
Published in Image Processing On Line on YYYY–MM–DD.
Submitted on YYYY–MM–DD, accepted on YYYY–MM–DD.
ISSN 2105–1232 c© YYYY IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol

2
0
1
3
/
0
7
/
1
9

v
0
.4

IP
O
L

a
rt
ic
le

c
la
ss

Efros and Freeman Image Quilting Algorithm for Texture

Synthesis

Lara Raad1, Bruno Galerne2

1 CMLA, ENS Cachan, France (raad@cmla.ens-cachan.fr)
2 Laboratoire MAP5 (UMR CNRS 8145), Université Paris Descartes, Sorbonne Paris Cité

(bruno.galerne@parisdescartes.fr)

PREPRINT February 15, 2016

Abstract

Exemplar-based texture synthesis is defined as the process of generating, from an input
texture sample, new texture images that are perceptually equivalent to the input. Efros and
Freeman’s method is a non-parametric patch-based method which computes an output texture
image by quilting together patches taken from the input sample. The main innovation of their
work relies in the stitching technique which significantly reduces the transition effect between
patches. In this paper, we propose a detailed analysis and implementation of their work. We
provide a complete mathematical description of the linear programing problem used for the
quilting step as well as implementation details. Additionally we propose a partially parallel
version of the quilting technique.

Keywords: Texture synthesis, quilting, patch, linear programming

1 Introduction

Texture synthesis is a classical image processing problem that finds its applications in virtual real-
ity rendering (video games, animation movies, . . .). Given an input texture image, it consists in
producing output texture images that are both visually similar to and pixel-wise different from the
input, and having possibly a larger size. One can separate texture synthesis algorithms into two cat-
egories, namely statistical constraint approaches and non-parametric patch-based methods, although
“hybrid” algorithms have been proposed recently [16, 14].

Statistical constraint texture synthesis algorithms model the texture based on statistical and/or
perceptual considerations. They generally involve two different steps, one for analysis and one for
synthesis. The analysis step consists in estimating a set of relevant statistics from the input texture
image. The synthesis step computes an image that satisfies the statistical constraints estimated
during the analysis step. Following the seminal paper of Heeger and Bergen [8, 2], several methods

http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dx.doi.org/10.5201/ipol

Lara Raad, Bruno Galerne

are based on statistics of wavelet coefficients or more involved multiscale image representations [13,
12, 15]. Another approach initially proposed by van Wijk [17] consisting in randomizing the Fourier
phase of an image has been extended to an exemplar-based synthesis method in [7, 6] suitable for
micro-textures (textures that do not present salient geometric patterns and that are not constituted
of individual discernible objects).

Non-parametric patch-based algorithms attempt at producing a new texture by arranging local
neighborhoods of the input texture in a consistent way. The first methods of this kind are sequential
algorithms that create a new texture one pixel at a time [5, 19]. These algorithms represented a
breakthrough in the field since they are able to reproduce macro-textures with specific geometric
structures, see e.g. the IPOL paper [1]. Along with the method of Liang et al [11] developed at the
same period, image quilting [4], the algorithm investigated in this paper, computes the new texture
by arranging seamlessly full patches of the input texture. The main innovation of this method is
the procedure to stitch a new patch in the sequentially built output texture to avoid discontinuities
as much as possible. This is achieved by computing an optimal boundary cut between the patch
and the synthesis area thanks to a linear programming optimization (see Section 2 for details). Let
us note that another solution of this “stitching step” is proposed in [10] using graphcuts. Many
contributions have since improved the results of image quilting, at least regarding the computational
cost, and we refer to the state of the art [18] for a more complete survey of this category of texture
synthesis algorithms. Let us also mention the recent paper [9] that discusses and atempts to solve
some limitations of these approaches.

The plan of the paper is as follows. Section 2 describe in detail all the steps of the algorithm
and in particular gives a detailed mathematical description of the linear programing problem for
the computation of the minimum error boundary cut. Section 3 gives implementation details and
discuss a parallelization of the Efros-Freeman algorithm which, to the best of our knowledge, is a
contribution of this paper. Section 4 presents numerous experiments of our implementation of the
Efros-Freeman algorithm. This experimental section shows that this algorithm produces most of
the time visually good results. However, a set of failure cases shows that the shortcomings of the
Efros-Leung algorithm, that is, garbage growing and verbatim copy [5, 1], are also present in the
Efros-Freeman results, but only at a larger scale.

2 Algorithm Description

In [4] the authors propose a sequential patch-based algorithm to synthesize textures. I0 and Is denote
the input sample and the output texture respectively. The output image Is is constructed patch by
patch in a raster scan order. The goal of each iteration is to fill a patch Pold of Is that is only partially
defined on a region called overlap region (see Figure 3). To do so a patch Pin of I0 that matches Pold

on the overlap region is randomly selected. An optimal boundary cut between Pold and Pin is then
computed within the overlap region. This optimal boundary cut is used to construct the new patch
Pnew by blending Pold and Pin along the cut.

The whole image quilting algorithm is described in Algorithm 1 and the remaining of this section
will detail each step of the algorithm, namely the initialization, the patch search procedure to select
Pin, the computation of the minimum error boundary and the blending procedure along the boundary.

2.1 Initialization

The first step of the algorithm is to initialize Is. For that a random patch Pin of size wp×wp is taken
from I0 and placed at the top-left corner of Is.

2

Efros and Freeman Image Quilting Algorithm for Texture Synthesis

input iteration 10 iteration 87 iteration 217

Figure 1: Three different iterations of the synthesis process are shown. At each iteration a patch is
being synthesized. This patch is represented by the pink square for the three cases.

(a) (b) (c) (d)

Figure 2: Quilting a square patch from the input texture into the synthesized texture. (a) sub-part
of the synthesized texture. The red dotted zone shows where the new patch will be quilted. (b)
patch to quilt in the red dotted zone shown in (a). (c) error surface between the patch in (b) and
the red dotted zone in (a). The red path shows the minimum error boundary. (d) the patch in (b)
is quilted along the minimum error boundary in the corresponding zone showed in (a).

