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ABSTRACT

This work presents an automatic method for optical flow in-
painting. Given a video, each frame domain is endowed with
a Riemannian metric based on the video pixel values. The
missing optical flow is recovered by solving the Absolutely
Minimizing Lipschitz Extension (AMLE) partial differential
equation on the Riemannian manifold. An efficient numerical
algorithm is proposed using eikonal operators for nonlinear
elliptic partial differential equations on a finite graph. The
choice of the metric is discussed and the method is applied to
optical flow inpainting and sparse-to-dense optical flow esti-
mation, achieving top-tier performance in terms of End-Point-
Error (EPE).

Index Terms— Optical flow inpainting, sparse to dense
methods, partial differential equations, Absolute Minimal
Lipschitz Extension, anisotropic methods.

1. INTRODUCTION

Optical flow or motion inpainting is a pervasive problem in
many areas of computer vision which range from semantic
video analysis and video editing to optical flow estimation in
occlusion and disocclusion regions. Given a video, its op-
tical flow is the vector field, defined on each point of the
video domain, that describes the apparent motion of the ob-
jects through the frames. One of the capital difficulties of
the optical flow estimation are the occlusions (regions that
become not visible or emerge between one frame and the
next one) where its estimation becomes impossible due to the
lack of correspondence between the two consecutive frames.
Therefore, the optical flow is partially missing in areas more
or less large of the video whereas for most of the applica-
tions its completion is essential. For instance, in cinema post-
production a completed optical flow is often needed for the
elimination of unwanted (moving or static) objects. Other
applications are automatic assistance of sensor-based optical
flow estimation where the sensor acquisition usually produces
large regions without optical flow data (e.g., in Kitti Vision
benchmark [[19]).

The motion inpainting problem has been addressed pre-
viously in the literature for different purposes. In order to in-
paint the flow in the occlusion areas, Matsushita et al. [[17]] and
Strobel et al. [26] extended the Telea-inpainting method [27]]
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Fig. 1: Some optical flow inpainting results for a frame of the
temple_3 sequence of MPI-Sintel benchmark.

to optical flow, i.e., they assume that the motion variation is
locally small and propagate the optical flow according to a
weighting function which depends on the Euclidean distance
and the color difference among the interpolated pixel and its
neighbours. Kondermann et al. [[13] proposed a postprocess
of the optical flow in order to improve it: the optical flow
is retained at points where it is reliable and is then densified
by minimizing the L? norm of the spatio-temporal gradient
of the flow. Berkels et al. [|6] proposed to recover the opti-
cal flow in non-reliable regions using a TV-type anisotropic
functional and a rotation-invariant regularizer was proposed
by Palomares et al. [21]]. On the other hand, Ince and Kon-
rad [[11] introduced a variational method for the joint esti-
mation of optical flow and occlusions while extrapolating the
optical flow in occluded areas by means of anisotropic diffu-
sion based on the image gradients. Leordeanu et al. [|15]] and
Revaud et al. [22] proposed a sparse-to-dense optical flow es-
timation method that takes as input an initial set of sparse
matches. In a first stage, the flow is densified (completed) by
fitting a local affine model, that uses edge-aware distances in
the case of EpicFlow [22]]. Then, the densified flow is refined
by minimizing an optical flow energy functional.

In this paper we use the Absolutely Minimizing Lipschitz
Extension (AMLE) model in a Riemannian manifold in order
to take advantage of the geometric information given by the
video frames. Given a video and an incomplete motion field,
we endow each 2D frame domain with a Riemannian metric
based on the video values and propose to recover the missing



optical flow by solving the AMLE partial differential equa-
tion on the 2D Riemannian manifold from the known values
on the boundary of the interpolation domain. Each of the co-
ordinates of the optical flow is thus reconstructed with this
metric-based anisotropic interpolation. The AMLE equation,
Asu = 0, where A u is also called the infinity Laplacian,
was introduced by G. Aronsson in [2}|3]] and uniqueness of
viscosity solutions was proved in [12] (see also [4] for a re-
view). The AMLE allows to interpolate the missing value of
a function on isolated points and curves. It appeared as one of
the interpolating operators satisfying a set of suitable axioms
in [9]]. This axiomatic approach was extended in [_8}25] to in-
terpolate data given on a set of curves on a surface in R3. The
AMLE on a manifold was applied in [14] for interpolating
depth data in images or videos where large regions of incom-
plete depth information often appear. On the other hand, the
classical AMLE has been used in [1] for the interpolation of
digital elevation models.

