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Abstract

Numerous recent approaches attempt to remove im-
age blur due to camera shake, either with one or mul-
tiple input images, by explicitly solving an inverse and
inherently ill-posed deconvolution problem. If the pho-
tographer takes a burst of images, a modality available
in virtually all modern digital cameras, we show that
it is possible to combine them to get a clean sharp
version. This is done without explicitly solving any
blur estimation and subsequent inverse problem. The
proposed algorithm is strikingly simple: it performs a
weighted average in the Fourier domain, with weights
depending on the Fourier spectrum magnitude. The
method’s rationale is that camera shake has a random
nature and therefore each image in the burst is gener-
ally blurred differently. Experiments with real camera
data show that the proposed Fourier Burst Accumula-
tion algorithm achieves state-of-the-art results an order
of magnitude faster, with simplicity for on-board imple-
mentation on camera phones.

1. Introduction

One of the most challenging experiences in photog-
raphy is taking images in low-light environments. The
basic principle of photography is the accumulation of
photons in the sensor during a given exposure time. In
general, the more photons reach the surface the better
the quality of the final image, as the photonic noise
is reduced. However, this basic principle requires the
photographed scene to be static and that there is no rel-
ative motion between the camera and the scene. Oth-
erwise, the photons will be accumulated in neighbor-
ing pixels, generating a loss of sharpness (blur). This
problem is significant when shooting with hand-held
cameras, the most popular photography device today,
in dim light conditions.

Under reasonable hypotheses, the camera shake can

be modeled mathematically as a convolution,
v=uxk+mn, (1)

where v is the noisy blurred observation, u is the latent
sharp image, k is an unknown blurring kernel and n is
additive white noise. For this model to be accurate, the
camera movement has to be essentially a rotation in its
optical axis with negligible in-plane rotation, e.g., [26].
The kernel k results from several blur sources: light
diffraction due to the finite aperture, out-of-focus, light
integration in the photo-sensor, and relative motion be-
tween the camera and the scene during the exposure.
To get enough photons per pixel in a typical low light
scene, the camera needs to capture light for a period
of tens to hundreds of milliseconds. In such a situ-
ation (and assuming that the scene is static and the
user/camera has correctly set the focus), the dominant
contribution to the blur kernel is the camera shake —
mostly due to hand tremors.

Current cameras can take a burst of images, this be-
ing popular also in camera phones. This has been ex-
ploited in several approaches for accumulating photons
in the different images and then forming an image with
less noise (mimicking a longer exposure time a posteri-
ori, see e.g., [2]). However, this principle is disturbed if
the images in the burst have blur. The classical math-
ematical formulation as a multi-image deconvolution,
seeks to solve an inverse problem where the unknowns
are the multiple blurring operators and the underly-
ing sharp image. This procedure, although produces
good results [30], is computationally very expensive,
and very sensitive to a good estimation of the blurring
kernels. Furthermore, since the inverse problem is ill-
posed it relies on priors either or both for the calculus
of the blurs and the latent sharp image.

Camera shake originated from hand tremor vibra-
tions is essentially random [4, 11, 27]. This implies
that the movement of the camera in an individual im-
age of the burst is independent of the movement in
another one. Thus, the blur in one frame will be differ-



ent from the one in another image of the burst. There
are mainly three sources of tremor: arm (< 5Hz), wrist
(5-20Hz), and fingers (20-30Hz) (Fig. 2 in [11]). This
implies that the correlation between successive frames
is typically low, unless the frames are acquired at a
very fast shutter speed (>1/100s), but of course, in
such scenario there will be no camera shake blur.