3

Lara Raad, Bruno Galerne

Algorithm 1 Image Quilting

Input: Sample texture I0, patch size wp, overlap size wo, tolerance parameter ε, output/input size
ratio r
Output: Synthesized texture Is

1: Initialize Is
2: for each patch Pold in Is do
3: Select a compatible patch Pin ∈ I0 using the Patch Selection algorithm (see Algorithm 2)
4: Compute minimum error boundary cut between Pold and Pin (see Algorithm 3)
5: Construct the patch Pnew by blending Pold and Pin along the boundary cut (see Equation (4))
6: Replace Pold with Pnew within Is
7: end for

(a) Vertical overlap (b) Horizontal overlap (c) L-shaped overlap

Figure 3: Three overlap cases arises in the raster scan order: vertical overlap for the first row,
horizontal overlap for the first column, and L-shaped overlap everywhere else.

2.2 Patch Selection

Once the image has been initialized the algorithm synthesizes the remaining patches of Is sequentially
in raster scan order. At each iteration one has to fill a patch Pold of Is that is only defined on an
overlap region of width wo. Note that there are three possible overlap regions: vertical overlap for the
first row, horizontal overlap for the first column, and L-shaped overlap everywhere else (see Figure 3).

To select a patch Pin of the input image I0 one computes the square distance between the overlap
region of the patch Pold of Is and the corresponding regions of all the patches of I0. The minimal
distance dmin is determined and Pin is randomly picked among all patches whose distance to Pold is
lower than (1 + ε)dmin where ε is the tolerance parameter.

To conclude this section let us give a detailed expression of the distance used to compare patches.
A patch of I0 is represented by the position of its top-left corner (m,n) ∈ {0, . . . ,M0 − wp} ×
{0, . . . , N0 − wp}. The squared distance image D contains at each position (m,n) the distance
between Pold and the patch from I0 who’s top-left corner is (m,n) according to some binary weight Q
that equals one in the overlap region and zero otherwise. More precisely for all (m,n) ∈ {0, . . . ,M0−
wp} × {0, . . . , N0 − wP}, one has

D(m,n) =

wp−1∑
i,j=0

Q(i, j)(P (i, j)− I0(m+ i, n+ j))2. (1)

The computation of the squared distance image D is discussed in Section 3.1 and the whole patch
selection procedure is summarized in Algorithm 2.

4

Efros and Freeman Image Quilting Algorithm for Texture Synthesis

Algorithm 2 Patch Selection

Input: Sample texture I0, patch under construction Pold, patch size wp, tolerance ε > 0, binary
weight Q defining the overlap region
Output: Patch position (m,n)

1: Compute the squared distance image D (see Equation (1)) containing the distances between the
patch Pold and all patches of I0.

2: dmin ← min
(k,l)

D(k, l).

3: Uniformly draw a patch position (m,n) among the set {(k, l), D(k, l) < (1 + ε)dmin}.

2.3 Minimum Error Boundary Cut

This step of the algorithm is the main contribution of the Efros-Freeman algorithm [4].
The Patch Search step (see Section 2.2) gives a patch Pnew of I0 having coordinates (m,n) that is

similar to the partially defined current patch Pold in their overlap region. We recall that the overlap
regions that arise in the raster scan order are of three types: vertical, horizontal, and L-shaped
overlap. These three cases are illustrated in Figure 3. To get the final patch P one must combine
the patches Pold and Pnew. Denoting Q the binary weight for the overlap regions as in the previous
section, then, for any binary image M such that 0 ≤M ≤ Q, P can be defined as the combination

Pnew = MPold + (1−M)Pin.

The main idea of Efros and Freeman [4] is looking for a binary shape M where the transition between
Pold and Pnew along the boundary of the shape is minimal. For simplicity, and to be able to use linear
programming, the authors do not allow for any shape, but only for the ones whose boundaries are
simple forward paths from one end to the other of the overlap region. This results in two pieces
of image that are sewn together along some general boundary path, hence the algorithm name
“quilting”. In the remaining of this section, we describe in details the computation of the minimum
error boundary cut for the three overlap cases, starting with the vertical and horizontal cases.

2.3.1 Connected Paths and Boundary Error

In the following, we call a path of length ` ≥ 1 in {0, . . . , wp − 1}2 any ordered sequence γ =
(γ0, γ1, . . . , γ`−1) of 8-connected pixels γk ∈ {0, . . . , wp − 1}2, that is, for all k ∈ {0, . . . , ` − 2},
max(|γ1

k+1−γ1
k|, |γ2

k+1−γ2
k|) = 1 (for convenience, within this section the first and second coordinates

of a pixel γk are denoted by γ1
k and γ2

k).
Let us recall that we use matrix coordinates for the pixels. Hence a path γ of length ` is said to

be vertical if for all k ∈ {0, . . . , ` − 2}, γ1
k+1 − γ1

k = −1 (vertical paths are oriented from bottom to
top), and horizontal if for all k ∈ {0, . . . , `− 2}, γ2

k+1 − γ2
k = −1 (horizontal paths are oriented from

right to left).
Denoting by e(i, j) = (Pnew(i, j)−Pold(i, j))2 the squared difference between the two patches Pold

and Pnew, the boundary error of a path γ of length ` is defined by

E(γ) =
`−1∑
k=0

e(γk).

