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Abstract. In exemplar based texture synthesis methods one of the ma-
jor difficulties is to synthesize correctly the wide diversity of texture
images. So far the proposed methods tend to have satisfying results for
specific texture classes and fail for others. Statistics-based algorithms
present good results when synthesizing textures that have few geometric
structures and are able to preserve a complex statistical model of the
sample texture. On the other hand, non-parametric patch-based meth-
ods have the ability to reproduce faithfully highly structured textures
but lack a mechanism to preserve its global statistics. Furthermore, they
are strongly dependent on a patch size that is decided manually. In this
paper we propose a multiscale approach able to combine advantages of
both strategies and avoid some of their drawbacks. The texture is mod-
eled at each scale as a spatially variable Gaussian vector in the patch
space, which allows to fix a patch size fairly independent of the texture.
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1 Introduction

Exemplar based texture synthesis is a well known problem that has many appli-
cations in computer graphics, computer vision and image processing, for example
for fast scene generation, inpainting, and texture restoration. It is defined as the
process of generating from an input texture sample a perceptually equivalent
larger one. Texture synthesis algorithms are generally divided into two cate-
gories, the statistics-based [5, 7, 13] and the non-parametric patch-based [1–3,
10–12, 17]. The first category models a given texture sample by estimating sta-
tistical parameters that characterize the underlying stochastic process. Although
these methods can faithfully reproduce some of the global statistics of the sam-
ple and synthesize micro and pseudo-periodic textures, they generally do not
yield high quality visual results for more structured ones, in particular when the
sample is small and contains large objects. The second category rearranges local
neighbourhoods of the input sample in a consistent way. These methods provide
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efficient algorithms able to reproduce highly structured textures. Even though
they yield visual satisfactory results, they often turn into practising verbatim
copies of large parts of the input sample.

Statistics-based methods are generally done in two steps: analysis and syn-
thesis. The analysis step consists in identifying a set of global statistics from the
input texture and the synthesis process generates an image satisfying the esti-
mated set of statistics. These methods were inspired from Julesz [9], who discov-
ered that many texture pairs having the same second-order statistics would not
be preattentively discerned by humans. The success of Julesz first model can be
checked in [5] where the authors propose to synthesize textures by randomizing
the Fourier phase of the sample image while maintaining its Fourier modulus,
thus preserving the second order statistics of the sample. These statistics are
enough to synthesize micro-textures that can be characterized by their Fourier
modulus but they fail for more structured ones as can be seen in [6]. Heeger
and Bergen [7] initiated more sophisticated statistics-based methods describing
the input sample by the histograms of its wavelet coefficients. A new texture is
then created by enforcing these statistics on a white noise image. The results are
satisfying for a small class of textures. Indeed the proposed statistics miss im-
portant correlations between scales and orientations, as can be verified in [8]. In
[13] Portilla and Simoncelli extended [7] by estimating autocorrelations, cross-
correlations and statistical moments of the wavelet coefficients of the texture
sample. Compared to the previous statistical attempts, convincing results are
observable on a very wide range of textures. Although this method represents
the state of the art for psychophysically and statistically founded algorithms,
the results nevertheless often present blur and phantoms effects.

Non-parametric patch-based methods were initialized by Efros and Leung [3]
who extended to images Shannon’s Markov random field model initially devised
to simulate text. The synthesized texture is constructed pixelwise. For each new
pixel, a patch centered at the pixel is compared to all patches with the same
size in the input sample. The nearest matches help predict the pixel value in the
reconstructed image. Several works [1, 17] have extended and accelerated this
method. Still these pixelwise algorithms are not always satisfactory. They are
known to grow “garbage” when the compared patches are too small, or may lead
to verbatim copies of significant parts of the input sample for large patches as
can be verified in [4]. To overcome these drawbacks more recent methods stitch
together entire patches instead of performing a synthesis pixel by pixel. The
question then is how to blend a new patch in the existing texture. In [12] this
is done by a smooth transition. Efros and Freeman [2] refined this process by
stitching each new patch along a minimum cost path across its overlapping zone
with the texture under construction. Kwatra et al. in [11] extended the stitching
procedure of [2] by a graph cut approach redefining the edges of the patches. In
[10] the authors propose to synthesize a texture image by sequentially improving
the quality of the synthesis by minimizing a patch-based energy function. These
non-parametric patch-based approaches often present satisfactory visual results.
However, the risk remains of copying verbatim large parts of the input sample.
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Furthermore, a fidelity to the global statistics of the initial sample is not guar-
anteed, in particular when the texture sample is not stationary. See [18] for an
extensive overview of the different neighbourhood-based methods.

