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Abstract. An ideal exemplar-based texture synthesis algorithm should
create a new texture that is perceptually equivalent to its texture exam-
ple. To this goal it should respect the statistics of the example and avoid
proceeding to a “copy-paste” process, which is the main drawback of the
non-parametric approaches. In a previous work we modeled textures as a
locally Gaussian patch model. This model was estimated for each patch
before stitching it to the preceding ones. In the present work, we extend
this model to a local conditional Gaussian patch distribution. The con-
dition is taken over the already computed values. Our experiments here
show that the conditional model reproduces well periodic and pseudo-
periodic textures without requiring the use of any stitching technique.
The experiments put also in evidence the importance of the right choice
for the patch size. We conclude by pointing out the remaining limitations
of the approach and the necessity of a multiscale approach.
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1 Introduction

Exemplar based texture synthesis is the problem of synthesizing from an input
sample a perceptually equivalent larger texture sample. This problem has appli-
cations in computer graphics, computer vision and image processing, for example
for fast scene generation, inpainting, and texture restoration. From the math-
ematical viewpoint the problem can be posed as the retrieval of the stochas-
tic process underlying the sample, followed by the generation of new samples
by simulating the reconstructed stochastic process. Texture synthesis meth-
ods are generally divided into two categories, the parametric [5,7,14] and non-
parametric [1,3,4,10–12,17]. Using the texture sample, the parametric methods
estimate statistical parameters characterizing the stochastic process. Although
these methods can reproduce faithfully some of the global statistics of the sam-
ple, they generally do not yield high quality visual results. The non-parametric
methods give up any statistical modeling and proceed to a direct simulation
by iterating a copy-paste process with texture patches extracted from the origi-
nal sample. Even though these methods can yield satisfactory results, they lack
flexibility and often turn into practising verbatim copies of large parts of the
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input sample. More recently methods such as the work of Tartavel et al. in [16]
combine the parametric and non-parametric methods using a variational app-
roach with the aim of overcoming the copy-paste effects. They propose to mini-
mize an energy function that takes into account the use of a sparse, patch-based
dictionary combined to constraints on the textures’ spectrum.

Statistics-based methods were initiated by Julesz [9], who discovered that
many texture pairs having the same second-order statistics would not be dis-
cerned by human preattentive vision. This hypothesis is referred to as the first
Julesz axiom for texture perception. Its validity can been checked in [5] which
proposes to emulate microtextures by maintaining the Fourier modulus of the
sample image and randomizing its phase, thus maintaining the second order
statistics of the sample. This random phase method correctly emulates certain
textures, which turn out to be Gaussian stationary fields. Yet, the method also
fails for more structured ones. Both effects can be experimented online in the
executable paper [6].

Julesz’ approach was extended by Heeger and Bergen in [7] using multiscale
statistics. The texture sample is characterized by the histograms of its wavelet
coefficients and a new texture is created by enforcing these statistics on a white
noise image. Yet this method only measures marginal statistics of the sample
and misses important correlations between pixels across scales and orientations.
Again, the model gives convincing results on certain textures, but for example
fails on oriented textures, as verifiable in the executable paper [8].

Heeger and Bergen’s model was extended by Portilla and Simoncelli in [14]
who proposed to estimate on the texture sample not less than 700 autocorrela-
tions, cross-correlations and statistical moments of the wavelet coefficients. The
synthesis results obtained with this method are strikingly good compared to the
previous statistical attempts. Convincing results are observable on a very wide
range of textures. Although this method represents the state of the art for psy-
chophysically and statistically founded algorithms, it has too many parameters
to learn, and the results often present blur and phantoms effects.