2.3.2 Vertical Boundary Cuts

In this section we explain how the optimal boundary between Pold and Pnew is defined and computed
in the case of vertical overlap, that is when the overlap region is the rectangle {0, . . . , wp − 1} ×

5

Lara Raad, Bruno Galerne

{0, . . . , wo − 1}.
The optimal boundary is defined as the vertical path γ that minimizes the boundary error E(γ)

while joining both ends of the overlap regions. More precisely, define the admissible vertical paths
as

Γv = {γ = (γ0, . . . , γwp−1), ∀k, γ1
k = wp − 1− k and γ2

k ∈ {0, . . . , wo − 1}}
(one notices that paths of γ ∈ Γv are indeed vertical since γ1

k+1 − γ1
k = −1). Then an optimal

boundary is defined as any solution of the optimization problem

min
γ∈Γv

E(γ). (2)

Problem (2) is solved using dynamic programming. This is possible because Problem (2) verifies
the principle of optimality: if (γ0, . . . , γwp−1) is an optimal solution of Problem (2), then, for all
0 ≤ r ≤ wp − 1, the subpath (γ0, . . . , γr−1) is an optimal vertical path to reach the r-th point γr−1

starting from the bottom of the overlap region.
Let us now discuss in detail the dynamic programming method to solve Problem (2). For all

points (i, j) ∈ {0, . . . , wp− 1}× {0, . . . , wo− 1}, denote by Γ
(i,j)
v the set of vertical paths γ that start

at the bottom side of the overlap region and end at the point (i, j), that is

Γ(i,j)
v = {γ = (γ0, . . . , γwp−1−i), ∀k, γ1

k = wp − 1− k, γ2
k ∈ {0, . . . , wo − 1}, and γwp−1−i = (i, j)}.

Now, for all points (i, j) ∈ {0, . . . , wp−1}×{0, . . . , wo−1}, define Ev(i, j) as the minimal cumulative
vertical error to reach (i, j) starting from the bottom side, that is,

Ev(i, j) = min
γ∈Γ

(i,j)
v

E(γ).

Then, since

Γv =
⋃

j∈{0,...,wo−1}

Γ(0,j)
v ,

one has
min
γ∈Γv

E(γ) = min
j∈{0,...,wo−1}

Ev(0, j).

Now, remark that the last-but-one point of an optimal vertical path that ends at (i, j) is one of the
(at most) three points below (i, j), namely the points (i+ 1, j− 1), (i+ 1, j), (i+ 1, j+ 1) (there can
be only two neighboring points if (i, j) is at the border, that is, if j = 0 or j = wo − 1). Hence, for
all i ∈ {0, . . . , wp − 2}, one has

Ev(i, j) = e(i, j) + min(Ev(i+ 1, j − 1), Ev(i+ 1, j), Ev(i+ 1, j + 1)), (3)

where by convention, if one of the index j − 1 or j + 1 is not a valid index, the corresponding term
Ev(i+1, j−1) or Ev(i+1, j+1) is discarded from the minimum. Besides, for the last line i = wp−1,
one simply has Ev(wp − 1, j) = e(wp − 1, j) since the paths are only made of one pixel. Hence the
dynamic programming procedure for solving Problem (2) is to compute the costs Ev(i, j) line by
line from bottom to top using Equation (3) recursively, and then search for the minimal value of the
first line j∗ = argminj Ev(0, j). The full optimal path γ can then be traced back starting from this
coordinate (0, j∗) = (γ1

wp−1, γ
2
wp−1). More precisely, if (i, j) are the coordinates of the point γwp−1−i

of the optimal path γ, then its preceding point γwp−1−(i+1) is given by

γwp−1−(i+1) = argmin(Ev(i+ 1, j − 1), Ev(i+ 1, j), Ev(i+ 1, j + 1)).

In practice one stores the matrix Tv(i, j) = argmin(Ev(i+ 1, j−1), Ev(i+ 1, j), Ev(i+ 1, j+ 1)) while
computing the vertical cumulative error Ev given by Equation (3) in order to trace back the path
without additional computation since for i = wp − 2 to 0, γi = Tv(γi+1).

6

Efros and Freeman Image Quilting Algorithm for Texture Synthesis

2.3.3 Horizontal Boundary Cuts

The case of horizontal overlap is just the symmetric case of vertical overlap one. Still let us introduce
the notation that will be necessary for dealing with the L-shaped overlap case. One defines the set
of horizontal paths as

Γh = {γ = (γ0, . . . , γwp−1), ∀k, γ2
k = wp − 1− k and γ1

k ∈ {0, . . . , wo − 1}},

and for all points (i, j) ∈ {0, . . . , wo − 1} × {0, . . . , wp − 1}, one defines

Γ
(i,j)
h = {γ = (γ0, . . . , γwp−1−j), ∀k, γ2

k = wp − 1− k, γ1
k ∈ {0, . . . , wo − 1}, and γwp−1−j = (i, j)}

the set of paths that start at the right side of the overlap region and end at (i, j), as well as

Eh(i, j) = min
γ∈Γ

(i,j)
h

E(γ)

the minimal cumulative horizontal error to reach (i, j) starting from the right side of the overlap
region. Then Eh(i, wp − 1) = e(i, wp − 1), and for all j ∈ {0, . . . , wp − 2}, one has the recursive
relation

Eh(i, j) = min(Eh(i− 1, j + 1), Eh(i, j + 1), Eh(i+ 1, j + 1))

which enables to compute Eh(i, j) for all (i, j) ∈ {0, . . . , wo − 1} × {0, . . . , wp − 1}. Since

min
γ∈Γh

E(γ) = min
i∈{0,...,wo−1}

Eh(i, 0)

the end point of the optimal horizontal path is (i∗, 0) where i∗ = argminiEh(i, 0) and the path can
be traced back thanks to the matrix Th(i, j) = argmin(Eh(i− 1, j + 1), Eh(i, j + 1), Eh(i+ 1, j + 1)).

2.3.4 L-shaped Boundary Cuts

The case of L-shaped overlap regions is slightly more complex than the vertical and horizontal cases
since the geometry of the L-shape does not allow for a clear ordering of the pixels of the path. The
original paper [4] only mentions that, in the L-shaped overlap case, “the minimal paths meet in the
middle and the overall minimum is chosen for the cut”. We propose below a rigorous interpretation
of this sentence.