More recently methods such as [15, 16] combine patch-based and statistics-
based methods to overcome the previous drawbacks. In [15] the author proposes
to use a patch-based approach where all the patches of the synthesized image are
created from a sparse dictionary learnt on the input sample. In [16] Tartavel et al.
extend the work in [15] by minimizing an energy that involves a sparse dictionary
of patches combined with constraints on the sample’s Fourier spectrum. With the
same motivation of avoiding verbatim-copies of the input sample and providing
a statistical model of it, in [14] the authors proposed an algorithm that involves
a local multivariate Gaussian texture model in the patch space.

Macro-textures show information at different scales that cannot be captured
with a unique patch size. This motivates the extension of patch-based methods
to a multiscale framework in the spirit of [1, 16]. In this way the method is more
robust to the patch size and avoids the blending step of patch-based approaches.

The rest of this paper is structured as follows. In Section 2 the multiscale
approach is presented. In Section 3 two experiments are shown. The first one
presents multiscale results and explores the impact of the scale interval on their
efficiency. The second experiment shows how to combine two different synthesis
methods: the multiscale locally Gaussian and the Portilla-Simoncelli statistical
method [13]. Conclusions are presented in Section 4.

2 A Multiscale Algorithm

Macro textures have the particularity to present details at different scales: a
coarse one containing the global structure and finer ones containing the details.
On the one hand small patch sizes may capture the finer details of the input,
yet if an algorithm is based only on them, the resulting texture will lack global
coherence. On the other hand big patch sizes tend to a better respect of the
global configuration but risk of a “copy-paste” effect. Furthermore, it becomes
impossible to model the variability of large patches by curse of dimensionality:
a texture sample will generally not contain enough patch samples. This is for
example apparent in [14]. Multiscale approaches instead permit to contemplate
several patch sizes within one synthesis (capture the different level of details).

In this section the potential of a multiscale approach is illustrated by improv-
ing the method in [14]. This approach can be summarized in a few sentences. The
method begins by a synthesis in the coarsest scale (k = K − 1) using [14] where
the quilting step is replaced by a simple average of the overlapping patches.
For the remaining scales (k = K − 2, . . . , 0) a synthesis is performed by using
the result of the previous scale (k + 1) and the input of corresponding resolu-
tion. At each scale the synthesis is done patch by patch in a raster-scan order.
Each new patch, added to the synthesized image, overlaps part of the previously
synthesized patch and is the combination of a low resolution patch and a high
resolution one sampled from a multivariate Gaussian distribution. The Gaussian
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distribution of the high frequencies of a given patch is estimated from the high
frequencies of its m nearest neighbours in the corresponding scale input image.
The synthesis result of the finer scale is the desired output image.

Notations

– u0 : Ω → R: input texture image. Ω = IM × IN of size M ×N where Ic is
the discrete interval [0, . . . , c− 1]

– w0 : Ωr → R: output texture image. Ωr = IrM × IrN of size rM × rN
– r: ratio (size of output image w0)/(size of input image u0)
– n× n: patch size
– m: number of nearest neighbours used to learn the Gaussian distribution
– K: number of scales (maximum factor of zoom out is K − 1)
– uk : Ωk → R: zoom out of u0 by a factor 2k. Ωk = I2−kM × I2−kN of size

2−kM × 2−kN for k = 1 . . .K − 1
– wk : Ωkr → R: synthesized texture at scale k. Ωkr = Ir2−kM × Ir2−kN of size
r2−kM × r2−kN for k = 0 . . .K − 1

– vk : Ωkr → R: zoom in of wk+1 by a factor 2 for k = 0 . . .K − 2
– Gσ: Gaussian kernel centered of standard deviation σ
– Luk : Ωk → R: low resolution of uk. Luk = uk ∗Gσ, k = 0 . . .K − 2
– Lwk : Ωkr → R: low resolution of wk. Lwk = wk ∗Gσ, k = 0 . . .K − 2
– Hwk : Ωkr → R: high resolution of wk. Hwk = wk −wk ∗Gσ, k = 0 . . .K − 2

– p
(x,y)
u : square patch of size n× n from an image u of size M ×N at position

(x, y). p
(x,y)
u = {u ((x, y) + (i, j)) , (i, j) ∈ [0, . . . , n − 1]2}, (x, y) ∈ Vu =

