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ABSTRACT

The main approaches to texture modeling are the statistical

psychophysically inspired model and the patch-based model.

In the first model the texture is characterized by a sophisti-

cated statistical signature. The associated sampling algorithm

estimates this signature from the example and produces a gen-

uinely different texture. This texture nevertheless often loses

accuracy. The second model boils down to a clever copy-paste

procedure, which stitches verbatim copies of large regions of

the example. We propose in this communication to involve

a locally Gaussian texture model in the patch space. It per-

mits to synthesize textures that are everywhere different from

the original but with better quality than the purely statistical

methods.

Index Terms— Texture Synthesis, Gaussian Modeling,

Image Patches

1. INTRODUCTION

Exemplar-based texture synthesis aims at generating new tex-

ture images inspired from a texture sample. Texture syn-

thesis algorithms can be divided into two main categories:

statistics-based methods [1, 2, 3, 4, 5] and patch-based meth-

ods [6, 7, 8, 9, 10, 11, 12, 13].

Statistics-based methods estimate a set of the sample’s

statistics, which is then enforced in the synthesized texture.

Julesz [14] discovered that many texture pairs having the

same second-order statistics would not be discerned by hu-

man preattentive vision. This hypothesis is referred to as the

first Julesz axiom for texture perception. It can be checked by

algorithms that create new images where the texture sample’s

second-order statistic is emulated. This can be done for exam-

ple by maintaining the Fourier modulus of the sample image

and randomizing its phase [15]. The random phase method

correctly synthesizes micro-texture images which adapt well

to a Gaussian distribution, but it fails for more structured

ones, as can be experimented in the executable paper [16].
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Heeger and Bergen [1] extended the Julesz approach to

multiscale statistics. They characterized a texture sample by

the histograms of its wavelet coefficients. By enforcing the

same histograms on a white noise image, they obtained an

exemplar based synthesis method. Yet this method only mea-

sures marginal statistics. It misses important correlations be-

tween pixels across scales and orientations. See the online ex-

ecution of this method [17] where some success but many fail-

ures are evident, like for [16]. Within a similar range of results

De Bonet [3] randomizes the initial texture image and pre-

serves only a few statistics: the dependencies across scales of

a multi-resolution filter bank response. In [4] the authors pro-

pose to synthesize a texture by taking randomly patches from

the sample texture and placing them randomly in the output

texture image. A blending step is applied across the overlap-

ping blocks to avoid edge artifacts. The results achieved are

similar to [1, 3]. The Heeger-Bergen method was extended

by Portilla and Simoncelli [5] who proposed to evaluate on

the sample some 700 cross-correlations, autocorrelations and

statistical moments of the wavelet coefficients. Enforcing the

same statistics on synthetic images achieves striking results

for a very wide range of texture examples. This method,

which represents the state of the art for psychophysically and

statistically founded algorithms is nevertheless computation-

ally heavy, and its convergence is not guaranteed. Its results,

though generally indiscernible from the original samples in a

pre-attentive examination, often present blur and phantoms.

Patch-based methods constitute a totally different cate-

gory of texture synthesis algorithms. The initial Efros and

Leung [6] method is based on Shannon’s Markov random

field model for the English language. In analogy with Shan-

non’s algorithm for synthesizing sentences, the texture is con-

structed pixelwise. For each new pixel in the reconstructed

image, a patch centered in the pixel is compared to all the

patches of the input sample. The patches in the sample that

are closer help predict the pixel value in the synthetic image.

Several optimizations have been proposed to accelerate this

algorithm. Among them Wei and Levoy [7], who managed

to fix the shape and size of the learning patch and Ashikhmin

[8] who proposed to extend existing patches whenever pos-

sible instead of searching in the entire sample texture. Yet,

as already pointed out in the original paper [6], an iterative

procedure may fail by producing “garbage” when the neig-

borhood’s size is too small. On the other hand it can lead

978-1-4799-5751-4/14/$31.00 ©2014 IEEE ICIP 20144667



to a trivial verbatim reproduction of big pieces of the sample

when the neighborhood is too large. This can be experimented

in [18]. Several extensions of [6] have been proposed that

manage to accelerate the procedure and resolve the “garbage”

problem by stitching entire patches instead of pixels. In [10]

the authors propose to synthesize the image by quilting to-

gether patches that were taken from the input image among

those who best match the patch under construction. A blend-

ing step was also added to overcome some edge artifacts.

Efros and Freeman [11] proposed an extension of the latter

introducing to the quilting method a blending algorithm that

computes the minimum cost path across overlapping patches

overcoming the transition effect from patch to patch. Kwatra

et al. in [12] extend [11] by using a graphcut algorithm to

define the edges of the patch to quilt in the synthesis image.

Another extension of [6] is proposed by Kwatra et al. in [13]

where to synthesize a texture image they improve the quality

of the synthesis image sequentially by minimizing a patch-

based energy function. For these methods the visual results

are strikingly good, but still retain the risk of verbatim copy-

ing large parts of the input sample. For practical applications

this may result in the appearance of repeated patterns in the

synthesized image.