Neighbourhood-based methods were initialized by Efros and Leung [4]. This
method extends to images Shannon’s Markov random field model for the English
language. The simulated texture is constructed pixelwise. For each new pixel,
a patch centered at the pixel is compared to all patches with the same size in
the input sample. The nearest matches help predict the pixel value in the recon-
structed image. This method was significantly accelerated by Wei and Levoy in
[17] who fixed the shape and size of the learning patch and also by Ashikmin in [1]
who proposed to extend existing patches whenever possible instead of searching
in the entire sample texture. These pixelwise algorithms are not quite satisfac-
tory. They are known to produce “garbage” when the compared patches are too
small, or may lead to verbatim copies of significant parts of the input sample
for large ones. To resolve the “garbage” issue and accelerate the procedure the
more recent methods stitch together entire patches instead of synthesizing pixel
by pixel. The question then is how to blend a new patch in the existing texture.
In [12] this is done by a smooth transition. Efros and Freeman [3] refined this
process by stitching each new patch along a minimum cost path across its over-
lapping zone with the texture under construction. Kwatra et al. in [11] extended
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the stitching procedure of [3] by a graph cut approach where the edges of the
patches are redefined and then quilted in the synthesis image. They also pro-
posed in [10] to synthesize a texture by sequentially improving the quality of
the synthesized image by minimizing a patch-based energy function. The patch-
based approaches often present satisfactory visual results. Yet, there is still a
risk of copying verbatim large parts of the input sample. Furthermore, a respect
of the global statistics of the initial sample is not guaranteed.

In a previous work [15] we proposed an algorithm that introduces some degree
of statistical modeling in the non-parametric approach, thus trying to blend both
approaches. A texture is synthesized in a patch-based approach, but the copy-
paste process is preceded by the estimation of a Gaussian texture model for each
new patch. In [15] we completed this process by adding a blending step in the
spirit of [3].

In this work, we present a refinement of the stochastic modeling introduced
in [15]. Our motivation was to dispose of the patch stitching step by using a more
robust local model for the texture. To that end, we condition the Gaussian dis-
tribution of a patch to the values of its overlapping region and simulate the patch
as the most probable sample of that conditional distribution. We present two
different models: a conditional locally Gaussian where the overlapping region is
maintained as is, and a regularized version that slightly relaxes the conditioning
on the overlap region. Using this refined model, we shall prove that it is pos-
sible to avoid the blending step for a wide class of periodic or pseudo-periodic
textures. Yet our experiments also show that for macro-textures we still need a
blending step.

We finally give an interpretation of this fact, that points to the necessity of
a multiscale generalization of the conditional approach, to cope with complex
multiscale textures.

The rest of this paper is structured as follows. In Section 2 we present two con-
ditional Gaussian models for the patches: a conditional locally Gaussian (CLG)
and a regularized conditional locally Gaussian (RCLG). In Section 3 we dis-
cuss the synthesis results obtained from the three models: the locally Gaussian
([15]) and the two conditional locally Gaussian. We also analyze the behavior
of the RCLG model when varying the patch size and the neighbourhood size.
Conclusions are presented in Section 4.

2 Patch Models

We modeled in [15] a texture as a Locally Gaussian (LG) distribution. Given an
input texture I0, an output image Is is synthesized sequentially patch by patch
in a raster-scan order (left to right, top to bottom). Each new patch added to
Is overlaps part of the previously synthesized patch as can be seen in Figure 1.
Each patch is simulated following a multivariate Gaussian distribution of mean
μ and covariance matrix Σ where

μ =
1
N

N∑

i=1

pi and Σ =
1
N

(P − μ)(P − μ)t, (1)
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P is a matrix whose columns are the patches pi in vector form and N is the
considered number of nearest neighbours.

To define the patches pi, let us consider p as the patch being currently syn-
thesized and taken as a column vector of size w × 1. The patch p will overlap
part of the previous synthesis. To synthesize p, we decompose it as

p =
(

Sp
Mp

)
, S : Rw → R

w−k, M : Rw → R
k (2)

where S and M are projection operators such that Mp is a vector of size k × 1
with the values of p on the overlap area and Sp is a vector of size (w − k) × 1
with the other components of p.

The patches pi used to learn the parameters of the multivariate Gaussian
distribution (1) are the N nearest neighbours in I0 to the current patch p, for
the L2 distance restricted to the overlap area, given by ‖Mpi − Mp‖2. Once the
patch p is synthesized from the Gaussian model (1), the values of Mp change.