The method proposed here is applied in two different sce-
narios: optical flow inpainting in large regions and densifica-
tion of an optical flow from a sparse set of initial matches. The
experiments show that in general our results outperform those
of EpicFlow [22], which has become a reference method for
optical flow estimation and a standard technique for post-
processing an estimated and filtered optical flow.

The remainder of the paper is organized as follows. Sec-
tion[2]presents the proposed approach, including the proposed
numerical algorithm and its analysis. Section 3] presents ex-
perimental results for the mentioned applications. Finally,
Section 4| concludes the paper.

2. THE MODEL

Given a video I(x,t) defined on Q x {1,...,T}, where Q C
R? denotes the image frame domain and {1,...,7'} is the
set of discrete times, let v = (vy,vs) be the optical flow of
the video I, i.e., the apparent motion between a pixel x €
O\ Qo(¢) at time ¢ and the corresponding one at time ¢ + 1.

We assume that, at time ¢, v(x, t) is unknown on a region
Qo(t) C Q whose boundary, denoted by 9, consists of a
finite union of smooth curves and possibly isolated points.
In order to complete v in 4(¢) by an appropriate interpola-
tion taking into account the objects in the video, we endow
the whole domain €2, at each time ¢, with a metric g(¢). Let
M(t) = (©,9(¢)) be the corresponding Riemannian mani-
fold. We propose to complete v in 2o (¢) with the motion field
u = (uy,us) such that u; and uy are solutions, respectively,
of the geodesic AMLE, given by the PDE

Aoo7gui =0 in Qo(t) S.t. uilago(t) = V;, N

for i = 1,2, respectively. We also use Newmann boundary
conditions on 0f2. Here we have denoted

V mu

@)

V (7
Ao g 1= Dﬁ/lui < M >

IVl [V au

where V pqu; and Djzw u; denote the gradient and the Hes-
sian on the manifold. To simplify the notation, we have omit-
ted the dependence on ¢ of g and M; we will also drop the
subindex ¢ in what follows. When g is the Euclidean met-
ric, the operator in () is known as the infinity Laplacian.
The metric g is defined in this paper based on the local ge-
ometry and texture content and several definitions are tested.
For instance, g can be given by affine covariant structure ten-
sors [10]] or taking into account spatial distances and photo-
metric similarities as detailed in the following section, where
we consider the interpolation problem (T)) on finite graphs.

2.1. The geodesic AMLE on a finite graph

We solve the AMLE equation on the manifold with a numeri-
cal algorithm which is based on the eikonal operators for non-
linear elliptic PDEs on a finite graph, which was proposed by
Manfredi et al. [[16/20]. In particular, we consider the discrete
grid of €2 as the nodes of a finite weighted graph G. If x and
y are neighbouring pixels, we define its distance by one of the
following simple possibilities

di(x,y) = /(1 -NL(x )1y, > Alx —y[> 3)
da(x,y) = (1 =N, )= I(y, D)+ Allx =yl &)

where A\ € [0, 1]. We also include
d3(x,y) = (1 =N, ) = Iy, O\ x —y[* ()

which is a semimetric, i.e., it does not satisfy the triangle
inequality. We will use d(x,y) to refer to anyone of them.
Given a path v = {7y(4)}>, on the graph G joining two
points, x = (0) and y = ~(m), its length is defined as usual
by LI(v) = Z;Z_Ol d(~(%),~v(i + 1)). Given any two points
x and y on the grid, then the geodesic distance d9(x,y) is

d?(x,y) = inf{LI(y) : 7y is a curve joining x and y }.

This distance can be computed using Dijkstra’s algorithm. In
practice, for any pair of points x, y we approximate d9(x,y)
by d(x,y), where d(x,y) is defined by (B)-(3). Let us notice
that more sophisticated metrics are possible.