IM−n+1 × IN−n+1

– Zout
2 (u): zoom out by a factor 2 of image u performed as a smooth frequency

cutoff followed by a sub-sample of factor 2
– Z in

2 (u): zoom in by a factor 2 of image u performed by a zero padding of the
discrete Fourier transform of u

Distance Between Patches

To estimate the parameters of the Gaussian distribution of the patch being

processed, denoted by p
(x′,y′)
wk , the set U of m nearest patches in uk to p

(x′,y′)
wk is

considered. These patches are those minimizing the distance to p
(x′,y′)
wk defined

in (1) for k = K − 1 and in (2) for the remaining scales k = K − 2, . . . , 0.
The size of patch overlap is fixed to half the patch size n/2. Depending on the

stage of the synthesis three different cases of overlap can be observed: vertical
(first row of raster-scan)(VO), horizontal (first column of raster-scan)(HO) and

L-shape (everywhere else)(LO). The overlap area of a patch p
(x,y)
u is denoted as

Op
(x,y)
u = {u ((x, y) + (i, j)) , (i, j) ∈ O} where

O =


[0, . . . , n− 1]×

[
0, . . . , n2 − 1

]
if VO[

0, . . . , n2 − 1
]
× [0, . . . , n− 1] if HO[

0, . . . , n2 − 1
]
× [0, . . . , n− 1] ∪

[
n
2 , . . . , n− 1

]
×
[
0, . . . , n2 − 1

]
if LO
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When k = K − 1 the m nearest neighbours in uK−1 to the patch p
(x′,y′)
wK−1 are

those minimizing the L2 distance restricted to the overlap area (1).

d(p(x,y)uK−1
, p(x

′,y′)
wK−1

)2 =
1

|O|
∑

(i,j)∈O

(uK−1(x+ i, y + j)− wK−1(x′ + i, y′ + j))2

(1)

When k = K − 2, . . . , 0 the nearest neighbours in uk to the patch p
(x′,y′)
wk are

those minimizing a distance (2) similar to (1) with an additional term taking into
account the low resolution vk (the synthesis result of the previous scale k + 1).

Is is important to notice that when comparing Op
(x,y)
uk and Op

(x′,y′)
wk the low and

the high resolution must be considered jointly, they are not independent.

d(p(x,y)uk
, p(x

′,y′)
wk

)2 =
1

|O|
∑

(i,j)∈O

(uk(x+ i, y + j)− wk(x′ + i, y′ + j))2

+
1

n2

n−1∑
i,j=0

(Luk(x+ i, y + j)− vk(x′ + i, y′ + j))2 (2)

The Gaussian Model and the Blending Process

Every patch p
(x′,y′)
wk in wk for k = 0, . . . ,K − 1 is sampled from a multivariate

Gaussian distribution in the spirit of [14]. The parameters (µ,Σ) of the distri-

bution of p
(x′,y′)
wk are estimated on the set U = {p(x1,y1)

uk , . . . , p
(xm,ym)
uk } as in (3).

Here p
(xi,yi)
uk , for i = 1, . . . ,m, are the m nearest patches to p

(x′,y′)
wk in uk for the

distances in (1) and (2).

µ =
1

m

m∑
i=1

q(xi,yi)uk
, Σ =

1

m
QQt (3)

In (3) q
(xi,yi)
uk is the patch p

(xi,yi)
uk in vector form and Q is the matrix whose

columns are (q
(xi,yi)
uk − µ), i = 1, . . . ,m. Sampling a patch p̃ ∼ G(µ,Σ) comes

down to sampling m independent normal variables as can be seen in (4).

q̃ =
1

m
QtQWDq′ + µ (4)

Here q̃ is the vector form of p̃, q′ ∼ G(0, Im), W is a matrix whose columns are
the eigenvectors of QtQ and D is a diagonal matrix with its eigenvalues.

The blending process consists in simply averaging the values across the over-
lap area as in (5). This step is applied only for the synthesis at scale k = K − 1.

wk(x′ + i, y + j′) =

{
1
2

(
p̃(i, j) + p

(x′,y′)
wK−1

)
if (i, j) ∈ O

p̃(i, j) if (i, j) ∈ I2n −O
(5)
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Synthesizing Patches at Scales k = K − 2, . . . , 0

At each scale k a patch p
(x′,y′)
wk is synthesized as the combination of a low reso-

lution patch with a high resolution one. It can be decomposed as follows

p(x
′,y′)

wk
= p

(x′,y′)
wk∗Gσ + (p(x

′,y′)
wk

− p(x
′,y′)

wk∗Gσ ) = p(x
′,y′)

vk
+ (p(x

′,y′)
wk

− p(x
′,y′)

vk
)

= p
(x′,y′)
Lwk

+ p
(x′,y′)
Hwk

.