Fig. 1. We show three different iterations of the synthesis process. At each iteration a
patch is being synthesized. This patch is represented by the pink square in the three
iterations shown.

We observed unwanted transition effects when new patches were added into
Is. To overcome this problem we used Efros and Freeman’s stitching method
[3]. Yet we found that this solution is not quite satisfactory, as the new patch is
simulated without conditioning it to the overlap area. We therefore propose a new
patch model that aims to model directly the transition effect between patches.
Each new patch will be estimated as a Gaussian vector conditioned to the pixel
values of the corresponding overlap region. In this way the simulated patch
would naturally “agree” with Is in the overlap area, thus avoiding a stitching
procedure.

2.1 The Conditional Locally Gaussian Model

Let Is denote the texture image that is being synthesized. At each step of
the algorithm a new patch p is added to Is overlapping the previously synthe-
sized ones. We want p to match with the overlap area pixels, to avoid creating
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unwanted discontinuities. This can be done by a Conditional Locally Gaussian
(CLG) model.

Each patch p is taken as a column vector of size w × 1. Then p can be
partitioned as in (2).

We assume throughout that the vector p follows a Gaussian distribution of
mean μ and covariance matrix Σ (the LG model). Then these parameters can
be partitioned as follows :

μ =
[

μ1

μ2

]
=

[
Sμ
Mμ

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
=

[
SΣSt SΣM t

MΣSt MΣM t

]
.

Our problem can be formulated as finding the “best sample” p̃ = (x̃1, x̃2)
conditioned to the overlap values y0 that are known, i.e. we have x̃2 = y0 and
the value of x̃1 is the most probable one conditioned to x̃2. It is given by

x̃1 = arg max
x1

Pμ,Σ(Sp = x1 | Mp = y0) (3)

By classic results on conditional multivariate Gaussian distributions [13], the
distribution of Sp conditioned to Mp = y0 is a multivariate Gaussian distribution
of parameters μ̄ and Σ̄ where

μ̄ = μ1 + (SΣM t)(MΣM t)−1(y0 − μ2)

and
Σ̄ = (SΣSt) − SΣM t(MΣM t)−1MΣSt.

Since the most probable sample of a multivariate Gaussian distribution is its
mean, the solution to (P1) is

p̃ =
(

x̃1

y0

)
=

(
μ1 + (SΣM t)(MΣM t)−1(y0 − μ2)
y0

)
. (4)

Feasibility. Yet equation (4) shows that this solution does not make sense
if (MΣM t) is not invertible. This unfortunately is frequent, as the number
of neighbours N used to build the Gaussian distribution is often very small
compared to the dimension of the vectors we aim to model. Therefore the learnt
Gaussian models are strongly degenerated.

This does not necessarily imply that there is no solution to (P1). The fact
that Σ is not invertible implies that the Gaussian vectors p ∼ N (μ,Σ) live in a
subspace of Rw. This leads to the following alternative:

1. The Gaussian vectors subspace intersects the set of Gaussian vectors (x1, y0)t.
2. There is no intersection and in that case no solution to our problem.

To overcome the fact that we may have no solution one can modify the Gaussian
distribution learnt for p as follows

p ∼ N (μ,Σ + σ2Iw),
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where σ2 is a real positive number and Iw is the identity matrix of size w × w.
In that way the Gaussian vectors p live in R

w, and this ensures the existence
of a solution to problem (P1). We denote Γ = Σ + σ2Iw. When (P1) has a
solution for p ∼ N (μ,Σ), the new distribution N (μ, Γ ) will slightly modify the
solution in (4) for a small value of σ2. It is thus enough to take a low value for
this parameter and the solutions obtained in both cases (with and without the
Gaussian noise) will be very close to each other.