Given a point x on the grid, let A/(x) be a neighborhood
of x. Following [16]], we consider the positive and negative
eikonal operators given, respectively, by
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Then, the discrete infinity Laplacian corresponds to
Vu(x)|| 5, + [[Vu(x)| %
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We solve (T)) with the following iterative discrete scheme

_ A 2)ut(y) + d(x )i ()

Uk+1 X
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where y and z are the pixels providing the maximum and
minimun in (&) and (7). This scheme is applied for x € €
keeping the values of v1 (x), respectively v (x), on the known
region {2\ g for all k.

This scheme is embedded in a multiscale approach: the
input optical flow and corresponding video frame are down-
scaled to a set of scales and the solution is computed at each
one using (©). The inputs are downsampled by a factor of 2
using 2 x 2 block averages; bilinear interpolation is used for
upsampling. At the coarsest level, the unknowns are initial-
ized to zero; the other scales are initialized by upsampling the
solution of the previous scale. The PDE defined in () has a
unique solution [9]], so the result of the multiscale approach is
the same as in the single scale scheme. The multiscale pyra-
mid provides just an initialization closer to the solution, lead-
ing to a faster convergence.

As mentioned in [20] the solution of the numerical
scheme (@) converges to the solution of (I) when the lo-
cal spatial resolution dx and the local directional resolution
df tend to 0. We have evaluated three different types of
neighbourhoods A (x). Considering the square of radius dx
centered in X, in the first type of neighbourhood we keep for
each possible direction in the square the point of lowest dis-
tance to x. For the second type we keep all the points whose
distance to x is lower than dx. For the third type we keep
only the points whose distance to x is equal to dx. The three
options have the same directional resolution df but differ in
the spatial resolution dx. We choose the first configuration
with der = 2 for all the experiments of the paper, which
implies that the cardinality of N/(x) equals 16.

To experimentally analyze the behavior of our method de-
pending on the considered metric g we show in Fig. 2] some
results using d;, dz and d3. We choose to work with ds3(x,y)
given by (3), which produces slightly better results. Indeed,
when part of an edge is subjective or weak (i.e., the two re-
gions separated by the edge are similar) the proposed metrics
do not penalize completely the propagation of the optical flow
from one region to another; (3)) does a better job descriminat-
ing these cases. Fig. 2] shows an example, notice the small
leak in the left middle part of the head which is reduced in (f).

3. APPLICATIONS

In this section we show results for different applications,
namely, optical flow inpainting, both in occlusion areas and
in large holes where different types of motion have to be
recovered, and optical flow densification. All the results are
compared to those of EpicFlow [22]]. The authors in [22]
propose to estimate the optical flow in two steps: the first step
is an edge-preserving interpolation of a sparse optical flow

(c) ground truth

(a) video frame

(b) inpainting mask

(d) di(x,y) (e) d2(x,y) ) ds(x,y)
Fig. 2: Comparison of the three tested possibilities for the
metric illustrated in an experiment of completion of the opti-
cal flow in the occlusion areas (white regions in image b).

generated with Deepmatching [23]], the second step consists
of a variational energy minimization that refines the dense
flow achieved in the first step. We compare our results to
those in their first step, since both of them are completions of
an initial flow that use only the current frame, i.e., we are not
estimating the optical flow given two consecutive frames.

We use the MPI-Sintel [7], Middlebury [5] and Kitti [[19]
datasets. Four experiments were performed for the first two
datasets: optical flow inpainting in occlusion areas, densifi-
cation of ground truth (gt) flow values at random positions
(1%, 5% and 30% of values kept), densification of optical
flow values given by Deepmatching [23]], densification of gt
values at the sparse positions given by Deepmatching (DM).
For some frames of MPI-Sintel dataset, we also perform in-
painting at manually added holes. In each case, we compute
the End-Point-Error (EPE) excluding the given points, so as
to not penalize EpicFlow interpolation which changes these
values. Tables [T] and 2] report the EPE. Our method achieves
lower error for all cases except for the densification of DM
optical flow (sparse DM). This is probably due to the fact that
the DM values are quantized values that also include errors
and outliers. EpicFlow removes outliers and modifies the pro-
vided values which allows to compensate for the quantization
and errors. Our method sticks to the given values propagating
the error to the recovered optical flow. Depending on the ap-
plication, one or the other behaviour could be preferred. We
include in Fig. ] an example of completion in large regions
without motion information as in Kitti dataset [[19]).