The set U define the Gaussian distribution of p
(x′,y′)
Lwk

∼ G(µL, ΣL) and p
(x′,y′)
Hwk

∼

G(µH , ΣH) and therefore the distribution of the patch p
(x′,y′)
wk ∼ G(µ,Σ) where

µ = µH + µL and Σ = ΣL + ΣH + E(p
(x′,y′)
Lwk

(p
(x′,y′)
Hwk

)t) + E(p
(x′,y′)
Hwk

(p
(x′,y′)
Lwk

)t).

Instead of sampling p
(x′,y′)
Lwk

from its Gaussian distribution, p
(x′,y′)
vk ∼ G(µL, ΣL)

is kept to conserve the low resolution synthesis from the previous scale. The high

frequency patch p
(x′,y′)
Hwk

is sampled form G(µH , ΣH) and then added to p
(x′,y′)
vk .

In this way the correlations between high and low resolution pixels are respected,
using the low resolution synthesis vk as initialization.

3 Experiments

All the texture examples in Figures 1 and 2 can be found at http://dev.ipol.
im/~lraad/ciarp_2015/. The experiments shown in Figure 1 compare the mul-
tiscale method using one, two and three scales. This is performed for micro- and
macro-textures. For all the experiments the side patch size is fixed to n = 20
and the number of nearest neighbours to m = 20. Figure 1 shows that using
a single scale is not enough to reproduce faithfully the global structure of the
input example. Naturally to achieve satisfying synthesis results for K = 1 a big-
ger patch size should be considered. Still this would lead to limitations on the
Gaussian model [14]. A fix patch size was sufficient to achieve satisfying results
on all examples shown. Another positive aspect of using smaller patches is that
one can find more reliable examples in the input sample to build the multivariate
Gaussian distributions. Finally complex quilting steps like those used in [2, 10,
11] is no longer necessary. It can be replaced by an average of the values along
the overlap zone for the synthesis of the coarsest scale. This is possible since at
k = K−1 the images are smoother and an average is then well suited. In general
it is enough to average the overlapping parts only at the coarser scales.

In Figure 1 the experiments show that for the three different cases (K =
1, 2, 3) the Gaussian synthesis entails a slight blur. To recover these fine details
at scale k = 0 an additional step can be applied to the multiscale synthesis result.
The output image w0 is combined to Portilla and Simoncelli’s method [13]. In [13]
the synthesis image is initialized with a white noise. For this experiment Portilla
and Simoncelli’s method is initialized with the result of the multiscale method
instead of a random noise. In Figure 2 the result of the multiscale approach
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u0 K = 1 K = 2 K = 3 u0 K = 1 K = 2 K = 3

Fig. 1: Synthesis results for K = 1, 2, 3 scales. The parameters were fixed to
n = 20 and m = 20. It is recommended to zoom in the images by a factor 400%
to evaluate texture details.

is compared to the results of combining the algorithms and to those of [13].
They show that the granularity of the input texture is globally recovered. The
resulting texture respects the global statistics of the input imposed by [13] while
maintaining the structures that are lost if the method is initialized with a white
noise. Some of the example images in Figures 1 and 2 were provided from [13].

u0 Ours Ours+[13] [13] u0 Ours Ours+[13] [13]

Fig. 2: Comparison of several texture synthesis algorithms: ours, ours combined
to [13] and [13]. The parameters were fixed to n = 20, m = 20 and K = 3. It is
recommended to zoom in the images by a factor 400% to evaluate texture details.

4 Conclusion

In this paper a multiscale approach of the locally Gaussian texture synthesis
algorithm [14] was proposed. A first synthesis is performed at the coarsest scale
to generate the global structure of the synthesized image. For the remaining
scales the corresponding finer details are added on the low resolution result of
the previous scale and so on until the finer scale is reached. The experiments
showed that a single patch size can be used for different type of textures achieving
satisfying visual results. A second observation is that due to the use of Gaussian
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models the synthesis results lose some resolution compared to the input sample.
To recover its granularity the multiscale algorithm was combined with Portilla
and Simoncelli’s method [13]. The results showed that this combination is able
to preserve the strong geometric structures and at the same time respect the
global statistics of the sample that are imposed with [13].
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