redundant detections.
Given a very meaningful alignment, many smaller
or larger rectangles overlapping the main alignment
are also meaningful. This redundancy phenomenon
can involve points that belong to the real alignment
as well as background points near the alignment, as
illustrated in Fig. 7. The question is how to detect
the best rectangle, both explaining and masking the
redundant detections.

A classic redundancy elimination method is
Canny’s non-maximal suppression [9], where max-
imal edge points inhibits their neighbors. A non-
maximal suppression is also needed when using the
Hough transform [19]. Gerig and Klein [26], [25]
introduced a variation where a maximum in the
Hough accumulator does not prevent its neighbors
from generating detections; instead, the votes of the
elements of the detected structure are removed from
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Fig. 7. Redundant detections. Left: point pattern.
Center: alignments found by Algorithm 4. Red means
the most meaningful and blue the least meaningful
detections. Right: Result of the masking process.

Fig. 8. Examples of two alternative formulations of the
masking process. Left: Set of points. Center: The Ex-
clusion Principle as defined in [15], a validated gestalt
prevents others from using its points. The vertical
alignments (evaluated first) mask the horizontal ones.
Right: The Masking Principle, described in the text,
which solves the ambiguities without forbidding basic
elements to participate of two different structures.

the accumulator before looking for a new maximum.
Thus, each element can only belong to a single struc-
ture. A similar idea was proposed by Desolneux et al.
[15] under the name of “exclusion principle”: The
most meaningful observed structure (the one with
smallest NFA) is kept as a valid detection. Then, all
the basic elements (the points in our case) that were
part of that validated group are assigned to it and
the remaining candidate structures cannot use them
anymore. The NFA of the remaining candidates is re-
computed without counting the excluded elements.
In that way, redundant structures lose most of their
supporting elements and are no longer meaningful.
Inversely, a candidate that corresponds to a different
structure keeps most or all of its supporting elements
and remains meaningful. The most meaningful can-
didate among the remaining ones is then validated
and the process is iterated until there are no more
meaningful candidates.

This formulation of the masking process often leads
to good results, removing redundant detections while
keeping the good ones. But it may also lead to unsat-
isfactory results as illustrated in Fig. 8. The problem
arises when various valid alignments have many ele-
ments in common. As one alignment is evaluated after
the other, it may happen that all of its elements have
been removed, even if the alignment is in fact not
redundant with any of the other ones. In the example

of Fig. 8, individual horizontal and vertical alignments
are not redundant, but if all the vertical ones have
been detected first, the remaining horizontal ones
will be (incorrectly) masked. This example shows a
fundamental flaw of the exclusion principle: it is not
sound to impose that a basic element belongs to a
single perceptually valid structure. This leads us to
formulate a relaxed version of the exclusion principle:

Definition 1 (Building Elements). We call building
element any atomic component that can be a constituent
element of several structures. An example of building
elements are points that can be recursively grouped in
alignments.

Definition 2 (Masking Principle). A meaningful struc-
ture B will be said “masked by a structure A” if B is
no longer meaningful when evaluated without counting its
building elements belonging to A. In such a situation, the
structure B is not retained as detected.

In short, a meaningful structure will be detected
if it is not masked by any other detected structure.
The difference with the former exclusion principle is
that here a structure can only be masked by another
individual structure and not by the union of several
structures. A procedural way to attain this result is to
validate alignments one by one, starting by the one
with smallest NFA. Before accepting a new alignment,
it is checked that it is not masked by any one of the
previously detected alignments.

Fig. 13 and 14 show some point alignment detection
results when combining Algorithm 4 with the mask-
ing principle. The results obtained in these examples
are as expected and this masking procedure was
applied to all experiments below. For simplicity, we
shall still refer to it as “Algorithm 4”.

7 COMPUTATIONAL COMPLEXITY

The aim of this work was to produce an unsupervised
algorithm that gives a good solution to the problem,
while neglecting at this stage the efficiency considera-
tions. Nevertheless our complexity analysis here gives
an upper bound for the existing algorithm. We will
also point out several possible accelerations.