An ideal exemplar-based texture synthesis algorithm

should create a new texture image that is perceptually equiv-

alent to the input sample, but this image should be as random

as possible while maintaining the same statistics of the input.

To the best of our knowledge, none of the methods proposed

in the literature are able to combine these advantages. On one

hand, statistics-based methods fail, in general, to be percep-

tually equivalent to the input, either because the statistics are

not well enforced or because these statistics are not complete

enough. On the other hand, patch-based methods are too

close to a mere copy-paste. This effect can be observed in the

synthesis maps in Figure 3.

In this work, we propose an algorithm that lies between

statistics-based and patch-based algorithms. We gave up

choosing a set of statistics from the input sample to enforce

in the synthesized image. Instead, we chose to model each

texture patch by a Gaussian distribution learned from its

similar patches. Inspired by [11], we maintain the idea of

searching for patches to stitch together in the original sam-

ple. However, instead of using the exact patch taken in the

input texture, we sample the stitched patch from its Gaussian

model. Local Gaussian patch models have been proved useful

in image denoising [19]. Our approach permits to maintain

the coherence between patches with respect to the input sam-

ple, while creating new patches that do not exist in the sample

texture but are still perceptually equivalent to it. In this way,

we manage to combine the positive aspects of statistics-based

and patch-based methods, while overcoming some of their

drawbacks.

The rest of this paper is structured as follows. In Section

2, we give an estimation method for a Gaussian model for

Fig. 1: Gaussian substitution for the left top corner texture

image. From left to right the patch size ps = 10, 20, 30. From

top to bottom, the neighborhood size N = 10, 20, 30.

each patch and we validate this algorithm on textural patches.

In Section 3, the synthesis algorithm is described. Section

4 compares the results with state of the art texture-synthesis

methods. The concluding section 5 also states the limitations

of the method.

2. THE PATCH GAUSSIAN MODEL

In this section we model the patches local distribution as

a Gaussian vector and test what happens when the image

patches are replaced by synthesized ones according to this

model. We define a patch p as a square block of size ps× ps
among all possible overlapping blocks of an input image I .

Given the image I and fixing an overlap size o we will con-

sider all patches from I that are taken in a raster-scan order

and whose centers are separated by (ps− o) pixels. Each

of them will be replaced by a new patch p̃ sampled from a

Gaussian model of parameters μ and Γ. We create in this

way a simulated image Ĩ . More precisely, the steps of the

procedure are the following:

1. Learn the Gaussian model of p. We fix N and define

SP = {p1, . . . , pN} as the set of the N closest patches to p
(among all patches of the image) according to the L2 distance.

2. Estimate the empirical mean μ and the empirical co-

variance matrix Γ defined in (1) where P is a matrix whose

columns are the vectorized patches pi ∈ Sp.

μ =
1

N

N∑
i=1

pi, Γ =
(P − μ)√

N

(P − μ)
t

√
N

= P̃ P̃ t (1)

3. Sample p̃ from the Gaussian distribution of parameters

μ and Γ. Since P̃ tP̃ has the same non-zero eigenvalues as Γ
and is of lower size we diagonalize and find the eigenvectors
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and eigenvalues of P̃ tP̃ instead of Γ such as

p̃ = P̃WDx′ + μ (2)

where x′ ∼ N
(
�0, IN

)
, W is a matrix whose columns are the

eigenvectors of P̃ tP̃ , and D is a diagonal matrix containing

its eigenvalues. We simply need to sample N independent

normal variables to obtain (2).

4. Place the sample p̃ in Ĩ overlapping the part which has

been already synthesized. Across this overlap area we blend

the pixel values with a bilinear interpolation.

The size ps of the patches and the size of the neighbor-

hood N are user-specified values. The results of the Gaus-

sian modeling are shown in Figure 1. Observe that replacing

the patches of each texture by simulated ones with the corre-

sponding Gaussian model achieves a faithful random variant

of the original image, for reasonable values of ps and N . All

pixel values of Ĩ and I are actually different, but both images

are visually very similar for the adequate values of N and ps.

For large values of N the model no longer represents the patch

faithfully because Sp will contain outliers. Nevertheless, rea-

sonable values for ps and N ensure a correct reconstruction

when replacing patches by others simulated from a Gaussian

model. We found that when using 30×30 patches, it is reason-

able to consider a neighborhood of 10 to 20 patches. These

results justify the use of Gaussian sampling as a step of our

synthesis algorithm.

3. THE LOCALLY GAUSSIAN TEXTURE
SYNTHESIS ALGORITHM

Like in the Efros-Freeman [11] method, the synthesized tex-

ture is constructed sequentially patch-wise in a raster-scan or-

der. Each new patch is placed in the output image overlapping

part of the previous one. The overlap size o is fixed and for

all the presented results o is half the size ps of the patch.