Fig. |3| presents two different experiments and illustrates
the behaviour of different interpolation methods: Total Varia-
tion (TV) regularization [24]], rotation invariant regularization
[21] (Rot-Inv), the interpolation step of EpicFlow [22]], and
the proposed method. Both type of experiments are done with
the frame 10 of RubberWhale from the Middlebury dataset
(image [3(a)), whose optical flow ground truth is available
(B[b)). The first experiment is motion completion in differ-
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Fig. 3: Comparison of different motion completion algo-
rithms in two different cases: inpainting of large holes (holes
in white in image (c) and results shown in the 2nd row) and
flow densification from a sparse set of ground truth matches
(shown in image (d) and results in 3rd row). The methods
used are TV [24], R-Inv [21]], EpicFlow (EF) [22] and ours.
For the EpicFlow we consider only the interpolation step and
overwrite the result with the ground truth flow ouside the in-
painting mask. Numbers in parenthesis show the EPE for
each result.

ent large holes (shown in white in image [3[c)) and the cor-
responding results for the four evaluated methods are in the
2nd row. The second experiment is flow densification from a
sparse set of matches (pixels where the motion is not known
are shown in white in [3(d)) and the results can be seen in
the 3rd row. One can observe that when no guide is used
in the interpolation process (TV and Rotation-invariant meth-
ods) the discontinuities of the optical flow are not well re-
covered, since they are not aligned with the objects bound-
aries. This can be seen for instance, in the semi-circles in
the second row of Fig. E] where these methods fail, while the
interpolation step of EpicFlow and our interpolation give sat-
isfactory results. Our interpolation method cannot correctly
inpaint the optical flow of rotating objects, as the wheel in
the bottom-left. In this region the information provided by
the metric-based guide is not useful (roughly homogeneous
area). In such cases, our method reduces to a local isotropic
average which can only solve translations. EpicFlow’s inter-
polation uses instead a local affine transformation, allowing to
correctly recover rotations. In general, one can observe that
visual results of our interpolation method are better (Fig. [Id).

4. CONCLUSIONS

This paper presents a new method for optical flow completion
which is based on the Absolutely Minimizing Lipschitz Ex-
tension equation (or the infinity Laplace equation) on the 2D

SINTEL Ours - EPE | EF - EPE
occlusions 5.4198 6.8797
sparse 1% 0.7061 1.8532
sparse 5% 0.4340 1.4199
sparse 30% 0.2241 1.1212
sparse DM 4.4404 4.1507
sparse DM (gt) 2.1360 2.3802
hole 1.7208 1.9587

Table 1: Comparison of the EPE for EpicFlow and our
method in different situations. The comparison is done over
all the training Sintel dataset [[7].

MIDDLEBURY | Ours - EPE | EF - EPE
sparse 1% 0.1979 0.3105
sparse 5% 0.1053 0.2426
sparse 30% 0.0567 0.1801
sparse DM 0.9216 0.8112
sparse DM (gt) 0.2049 0.2789

Table 2: Comparison of the EPE for EpicFlow and our
method in different situations. The comparison is done in
the Middlebury dataset on the optical flow corresponding to
frames 10 and 11, where the groundtruth is available [5].

-
(c) Inpainting

(a) Frame 02 seq. 10 (b) Groundtruth

Fig. 4: A result on Kitti dataset [|19] that contains large holes.

Riemannian manifold endowed with an appropriate metric,
defined by the image frame, which acts as a guide for the re-
sulting anisotropic diffusion. The proposed method has been
analyzed in four different types of experiments: interpolation
of sparse (ground truth or estimated) matches, i.e. optical flow
densification, and motion completion both in occlusion areas
and in large holes. The experimental results show how it out-
performs the EpicFlow interpolation in practically all the sit-
uations. We have proposed three different simple metrics and
as part of the future work we plan to study more sophisticated
ones in order to further improve the results.
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