The proposed method consists of an exhaustive
search for candidates and the validation, including
the subsequent redundancy elimination. Algorithm 4
describes the exhaustive search. The number of tests
performed is the theoretical number in eq. 11. To
obtain the total complexity, this number must be mul-
tiplied by the complexity of a single test. To compute
the NFA we need to evaluate whether each of the N
points belongs to a box or not. Thus, the complexity of
a single test is proportional to the number of points N .
Finally, the total complexity of the exhaustive search
is O(

√
NN3), where the

√
N comes from the set of

number of boxes tested (C). In the final redundancy
reduction step, the validated candidates (nval) need
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Fig. 9. Result of Hall et al. [28] on a set of 100 uniform
and independent random points. Each detection is
represented by a thin rectangle, surrounded by the
local window. Left: The same parameters as in [28,
Sect. 3.1] were used: 10×10 grid, 5 degree angle step,
a = 0.1, b = 0.6, c = 0.01, u = 6 v = 2. As in [28], about
3 alignments were detected (2 in this example). Right:
Result with a slightly different candidate set: 20 × 20
grid and b = 0.3, producing 47 detections. A similar
behavior is observed with sets of 1000 random points.

to be compared to those already selected as final
detections (nout). This final step has a complexity of
O(nvalnoutN), typically much smaller than the com-
plexity of the exhaustive search.

All in all, the proposed method has a complexity of
O(
√
NN3). This polynomial time limits the number of

points that can be handled in practice. With current
computers a few thousands points can be processed.

Several approaches may lead to an effective accel-
eration of the exploration of candidates, which is the
most time consuming step. First, this exploration is
highly parallel, leading to an almost linear improve-
ment when using a multiprocessor platform. Our cur-
rent implementation uses OpenMP, resulting indeed
in a near-linear acceleration. Second, there is plenty
of room for improvement in the routines for counting
the points inside a rectangle; two possible techniques
are the use of buckets [7] or integral images [10], [64].
Finally, the exhaustive search can be replaced by a
smart heuristic such as RANSAC [23]. An approach
using accelerated versions of the Hough transform
[38], [40] may be particularly important when the
number of points grows. The algorithm by Figueiredo
and Jain [22] may also be used as an efficient heuristic
to propose candidates.

8 EXPERIMENTS

This section illustrates the proposed algorithm with
synthetic data experiments. The reader is invited to
perform further experiments using the freely available
online demo and source code.1

We will first compare the proposed algorithm with
two point alignment detection methods [28], [29].

1. http://bit.ly/point alignments

These two methods were selected because they were
introduced recently and include statistical significance
tests. Hall, Tajvidi and Malin [28] proposed in 2006
an approach based in similar measurements to Algo-
rithm 3: the alignment is evaluated as a thin strip and
two lateral rectangles are used to estimate the point
density; the set of candidates and the statistical test are
different. The results presented here were computed
using our own implementation of the method; we re-
produced the experiments in the original publication
to verify the correctness of our code.

The statistical test of the method by Hall et al. is
designed to reject alignments in a uniform Poisson
random point model. The method works well when
the intensity of the point process is high. Indeed, the
authors showed that the method approaches optimal-
ity as the intensity increases [28]. The method is less
efficient when the density of points is low relative
to the size of the operator; in such conditions the
sampling is not suitable, the point density estimation
is poor, and the statistical test is not able to reject
random configurations. The test depends on two pa-
rameters, u and v, to be set manually. The first param-
eter controls the statistical level. In extreme cases of
wrong density estimation (e.g. no point is observed in
the local window), the statistical test fails. The second
parameter, v, is a threshold imposed on the number
of points in the strip. It is necessary to cope with cases
of density undersampling. The method assumes that
the domain is the unit square and tests candidates
centered in an n×n grid, at regular orientations with
an angle step θ; three parameters define the strip:
the length b, the strip width c, and the local window
width a. Thus seven parameters must be provided by
the user: n, θ, a, b, c, u, and v.

Fig. 9 shows two detection results in a set of 100
points generated according to a Poisson model. The
first result (left) uses the same parameters as in [28,
Sect. 3.1]; in accordance with the results of the original
article, in these conditions is observed an average of
3 detections per data set (2 in the example shown).
However, when the shape parameters are modified,
the statistical test is no longer able to control the
number of false detections, see Fig. 9 (right). In the
second experiment, the number of candidates is larger,
(the grid is 20 × 20 instead of 10 × 10), and the
density estimation is worse because the candidates
are half as long (thus the local window is half as
big). Under the new conditions, the same u and v
values lead to 47 detections in the same point set.
This experiment shows the need to set manually the
statistical significance parameters (u, v) to produce
reliable results. This behavior was also observed for
sets of 1000 random points.