A separating path will start at the bottom side of the L-shape (that is, the points (i, j) with
i = wp − 1 and j ∈ {0, . . . , wo − 1}) and end at the right side of the L-shaped (that is, the points
(i, j) with i ∈ {0, . . . , wo − 1} and j = wp − 1). To restrict the geometry of admissible paths (and
allowing for dynamic programming), it is further required that an L-shaped path has to meet at some
diagonal point (i, i), i ∈ {0, . . . , wo − 1}, that the first part from the bottom side to this diagonal
point (i, i) is a vertical path, and that the remaining part from the diagonal point (i, i) to the right
side is a reversed horizontal path. More formally, for all indexes i ∈ {0, . . . , wo − 1}, one defines

ΓiL = {γ = (γ0, . . . , γ2(wp−i)−1), (γ0, . . . , γwp−i−1) ∈ Γ(i,i)
v and (γ2(wp−i)−1, . . . , γwp−i−1) ∈ Γ

(i,i)
h },

and for all γ ∈ ΓiL we denote by γv and γh its associated vertical and horizontal paths of Γ
(i,i)
v and

Γ
(i,i)
h respectively. The set of the admissible L-shaped boundaries ΓL is then defined as the disjoint

union of the sets ΓiL, that is,

ΓL =

w0−1⋃
i=0

ΓiL.

7

Lara Raad, Bruno Galerne

As before, we search for an optimal L-shaped boundary cut γ ∈ ΓL having minimal boundary error

E(γ) =

`(γ)−1∑
k=0

e(γk),

where `(γ) is the length of the path γ (which is equal to 2(wp − i) − 1 if γ ∈ ΓiL). The optimal
L-shaped boundary can be found in splitting the above sum into a vertical part and an horizontal
part, since for all γ ∈ ΓiL one has

E(γ) = E(γv) + E(γh)− e(i, i).

Hence one has

min
γ∈ΓL

E(γ) = min
i∈{0,...,wo−1}

min
γ∈Γi

L

E(γ)

= min
i∈{0,...,wo−1}

min
γ∈Γi

L

E(γh) + E(γv)− e(i, i)

= min
i∈{0,...,wo−1}

[(
min

γv∈Γ
(i,i)
v

E(γv)

)
+

(
min

γh∈Γ
(i,i)
h

E(γh)

)
− e(i, i)

]
= min

i∈{0,...,wo−1}
Ev(i, i) + Eh(i, i)− e(i, i),

where Ev and Eh are the vertical and horizontal cumulative errors defined in the previous sections.
Hence,

min
γ∈ΓL

E(γ) = min
i∈{0,...,wo−1}

Ev(i, i) + Eh(i, i)− e(i, i).

The above equation enables us to determine the optimal position (i∗, i∗) on the diagonal of the
optimal path γ once the matrices Ev and Eh have been computed recursively. We can then trace
back the vertical part γv and the horizontal part γh of the optimal path γ using the matrices Tv and
Th. Let us remark that the “overall minimum” evoked in [4] must not be interpreted as the minimum
of Ev(i, i) + Eh(i, i) but the minimum of Ev(i, i) + Eh(i, i)− e(i, i).

2.4 Blending along the Cut

This is the last step of an iteration. Its goal is to construct the new patch Pnew by blending Pold and
Pin using the previously computed boundary cut. The boundary cut defines a binary mask M that
equals one on the left and/or top of the cut and zero otherwise. The patch Pnew can be defined as

Pnew = MPold + (1−M)Pin. (4)

We noticed that the Matlab implementation of the authors proposes an optional smoothing of the
binary mask presumably to avoid noticeable transitions along the cut. We implemented this option
but we did not observe noticeable improvements. Since it is not discussed in the original paper we
do not use it for the experimental results of this paper.

3 Implementation

3.1 Computing Patch Distances with FFT

In this section we explicit an algorithm to compute the squared distance between a patch Pold and
all the patches of the input texture I0 using Fast Fourier Transform (FFT), that is, to compute the

8

Efros and Freeman Image Quilting Algorithm for Texture Synthesis

Algorithm 3 Minimum Error Boundary Cut

Input: Output texture Is, patch Pold (from Is), patch Pin (from I0), patch size wp, overlap size wo
Output: Boundary cut γ

1: Compute the squared difference e(i, j) = (Pnew(i, j)− Pold(i, j))2

2: switch (overlap type)
3: case vertical:
4: Compute the minimal cumulative vertical error Ev:
5: Ev(wp − 1, j) = e(wp − 1, j), j ∈ {0, . . . , wo − 1}
6: for i = wp − 2 to 0 do
7: Ev(i, j) = e(i, j) + min(Ev(i+ 1, j − 1), Ev(i+ 1, j), Ev(i+ 1, j + 1)), j ∈ {0, . . . , wo − 1}
8: Tv(i, j) = argmin(Ev(i+ 1, j − 1), Ev(i+ 1, j), Ev(i+ 1, j + 1)), j ∈ {0, . . . , wo − 1}
9: end for