We initialize the new texture image placing a seed patch in

its top left corner. For this we pick a random patch from the

texture sample, learn its Gaussian model and sample a new

patch from it (the seed patch). In continuation, each synthe-

sized patch is sampled from a Gaussian model learnt from the

N patches with their left half most similar to the right half

of the last synthesized texture patch. This new patch is then

quilted on the current texture.

Patch stitching follows the procedure presented in [11]. It

assigns new edges to the stitched patch to adjust it to the syn-

thesized image along the overlap area. These edges are se-

lected as curves minimizing the error between the new patch

and part of the synthesized image across the overlap region.

The synthesis procedure can be summarized as follows.

1. Define parameters values N and ps

2. Initialize the output image with the seed patch

Fig. 2: Texture synthesis result for the left top corner texture

image. We show the results obtained for different values of N
and ps. From left to right ps = 10, 20, 0. From top to bottom,

the neighborhood size N = 10, 20, 30. All the results are

obtained for an overlap of half patch size.

3. For each patch taken in a raster-scan order

(a) Find the N nearest neighbors in the input sample

that best agree with the patch under construction

along the overlap area (the left half of the patch)

(b) Learn the Gaussian model estimating μ and Γ

(c) Sample a patch from this model

(d) Quilt the patch in the synthesis image

In this way, a new texture image, perceptually similar to the

original sample and whose patches have been randomized, is

obtained. The next section shows some results.

4. EXPERIMENTS

The results on the synthesis algorithm can be seen in Figure

2. For this example the efficacy of the algorithm varies with

the parameters N , ps and o. A first observation is that the

preferable patch size has a sample-dependent lower bound. If

the patch size is too small the algorithm does not capture the

variability of the sample. On the other hand the larger the

patch size, the less neighbors we can use to build a faithful

model for the patches. The second observation relates to the

size of the overlap between patches. If the proportion of the

overlap area with respect to the patch size is too small, the

obtained model may no longer be a correct representation of

the patch to simulate. Indeed, the patches are compared on the

overlap area but the model is learnt on the whole patch. We

observed that for an overlap of half the patch size the model

is faithful enough to achieve good results.
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Fig. 3: Comparison with various other texture synthesis methods. From left to right: texture sample, position map (each pixel

q in the texture sample is associated to a different color from a continuous colormap), synthesis results of [16], [17], [5], [11],

synthesis map of [11], our algorithm and its synthesis map, our algorithm and its synthesis map forcing the nearest neighbors

to be at least r pixels away from the best neighbor (r = 3). The synthesis map shows for each synthesized patch its position

in the original image. It allows then to identify exactly the verbatim copy regions (continuous color areas of the map). For our

algorithm the synthesis maps are computed using the barycenter of the N best neighbors of each simulated patch. For all the

examples N = 10, ps = 30 except for the third row where ps = 10. For a correct visual comparison we recommend a 4×
zoom in.

Figure 3 compares several state of the art texture synthe-

sis methods. We can observe that for statistics-based methods

(three first columns) the quality of our algorithm’s visual re-

sults is considerably superior. However, when the size of the

patch ps is too big compared to the texture’s structure (last

row in Figure 3) blurring artifacts can appear in our results.

On the other hand, like for the Efros-Freeman algorithm [11]

our method maintains a spatial coherence between patches.

We obtain similar visual results and most important avoid ver-

batim copies from the input sample, as can be seen with the

synthesis maps in Figure 3.

5. CONCLUSION

In this paper we have presented a method that synthesizes tex-

tures by stitching patches that are samples of a local Gaussian

model in the patch space. This model is learnt for each patch

from a set of similar patches in the textures. The algorithm

synthesizes a texture that is perceptually equivalent to the

sample image, but not composed of patches existing in the in-

put texture. Our method overcomes some of the drawbacks of

the statistics-based and the patch-based methods. The stitch-

ing procedure is a bit complex and could be replaced by Pois-

son editing [23]. Like the Efros-Leung or the Efros-Freeman

methods, the algorithm remains dependent on the choice of ps
and N , that may have to be adjusted for each texture sample.

In our opinion the texture samples used in the literature are

too small, particularly for macro-textures like the ones pre-

sented here and in most papers. Thus, our local Gaussian

model is forced to use only 10 to 20 degrees of freedom be-

cause only some 10 to 20 patches are similar enough. This

estimate should improve with larger texture samples. Our al-

gorithm is complex, as we estimate a Gaussian model for each

patch. This complexity is nevertheless comparable to clas-

sic patch-based denoising algorithms [21], [24]. A multiscale

version of the algorithm should also be considered. Unlike

the statistics-based algorithms, but like the other patch-based

methods, our algorithm is not forced to respect the global

statistics of the texture sample. This can be observed in the

second row of Figure 3 where our result correctly reproduces

an image of petals but fails to insert a correct proportion of

the leaves in the synthetic image. Future work should focus

on using larger texture samples to better catch the variability

of large patches, and on estimating automatically ps and N .
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