2.2 Regularized Conditional Locally Gaussian

In the previous section we conditioned the patches’ statistical model to the
exact values of the synthesized pixels across the overlap area. This could be too
restrictive and then create samples that are very unlikely to exist. Instead of
forcing each patch p to take the exact same values on the previously synthesized
part, it is therefore natural to allow the patch p to vary slightly on the overlap
area. This variation is rendered necessary by the scarcity of patch samples in
a small texture sample. Consider the same patch model N (μ,Σ), but let us
now allow the overlap components Mp to take values x2 = y0 + n where n ∼
N (0, θ2Ik). Then the most probable sample

p̃ = (x̃1, x̃2) = arg max
(x1,x2)

Pμ,Σ(Sp = x1|Mp = x2)P0,θ2Ik(x2 − y0)

still is exactly the same as in the CLG model. Thus, to slightly relax the con-
straint on the overlap we propose to minimize the following energy function

E(x1, x2) = − logPμ,Σ(Sp = x1,Mp = x2) +
1

2θ2
‖x2 − y0‖22, (5)

where the first term is the fidelity term to the Gaussian distribution of p and the
second term is a regularization term to impose that x2 keeps close to y0. The
parameter θ2 controls the distance between the values of x2 and the synthesized
part over the overlap area. We shall call this model Regularized Conditional
Locally Gaussian (RCLG). The optimal sample p̃ is then

p̃ = (x̃1, x̃2) = arg min
(x1,x2)

E(x1, x2) = (θ2Σ−1 + M tM)−1(M ty0 + θ2Σ−1μ) (6)

Once again the solution in (6) makes sense when the inverse of the matrices
Σ and θ2Σ−1 +M tM exists. To be sure that we always find a solution, we shall
slightly modify the Gaussian distribution of p, as we did previously, and this
guarantees that these matrices are invertible. Considering p ∼ N (μ,Σ + σ2Iw)
the optimal simulated patch p̃ is as shown in (7).

p̃ = (θ2(Σ + σ2Iw)−1 + M tM)−1(M ty0 + θ2(Σ + σ2Iw)−1μ). (7)
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3 Experiments

The proposed patch models were tested with several types of textures: synthetic
periodic, real pseudo-periodic and macro-textures. A summary of the results is
presented in this section. The first results are a comparison of the three patch
models: LG, CLG and RCLG without using any blending technique. The second
ones compare the LG model and RCLG with an addional blending step. The last
experiments are focused on comparing the influence of the parameters w and N
on the synthesis results where w is the patch size and N the neighbourhood size
(number of nearest neighbours used to build the Gaussian model). We do not
compare here the proposed synthesis methods to other classical texture synthesis
algorithm because this was already done extensively in [15]. Our aim is rather
to discuss the different local Gaussian models and their parameters.

3.1 Patch Models Comparison

For the examples shown in Figure 2 the pacth size w varies between 10× 10 and
40×40 and the neighbourhood size N between 10 and 20. The comparisons were
made without using a blending step when stitching the patches. This permitted
to better evaluate the positive impact of considering a local Gaussian model
conditioned to the overlap values.

For the first example in Figure 2 one can observe that the three mod-
els achieve very good results regardless of the overlap information. This was
expected, as periodic synthetic textures present many reliable examples to learn
the Gaussian distribution of a patch. No boundary effect is therefore observable.
For the LG model minor transitions are visible due to the presence of “dégradé”
in this particular example. In the examples 2 and 3 in Figure 2 the stitching
effects start being noticeable. For the LG model the patch itself is correctly syn-
thesized but a blending step is necessary to avoid losing the global structure.
However, for both models CLG and RCLG we still obtain a reliable patch model
and a good global coherence without any blending technique. In the three last
examples we meet the case where there are not enough patch examples in the
sample texture to build an acceptable Gaussian distribution for the patch. Thus,
achieving a correct synthesis requires adding a blending step. Once again, the
transitions between the patches are more conspicuous in the LG model compared
to the conditioned models.