10: Determine j∗ = argminj Ev(0, j)
11: Trace back the path γ starting at γwp−1 = (0, j∗) using Tv: for i = wp − 2 to 0, γi = Tv(γi+1)
12: case horizontal:
13: Compute the minimal cumulative horizontal error Eh:
14: Eh(i, wp − 1) = e(i, wp − 1), i ∈ {0, . . . , wo − 1}
15: for j = wp − 2 to 0 do
16: Eh(i, j) = e(i, j) + min(Eh(i− 1, j + 1), Eh(i, j + 1), Eh(i+ 1, j + 1)), i ∈ {0, . . . , wo − 1}
17: Th(i, j) = argmin(Eh(i− 1, j + 1), Eh(i, j + 1), Eh(i+ 1, j + 1)), i ∈ {0, . . . , wo − 1}
18: end for
19: Determine i∗ = argminiEh(i, 0)
20: Trace back the path γ starting at γwp−1 = (i∗, 0) using Th: for j = wp − 2 to 0, γj = Th(γj+1)
21: case L-shaped:
22: Compute the minimal cumulative vertical error Ev as in the vertical case
23: Compute the minimal cumulative horizontal error Eh as in the horizontal case
24: Determine i∗ = argmini(Ev(i, i) + Eh(i, i)− e(i, i)) (with i ∈ {0, . . . , wo − 1})
25: Trace the vertical part of γ starting at (i∗, i∗) using Tv: for i = wp− i∗− 2 to 0, γi = Tv(γi+1)
26: Trace the horizontal part of γ starting at (i∗, i∗) using Th: for j = wp − i∗ to 2(wp − i∗) − 1,

γj = Th(γj−1)
27: end switch

squared distance image D of Equation (1) involved in the patch search algorithm (see Algorithm 2).
To the best of our knowledge, regarding texture synthesis this acceleration was first discussed by
Kwatra et al. [10]. Recall that we consider a patch Pold of size wp×wp and that I0 is of size M0×N0.
Hence the naive summation to compute

D(m,n) =

wp−1∑
i,j=0

Q(i, j)(Pold(i, j)− I0(m+ i, n+ j))2

for all (m,n) ∈ {0, . . . ,M0−wp}×{0, . . . , N0−wp} requires around w2
pM0N0 operations with wp = 40

pixels as a typical value. An important asset of the proposed FFT-based implementation is that the
computational cost is limited to two FFT calls for images of size M0 ×N0 and is thus independent
of the patch width wp.

Let us first recall some notation. A patch of size wp × wp within an image is represented by its
top-left corner, hence all admissible patches of I0 have (m,n)-coordinates in the set {0, . . . ,M0 −
wp} × {0, . . . , N0 − wp}.

9

Lara Raad, Bruno Galerne

Discrete Fourier Transform Given any image V ∈ RM0×N0 we denote by F(V) = V̂ the discrete
Fourier transform of V and F−1(V) = V̌ the inverse discrete Fourier transform of V defined by

V̂ (k, l) =
1

M0N0

M0−1∑
m=0

N0−1∑
n=0

V (m,n)e
−2iπ

(
km
M0

+ nl
N0

)
and V̌ (k, l) =

M0−1∑
m=0

N0−1∑
n=0

V (m,n)e
2iπ

(
km
M0

+ nl
N0

)
.

Convolution Product Denote by V ∗W the convolution product between V and W , that is,

V ∗W (m,n) =

M0−1∑
k=0

N0−1∑
l=0

V (k, l)W (m− k, n− l),

where the indexes are (m − k, n − l) are understood modulo (M0, N0). With these conventions
for the DFT, one has F(V ∗ W) = M0N0V̂ Ŵ , where the multiplication between images is the
componentwise product. However, recall that the FFTW library computes the Fourier transform
without normalization. Hence the operators that are computed are respectively M0N0F for the
forward transform and F−1 for the backward transform. Hence we have

V ∗W = F−1(F(V ∗W)) =
1

M0N0

F−1(M0N0F(V)M0N0F(W)).

This means that after multiplying the two FFTW forward transforms and performing the backward
inverse transform, one has to normalize in dividing by the size of the images.

Cross-correlation Let us denote by Γ(V,W) the cross-correlation between two images,

Γ(V,W)(m,n) =

M0−1∑
k=0

N0−1∑
l=0

V (k, l)W (m+ k, n+ l).

Note also Ṽ the symmetric of V with respect to the origin, that is, Ṽ (m,n) = V (−m,−n). Note

that one has Γ(W,V)(m,n) = Γ(V,W)(−m,−n), that is, Γ(W,V) = ˜Γ(V,W) and that the cross-
correlation is simply a convolution between the symmetric version of the first image and the second
image, that is,

Γ(V,W)(m,n) = Ṽ ∗W (m,n) = V ∗ W̃ (−m,−n).

Hence the computational cost for a cross-correlation image is the same as the one for a convolution
product, that is three FFT calls.

We need to compute the squared distance between a patch Pold and all the patches of I0 according
to some binary weight Q that represents the overlap region (that is a horizontal, vertical, or L-shaped
mask). More precisely for all (m,n) ∈ {0, . . . ,M0 − wp} × {0, . . . , N0 − wp}, we want to compute

D(m,n) =

wp−1∑
i,j=0

Q(i, j)(Pold(i, j)− I0(m+ i, n+ j))2.

Let us denote by Pext and Qext the extensions of Pold and Q into images of size M0 × N0 by filling
the domain with 0-valued pixels, that is

Pext(m,n) =

{
Pold(m,n) if (m,n) ∈ {0, . . . , wp − 1} × {0, . . . , wp − 1},
0 otherwise,

10

Efros and Freeman Image Quilting Algorithm for Texture Synthesis

and similarly for Qext. Then one has

D(m,n) =

=

wp−1∑
i,j=0

Q(i, j)(Pold(i, j)− I0(m+ i, n+ j))2

=

M0−1∑
k=0

N0−1∑
l=0

Qext(k, l)(Pext(k, l)− I0(m+ k, n+ l))2

=

M0−1∑
k=0

N0−1∑
l=0

(
Qext(k, l)Pext(k, l)

2 − 2Qext(k, l)Pext(k, l)I0(m+ k, n+ l) +Qext(k, l)I0(m+ k, n+ l)2
)

=

wp−1∑
i,j=0

Q(i, j)Pold(i, j)2 − 2Γ(QextPext, I0)(m,n) + Γ(Qext, I
2
0)(m,n),

where the multiplications QextPext and I2
0 are componentwise.