We will see now how the method handles data sets
that do contain point alignments. Fig. 10(a) shows
a set of 186 points; perceptually one can see three
alignments, three clusters, and random points. We

http://bit.ly/point_alignments
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(a) (b) (c) (d)

Fig. 10. Result of Hall et al. [28]. Each detection is represented by a thin rectangle, surrounded by the local
window. In the following results a 20 × 20 candidate center grid was used, a 5 degree angle step, u = 7 and
v = 3. (a) Input set of 186 points. (b) Result of the method for a = 0.2, b = 0.4, and c = 0.02. (c) Result of the
method for a = 0.3, b = 0.6, and c = 0.02. (d) Result of the method for a = 0.05, b = 0.6, and c = 0.005.
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Fig. 11. Result of Hammer [29] for three point sets in a normalized unit square domain. Two length values were
tested: 0.3 (radius 0.15) and 0.6 (r. 0.3); and two significance levels: α = 0.1 and α = 0.00001. No detection was
produced with l = 0.6 and α = 0.00001. Left: The same set of 100 random points used in Fig. 9. Middle: 1000
points drawn independently with uniform distribution in a unit square. Right: The same point set as in Fig. 10.

first adjusted the statistical test parameters u and v
so as to obtain very few detections with the same
number of random points. The candidate shape pa-
rameters (a, b, c) were then adjusted to obtain the
best result, see Fig. 10(b). As one can see, the three
alignments were detected. Nevertheless, all detections
only partially cover the perceived alignment; this is of
course due to the selected length (b = 0.4), but longer
candidates produced less complete results. Also, there
is some redundancy in the detections; no redundancy

reduction step is included in Hall et al.’s method.
Finally, one can observe that one of the clusters led
to a false detection. When the shape parameters are
changed to less optimal values, Figs. 10(c) and (d), we
obtains less useful results: some alignments or parts of
them are missing, and many spurious detections were
produced. Some are due indeed to deviations from the
random model as is the case of the clusters, and this
shows the need for a more complex event definition.
Others, as in Fig. 10(d), reveal a failure of the statistical
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Fig. 12. Unsupervised clustering by the Figueiredo and Jain method [22]. Ellipses represent detected clusters.
(a), (b), (c) The sets of points in Figs. 9, 10, 11. (d) Dataset from a vanishing point detection problem, see Fig. 16.
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Fig. 13. Result of the proposed algorithm for the sets of points in Figs. 9, 10, 11 and 12. Each detection is
represented by a thin rectangle divided into boxes, and surrounded by the local window.

Fig. 14. Additional results of the proposed algorithm. The local window and the boxes are not drawn.

test. This experiment shows that the shape parameters
need a careful adjustment to produce good results.

The second point alignment detection method we
used for comparison was introduced by Hammer in
2009 [29]. This method requires an alignment length
parameter (defined as a radius). Each point of the
input set defines a candidate. The distribution of
angles from the center point to each of the points
inside the radius is evaluated. When the circular-
uniform distribution is rejected, using a Rayleigh test,
the candidate produces a detection. The last decision

requires a significance level α.

The experiments presented here were done using
the author implementation of the algorithm, included
in the software package PAST [30]. Fig. 11 shows
the results for the three data sets considered in this
comparison and for four parameter sets (no detection
was produced for l = 0.6 and α = 0.00001). As
one can see in the first row, the default significance
level used in PAST is not satisfactory: it produces
many detections on random sets of points (left and
middle). Using this significance level one gets some
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(a) (b) (c)

Fig. 15. Examples imperfectly solved by the proposed
algorithm. The local window and the boxes are not
drawn.

of the expected alignments in the data set containing
alignments (right). But, as in the previous method,
redundancy is observed and many false detections,
mainly caused by the presence of the clusters. When
the significance level is changed to α = 0.00001 (sec-
ond row), the number of false detections in noise is re-
duced significantly; unfortunately, the true alignments
also disappear, leaving only two detections due to a
cluster. Using a longer alignment length (third row)
produced no better results. Increasing the significance
level for long alignments led to no detection.

As discussed in Sect. 1, general clustering methods
can provide point alignments when a criterion is
added to select elongated clusters. We will show re-
sults of this approach using the well-known algorithm
by Figueiredo and Jain [22]. This algorithm adds an
important aspect to our comparison: like our algo-
rithm it is unsupervised. Fig. 12 shows the results for
the same point sets used before. Being a randomized
algorithm, the best results obtained in our tests are
presented. The method was used in its standard form,
fitting Gaussian mixtures. Each ellipse in the figure
corresponds to a Gaussian cluster. The results ob-
tained for the structured points are surprisingly good:
each one of the perceived alignments and clusters is
well represented. The middle result on random points
is far less satisfactory as it includes many elongated
clusters interpretable as alignment detections.

Fig. 13 shows the results of the proposed algorithm
for the same data sets. As one can see, no detection is
produced in the random points, and the three align-
ments were found. Two of the detections are however
shorter than expected and the top vertex of the “A”
is missing. Note how the method correctly handled
the redundant detections. Some further results of
our method, with increasing difficulty, are shown in
Fig. 14, where the figures are correctly solved. Notice
how the very low relative density alignment in Fig. 14
(right) was correctly detected.