The RCLG clearly yielded better results then the CLG model. This is due to
the fact that we slightly relaxed the condition on the overlap area, thus achieving
a more flexible model for the patch itself. For the conditional model (CLG) it
might have seemed attractive to impose that a patch keeps exactly the same
values in the overlap area. Indeed, this might have generated a patch that is
very unlikely to happen. Yet, one can observe in the last two examples how the
quality of the synthesis declines by this strong imposition.

In Figure 3 two models were compared: LG and RCLG, with an additional
blending step for both cases. We can see in a general way that for the pair of
parameters chosen for each texture example the RCLG model conserves a better



Conditional Gaussian Models for Texture Synthesis 481

Input LG CLG RCLG

Fig. 2. Patch model comparison on several texture examples. From left to right: local
Gaussian model, conditional local Gaussian model and regularized conditional local
Gaussian model. The pair of parameters (w,N) used for each example from top to
bottom are (30, 20), (40, 10), (30, 10), (40, 10), (10, 10), (40, 20).
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Input LG + blending RCLG + blending

Fig. 3. Comparison of two patch models (LG an RCLG) combined with a blending
step as in [3]. From left to right: input texture, local Gaussian model and regularized
conditional local Gaussian model. The pair of parameters (w,N) used for each example
from top to bottom are (30, 20), (40, 10), (30, 10), (40, 10), (10, 10), (40, 20).
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(a) (b) (c)

Fig. 4. Comparison of the patch size w and neighbourhood size N influence on three
examples synthesis results using the RCLG model. For (a) and (b): from top to bottom,
w = 20, 30, 40 and from left to right, N = 10, 20, 50. For (c): from top to bottom,
w = 10, 20, 30 and from left to right, N = 10, 20, 50.

global coherence at the cost of losing finer details that the LG model manages
to keep. These results are not surprising since all patches in the RCLG model
were simulated minimizing (5) achieving a smoother result (it is the same as
finding the most probable sample from the underlying probability distribution).
A possible solution to overcome this effect could be to define the probability
law of the RCLG model and sample a patch from it instead of taking the most
probable one.

Finally, we noticed that on every synthesis example using any of the three
patch models some details of the original texture can be lost (except for the
periodic synthetic texture where there is no lack of examples). This brings us
to the comparison of the next section, where we shall clearly see how varying
the patch size permits on the one hand to capture the thinner details (using
a smaller patch size) and on the other to capture the global structure of the
texture (using a larger patch size).

3.2 Influence of Parameters

As mentioned above we will compare the influence of the patch size w and of the
neighbourhood size N on the synthesis results. We can clearly conclude from the
examples shown in Figure 4 that, by increasing the neighbourhood size for a fixed
w, the RCLG patch model loses accuracy. Another important conclusion is that
for different patch sizes the model is able to capture different details at different
scales. In particular in the first example of Figure 4 for a patch of size 20×20 the
salient structure is well simulated with the model, although the synthesis of the
global arrangement of the black circles fails. Increasing the value of w permits
to achieve a good global reconstruction, at the cost of sightly smoothing out the
texture. The same observation can be made for the other displayed examples. We
can conclude from these experiments that a unique patch size for the synthesis
of macro-textures, i.e. containing information at different scales, is not enough
to model at the same time the global structure and the finer details.
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4 Conclusion

In this work, we have proposed a novel local texture sampling method in the patch
space where each patch is conditioned to the values in the overlapping area.

The experiments in Section 3 show that both resulting models CLG and
RCLG yield good synthesis results on periodic and quasi-periodic textures, with-
out requiring the use of a stitching technique. For general macro-textures this
need is reduced with CLG an RCLG with respect to the locally Gaussian model,
that did not take into account the overlap values. Comparing both conditional
models, CLG and RCLG, we observed that the results obtained for the reg-
ularized version are visually better. Indeed, imposing the simulated Gaussian
patch to have exactly the same values over the overlap area was excessive. The
experiments of Section 3.2 show the importance of fixing a correct patch size for
a given texture example. They prove that a macro-texture cannot be correctly
synthesized with a single patch size.

Hence, future work will focus on a multi-scale approach to catch both the global
structure of the texture and its details, in the spirit of the recent work [16].
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