Within our procedure, we will compare a patch Pold that is taken from the output image that
is only partially defined, and the binary weight Q representing the overlap region. Hence, if all the
undefined pixels of the output patch Pold are set to 0 (by initializing Is to 0), one has

∀(i, j) ∈ {0, wp − 1}2, Q(i, j)Pold(i, j) = Pold(i, j).

Consequently,
wp−1∑
i,j=0

Q(i, j)Pold(i, j)2 =

wp−1∑
i,j=0

Pold(i, j)2 = ‖Pold‖2
2

and QextPext = Pext, and thus Γ(QextPext, I0) = Γ(Pext, I0). Hence, the binary mask Q is only influent
when computing Γ(Qext, I

2
0), a computation that is done just once at the beginning of the procedure

since it does not depend on Pold.
In the end, the image D is simply given by

D = ‖Pold‖2
2 − 2Γ(Pext, I0) + Γ(Qext, I

2
0) (5)

where the last image Γ(Qext, I
2
0) is computed once before running the algorithm and stored in memory.

Hence the cost for computing D is only three FFT calls for the computation of the cross-correlation
Γ(Pext, I0), and is even reduced to two FFT calls by storing the DFT of I0.

Note that the image D is defined for all (m,n) ∈ {0, . . . ,M0 − 1} × {0, . . . , N0 − 1}, but the
squared distances for (m,n)-coordinates outside {0, . . . ,M0 −wp} × {0, . . . , N0 −wp} correspond to
patches of size wp × wp that are defined by periodic boundary conditions and thus those patches
must be discarded when searching for the minimal distance.

Minimum distance Theoretically the results of the distance computation using the sum square
differences or the FFT are equal. But in practice, the computation using the FFT is subject to
rounding errors. Especially if there is a patch such that D(m,n) = 0, when adding positive and
negative terms in Equation (5) the result might be negative due to numerical errors. This rounding
error problem leads to a negative minimal squared distance dmin, which leads to errors in the patch
search algorithm (Algorithm 2) since then none of patches satisfy the condition D(m,n) < (1+ε)dmin.
To avoid this, all squared distances D(m,n) smaller than 1 are set to D(m,n) = 1 (the value 1 is
smallest distance-value greater than 0).

11

Lara Raad, Bruno Galerne

iteration 1 iteration 2 iteration 3 iteration 4 iteration 5

iteration 6 iteration 7 iteration 8 iteration 9 iteration Nit

Figure 4: Evolution of the synthesized image with the parallelization. New patches from two subse-
quent iterations are added simultaneously.

3.2 Parallelization

Although the Efros-Freeman algorithm was presented as a purely sequential algorithm, we found
out that the procedure can be partially parallelized, and thus the algorithm significantly accelerated
when running on multi-core platforms.

In general, non-parametric patch based methods can not be completely parallelized because the
sequential assignment of patches is strongly dependent of the previous synthesis steps. Nevertheless,
in the case of the quilting method, a new patch assignment is only correlated to some previous
synthesis steps and not all of them. To illustrate this let us consider the first few steps of the
algorithm. The first step of the algorithm adds the seed patch and the second step adds a second
patch on the right. When adding the third patch, the first patch of the second row can be created
at the same time since it only depends on the one that is on top of it and on its top-right. More
generally the synthesis of a new row of patches can be started as soon as two patches of the previous
row have been synthesized. This procedure is illustrated in Figure 4.

Let us discuss the acceleration induced by the parallelization. Suppose we synthesize an image
Is made of Nr × Nc patches where Nr is the number patch rows and Nc is the number of patch
columns. Without the parallelization the number of iterations Nit is Nit = NrNc. When parallelizing
the number of iterations Nit is reduced to 2(Nr − 1) +Nc. This parallelization is especially effective
if one has as many processors available as patches to synthesize simultaneously in one iteration.
The maximal number of patches to synthesize simultaneously is equal to min (Nr,

⌊
Nc+1

2

⌋
), where

bxc = max(n ∈ N, n ≤ x), since within an iteration there is at most one new patch per row and one
new patch per pair of column.

The parallel version of the quilting algorithm is summarized in Algorithm 4. Let us notice that
for this parallelization to be valid the overlap size must satisfy wo ≤ wp/2 which is always the case
in practice.

12

Efros and Freeman Image Quilting Algorithm for Texture Synthesis

Algorithm 4 Parallelization

Input: Sample texture I0, Nr is the number patch rows, Nc is the number of patch columns
Output: Synthesized texture Is

1: Nit ← 2(Nr − 1) +Nc

2: Initialize Is
3: for k = 1 to Nit − 1 do
4: for i = max(0, bk−Nc+1

2
c) to min(Nr − 1, bk

2
c) do

5: Is ← synthesize a new patch at position
(
i(wp − wo), (k − 2i)(wp − wo)

)  This loop is
run in parallel

6: end for
7: end for

Figure 5: Results representation. From left to right: texture sample, position map, synthesized image
and synthesis map. The synthesis map shows for each synthesized patch its position in the texture
sample. It allows then to identify exactly the verbatim copy regions (continuous color areas of the
map).

4 Experiments

In this section texture synthesis results are shown using the algorithm described previously [4]. Two
apects of this method are emphasized. On the one hand the visual quality result and on the other
hand the tendency of the method to verbatim copy parts of the input sample. For this we represent
each result as shown in Figure 5: the input sample I0, the color map, the synthesized texture Is and
the synthesis map. The color map is an image of size equal to the size of I0 and each of its pixels is
assigned a different color. This allows to visualize each position of I0 with the corresponding color of
the color map. The synthesis map allows to identify from where comes every patch copied in I0 and
quilted in Is. This allows to easily identify verbatim copies. Each pixel p

′
i in Is is assigned a pixel pj

from I0. The synthesis map at position p
′
i is mapped to the value of the color map at position pj.