To conclude this experimental section, we present
and comment some example figures that show the
limitations of our algorithm, see Fig. 15. Again, we
will use synthetic datasets that show clearly each
condition, but similar effects can be observed in real
data. All the alignments in Fig. 15(a) were found;
however, the redundancy reduction step did not se-
lect the candidates covering the complete alignments.
Also, a global interpretation of the figure is lacking
but requires other detection tools. The set of points
in Fig. 15(b) is the same already shown in Fig. 1;
the alignment found by the algorithm is correct,
but as discussed before, does not correspond to the
most common interpretation by a human observer. A
natural way of handling this problem would be to
detect the “curves” by good continuation and then
forcing a global interpretation by methods similar to
our masking methodology, that would discard the
detected alignment as “masked” by the curves. In
Fig. 15(c) the presence of a large cluster masks an
alignment: it increases artificially the number of tests
and short segments are no longer detected. Handling
this example probably implies a round cluster detec-
tor but also a recursive approach: once a cluster is
detected and removed, our algorithm would easily
detect both alignments.

9 VANISHING POINTS DETECTION

In Section 8 we used synthetic datasets to illustrate the
behavior of the discussed methods more strikingly,
but the same phenomena appear with real data. To
show the validity of the proposed method in real data,
we have applied it to the problem of automatically
finding vanishing points (VPs) in an image. (A camera
projects parallel lines in 3D space into 2D lines in the
image that converge on a point, known as a vanishing
point.) Here we briefly describe the methodology and
we refer the reader to [43] for the complete details.

The method is based on point-to-line mappings,
where converging lines correspond to aligned points.
It starts by parameterizing line segments computed in
the image as points in a dual space, using for this the
PClines parameterization [17]. An example is shown
in Fig. 16. Each dual point in Fig. 16(b) corresponds
to a line segment in Fig. 16(a). We ran the alignment
detector on the points in the dual space, see Fig. 16(c).
The detections should correspond to converging lines
in the image, thus to the VPs. The complete method
includes a pre-processing and a post-processing steps.
In the pre-processing step, the alignment detector was
applied again to the endpoints of line segments to
obtain additional lines aligned with the vanishing
directions, shown in blue in Fig. 16(a). In the post-
processing step, the meaningfulness value (NFA) of
each detection in the dual space was used to deter-
mine the best VP hypothesis [43]. Fig. 16(d) shows the
result of the method, highlighting in different colors
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Fig. 16. Application of the method for the automatic detection of vanishing points in a scene. (a) Original image
line segments (black) and alignments of line segment endpoints [43] (blue). (b) Parameterization of the lines in a
dual space, where converging lines become aligned points. (c) Result of the alignment detector in the dual space
(parallel black lines). Dashed lines represent the ground truth vanishing points. (d) Final result of [43]. Fig. 12(d)
shows the result obtained with the method of Figueiredo and Jain [22] for the same set of points.

the line segments assigned to each vanishing direction
and the obtained horizon line.

A commonly used performance measure in the VP
detection literature is the fraction of VPs detected
correctly within an angular tolerance in the Gaussian
sphere [6]. A tolerance of 10◦ is usually used on
the York Urban Dataset [13], which consists of 102
urban scenes with annotated ground truth. Within
this tolerance, our method finds 100% of the VPs,
compared to 98.04% for the best reported performance
[16], achieving a 1.02◦ average error against 1.41◦.
Another standard performance measure is the error in
the horizon line estimation; our method also obtains
a 2% improvement [43] over the state-of-the-art [68].

For a comparison, the same points of Fig. 16 were
tested with the algorithm of Figueiredo and Jain
[22] (for [28], [29] the same problems described in
synthetic data are observed). The result is shown
in Fig. 12(d). Although some of the alignments are
correctly detected, the result would still require non-
trivial post-processing to correctly determine the VPs.
One possibility is to validate the obtained clusters
with our criterion.

10 CONCLUSION
In this work we have presented a series of algo-
rithms with incrementing sophistication for detecting
alignments of points in a point pattern. The two key
aspects of the alignment have been shown to be its
local density and its regularity. Our final method
combines both criteria into a single coherent detector.
We have also introduced a new procedure to resolve
the problem of redundant detections. Finally, we have
presented successful results on both synthetic and
real datasets. The main limitation of the method is
its high computational cost, whose improvement will
be addressed in future work. Also, when a gestalt
conflict occurs, as in Fig. 1 (right), the method fails to
give the correct interpretation. In an attempt to solve
this problem, the same methodology will be used to
handle the detection of the Good Continuation gestalt.
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