Let us discuss the influence of the parameters. There are three of them: the patch size wp, the
overlap size wo and the tolerance parameter ε. The overlap size is expressed as the proportion respect
to the patch size. That is wo = 0.25 implicitly means wo = 0.25wp.

In Figures 6 and 7 successful results are shown for different type of textures. For each example the
patch size wp is adapted taking one of the following values {10, 20, 40, 80}. The remaining parameters
are fixed to wo = 0.25 and ε = 0.1.

In Figure 8 three failure cases are shown. The first one is due to the patch size. When this one is
too small, in particular for macro textures, the algorithm fails to recover the details of the different
scales as can be seen in the first row examples’ in Figure 8. The second failure is the verbatim copy
effect. For some texture samples the verbatim copy zones are visually noticeable and unnatural.
This is illustrated in the second row examples’ in Figure 8. The last failure case is the “growing
garbage” drawback. This is when the method is stuck in a region of the input sample repeating it on

13

Lara Raad, Bruno Galerne

a large part of the output. This is due to the local aspect of the algorithm and it is more noticeable
when the texture examples are not stationary. This is also shown in Figure 8 in the last row. It is
important to notice that the two last failure cases are more noticeable when the output size - input
size ratio is higher than two.

Influence of the patch size

First of all the patch size influence is analyzed and these results are shown in Figure 9. For this
wo = 0.25 and ε = 0.1 are fixed and the synthesis results for wp ∈ {10, 20, 40, 80} are compared. This
parameter clearly depends on the input sample. In general macro textures have details at different
scales. If the patch size chosen is not able to capture them all then the synthesis fails. A second
observation is that the larger the patch size is the larger the verbatim copy zones are. For smaller
patches this effect is reduced, since more “similar” patches are available in patch search step and
then the set of candidate patches is larger allowing more variation.

Influence of the overlap size

The overlap size is an important parameter in this method. To analyze its influence wp = 40 and
ε = 0.1 are fixed and the results for wo ∈ {0.10, 0.25, 0.5} are compared. The general conclusion is
that for larger overlap sizes the transition from one patch to the other is satisfying on the cost of
growing garbage for some texture sample as can be seen in the two first examples in Figure 10 for
wo = 0.50. On the other hand if wo is low the set of candidate patches is bigger and thus reduces
the verbatim copy effect on the cost of decreasing the visual quality of the results as can be seen in
the third example in Figure 10.

Influence of the tolerance parameter

This last parameter is directly related to the verbatim copy effect. For this analysis wp = 40 and
wo = 0.25 are fixed and the results for ε ∈ {0.05, 0.1, 0.3, 0.5, 0.7} are compared. Increasing ε implies
having more candidate patches for the synthesis. This allows more variation when choosing a patch
in the image and this is directly seen in the synthesis maps of the examples in Figure 11 where for
ε ∈ {0.5, 0.7} the patches are taken more “randomly” from the input sample thus reducing the size of
the verbatim copy regions. For some texture examples the visual quality of the result can decrease.
On the other hand, as expected, low values of ε leads to very large verbatim copy areas.

5 Conclusion

In this paper we analyzed in detail Efros and Freeman’s texture synthesis algorithm [4]. Extensive
numerical experiments have been proposed to illustrate the performance of the method as well as
the influence of its parameters. We conclude from these experiments that in general, for the correct
set of parameters, the visual results are satisfying to the cost of verbatim copying large parts of the
input textures that might be visually disturbing. This is a common drawback of Efros and Leung’s
method [5]. Another issue that arises in [4] is the garbage growing effect. This is especially apparent
when the input texture is not stationary. We also noticed that it is related to the raster scan order
used to synthesize the image, which propagates the errors. All these drawbacks are in general more
apparent when synthesizing an image significantly larger than the input. Hence, due to the raster
scan order, the quilting algorithm is not suitable to generate very large texture images since the
quality tends to decrease with the distance to the top left corner of the image.

14

Efros and Freeman Image Quilting Algorithm for Texture Synthesis

wp = 40, r = 2 wp = 80, r = 2 wp = 40, r = 2

wp = 40, r = 2 wp = 80, r = 2 wp = 40, r = 2

wp = 20, r = 2 wp = 40, r = 2 wp = 80, r = 2

wp = 20, r = 2 wp = 40, r = 2 wp = 80, r = 2

wp = 20, r = 2 wp = 20, r = 2 wp = 40, r = 2

wp = 20, r = 2 wp = 20, r = 2 wp = 40, r = 2

Figure 6: Successful results of Efros and Freeman image quilting algorithms. The small images
represent the example texture and the big ones the corresponding synthesis result. Each row of
examples is followed by a row containing the corresponding color and synthesis maps. For all examples
the patch size wp and the ratio r used is indicated. The overlap size is fixed to wo = 0.25 and the
tolerance error to ε = 0.1.

15

Lara Raad, Bruno Galerne

wp = 80, r = 2 wp = 40, r = 2 wp = 20, r = 2

wp = 80, r = 2 wp = 40, r = 2 wp = 20, r = 2

wp = 40, r = 2 wp = 40, r = 2 wp = 40, r = 2

wp = 40, r = 2 wp = 40, r = 2 wp = 40, r = 2

Figure 7: Successful results of Efros and Freeman image quilting algorithms. The small images
represent the example texture and the big ones the corresponding synthesis result. Each row of
examples is followed by a row containing the corresponding color and synthesis maps. For all examples
the patch size wp and the ratio r used is indicated. The overlap size is fixed to wo = 0.25 and the
tolerance error to ε = 0.1.

16

Efros and Freeman Image Quilting Algorithm for Texture Synthesis

wp = 20, r = 2 wp = 40, r = 2 wp = 10, r = 2

wp = 20, r = 2 wp = 40, r = 2 wp = 10, r = 2

wp = 80, r = 4 wp = 80, r = 4 wp = 40, r = 2

wp = 80, r = 4 wp = 80, r = 4 wp = 40, r = 2

wp = 20, r = 4 wp = 20, r = 4 wp = 40, r = 4

wp = 20, r = 4 wp = 20, r = 4 wp = 40, r = 4

Figure 8: Failures of Efros and Freeman image quilting algorithms. The small images represent
the example texture and the big ones the corresponding synthesis result. First row examples’ show
failures related to an incorrect patch size. Second row examples’ show the case of verbatim copy
failures. Third row examples’ show the case of growing garbage. For all examples the patch size wp
and the ratio r used is indicated. 17

Lara Raad, Bruno Galerne

input wp = 10 wp = 20 wp = 40 wp = 80

Figure 9: Patch size influence. Each couple of rows shows from left to right the input, the synthesis
results for wp = 10, 20, 40, 80 and the corresponding color and synthesis maps. For all examples
wo = 0.25 and ε = 0.1.

18

Efros and Freeman Image Quilting Algorithm for Texture Synthesis

input wo = 0.10 wo = 0.25 wo = 0.50

Figure 10: Overlap size influence. Each couple of rows shows from left to right the input, the
synthesis results for wo = 0.1, 0.25, 0.5 and the corresponding color and synthesis maps. For all
examples wp = 40 and ε = 0.1.

19

Lara Raad, Bruno Galerne

input ε = 0.05 ε = 0.1 ε = 0.3 ε = 0.5 ε = 0.7

Figure 11: Tolerance error influence. Each couple of rows shows from left to right the input, the
synthesis results for ε = 0.05, 0.1, 0.3, 0.5, 0.7 and the corresponding color and synthesis maps. For
all examples wp = 40 and wo = 0.25.

20

Efros and Freeman Image Quilting Algorithm for Texture Synthesis

We provide with this analysis a strategy to partially parallelize the method who was initially
introduced as essentially sequential. This allows a significant speed up when running with multi-core
processors.

References

[1] C. Aguerrebere, Y. Gousseau, and G. Tartavel. Exemplar-based texture synthesis: the Efros-
Leung algorithm. Image Processing On Line, 2013.

[2] T. Briand, J. Vacher, B. Galerne, and J. Rabin. The heeger & bergen pyramid based texture
synthesis algorithm. Image Processing On Line, 4:276–299, 2014.

[3] Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B Goldman, and Pradeep Sen. Image
melding: combining inconsistent images using patch-based synthesis. ACM Trans. Graph.,
31(4):82–1, 2012.

[4] A. A. Efros and W. T. Freeman. Image quilting for texture synthesis and transfer. In SIGGRAPH
’01, pages 341–346, New York, NY, USA, 2001. ACM.

[5] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In ICIP 1999,
pages 1033 – 1038, September 1999.

[6] B. Galerne, Y. Gousseau, and J.-M. Morel. Micro-texture synthesis by phase randomization.
Image Processing On Line, 2011.

[7] B. Galerne, Y. Gousseau, and J.-M. Morel. Random phase textures: Theory and synthesis.
IEEE Trans. Image Process., 20(1):257 – 267, 2011.

[8] D. J. Heeger and J. R. Bergen. Pyramid-based texture analysis/synthesis. In SIGGRAPH ’95,
pages 229–238, New York, NY, USA, 1995. ACM.

[9] Alexandre Kaspar, Boris Neubert, Dani Lischinski, Mark Pauly, and Johannes Kopf. Self tuning
texture optimization. In Computer Graphics Forum, volume 34, pages 349–359. Wiley Online
Library, 2015.

[10] V. Kwatra, A.Schödl, I. Essa, G. Turk, and A. Bobick. Graphcut textures: image and video
synthesis using graph cuts. In SIGGRAPH ’03, pages 277–286. ACM Press, 2003.

[11] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, , and H.-Y. Shum. Real-time texture synthesis by patch-
based sampling. ACM Trans. Graph., 20(3):127–150, 2001.

[12] G. Peyré. Texture synthesis with grouplets. IEEE Trans. Pattern. Anal. Mach. Intell.,
4(32):733–746, 2010.

[13] J. Portilla and E. P. Simoncelli. A parametric texture model based on joint statistics of complex
wavelet coefficients. Int. J. Comp. Vis., 40(1):49–71, 2000.

[14] L. Raad, A. Desolneux, and J.-M. Morel. Locally Gaussian exemplar based texture synthesis.
In Image Processing (ICIP), 2014 IEEE International Conference on, pages 4667–4671, 2014.

[15] Julien Rabin, Gabriel Peyr, Julie Delon, and Marc Bernot. Wasserstein barycenter and its
application to texture mixing. In Scale Space and Variational Methods in Computer Vision,
volume 6667 of Lecture Notes in Computer Science, pages 435–446. Springer Berlin / Heidelberg,
2012.

21

Lara Raad, Bruno Galerne

[16] G. Tartavel, Y. Gousseau, and G. Peyré. Variational texture synthesis with sparsity and spec-
trum constraints. Journal of Mathematical Imaging and Vision, 2014.

[17] J. J. van Wijk. Spot noise texture synthesis for data visualization. In SIGGRAPH ’91, pages
309–318, New York, NY, USA, 1991. ACM.

[18] L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk. State of the art in example-based texture
synthesis. In Eurographics 2009, State of the Art Report, EG-STAR. Eurographics Association,
2009.

[19] L. Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vector quantization. In
SIGGRAPH ’00, pages 479–488. ACM Press/Addison-Wesley Publishing Co., 2000.

22

	Introduction
	Algorithm Description
	Initialization
	Patch Selection
	Minimum Error Boundary Cut
	Connected Paths and Boundary Error
	Vertical Boundary Cuts
	Horizontal Boundary Cuts
	L-shaped Boundary Cuts

	Blending along the Cut

	Implementation
	Computing Patch Distances with FFT
	Parallelization

	Experiments
	Conclusion