Our work is built on this basic principle. We present
an algorithm that aggregates a burst of images taking
what is less blurred of each frame to build an image
that is sharper and less noisy than all the images in the
burst. The algorithm is straightforward to implement
and conceptually simple. It takes as input a series of
registered images and computes a weighted average of
the Fourier coefficients of the images in the burst. With
the availability of accurate gyroscope and accelerome-
ters in, for example, phone cameras, the registration
can be obtained “for free,” rendering the whole algo-
rithm very efficient for on-board implementation. We
also completely avoid the explicit computation of the
blurring kernel (as commonly done in the literature),
which is not only an unimportant hidden variable for
the task at hand, but as mentioned above, still leaves
the ill-posed and computationally very expensive task
of solving the inverse problem.

Evaluation through synthetic and real experiments
shows that the final image quality is significantly im-
proved. This is done without explicitly performing de-
convolution, which generally introduces artifacts and
also a significant overhead. Comparison to state-of-the-
art multi-image deconvolution algorithms shows that
our approach produces similar or better results while
being orders of magnitude faster and simpler. The pro-
posed algorithm does not assume any prior on the la-
tent image; exclusively relying on the randomness of
hand tremor.

The remaining of the paper is organized as follows.
Section 2 discusses the related work and the substan-
tial differences to what we propose. Section 3 ex-
plains how a burst can be combined in the Fourier do-
main to recover a sharper image, while in Section 4 we
present an empirical analysis of the algorithm perfor-
mance through the simulation of camera shake kernels.
Section 5 details the algorithm implementation and in
Section 6 we present results of the proposed aggrega-
tion procedure in real data, comparing the algorithm
to state-of-the-art multi-image deconvolution methods.
We finally close in Section 7.

2. Related Work

Removing camera shake blur is one of the most chal-
lenging problems in image processing. Although in the
last decade several image restoration algorithms have

emerged giving outstanding performance, its success is
still very dependent on the scene. Most image deblur-
ring algorithms cast the problem as a deconvolution
with either a known (non-blind) or an unknown blur-
ring kernel (blind). See e.g., the review by Kundur and
Hatzinakos [14], where a discussion of the most classi-
cal methods is presented.

Most blind deconvolution algorithms try to estimate
the latent image without any other input than the
noisy blurred image itself. A representative work is
the one by Fergus et al. [9]. This variational method
sparked many competitors seeking to combine natural
image priors, assumptions on the blurring operator,
and complex optimization frameworks, to simultane-
ously estimate both the blurring kernel and the sharp
image [13, 17, 20, 24, 28].

Others attempt to first estimate the degradation op-
erator and then applying a non-blind deconvolution al-
gorithm. For instance, [6] accelerates the kernel estima-
tion step by using fast image filters for explicitly detect-
ing and restoring strong edges in the latent sharp im-
age. Since the blurring kernel has typically a very small
support, the kernel estimation problem is better condi-
tioned than estimating the kernel and the sharp image
simultaneously [16, 17]. However, even in non-blind de-
blurring, i.e., when the blurring kernels are known, the
problem is generally ill-posed, because the blur intro-
duces zeros in the frequency domain. Thereby avoiding
explicit inversion, as here proposed, becomes critical.

Two or more input images can improve the esti-
mation of both the underlying image and the blurring
kernels. Rav-Acha and Peleg [23] claimed that “Two
motion-blurred images are better than one,” if the di-
rection of the blurs are different. In [29] the authors
proposed to capture two photographs: one having a
short exposure time, noisy but sharp, and one with a
long exposure, blurred but with low noise. The two
acquisitions are complementary, and the sharp one is
used to estimate the motion kernel of the blurred one.

The closest to our work are papers on multi-image
blind deconvolution [3, 5, 25, 30, 32]. In [3] the au-
thors introduce a prior on the sparsity of the motion
blur kernel to constraint the blind deblurring problem.
Most of these multi-image algorithms introduce cross-
blur penalty functions between image pairs. However
this has the problem of growing combinatorially with
the number of images in the burst. This idea is ex-
tended in [30] using a Bayesian framework for coupling
all the unknown blurring kernels and the latent image
in a unique prior. Although this prior has numerous
good mathematical properties, its optimization is very
slow. The algorithm produces very good results but
it may take several minutes or even hours for a typical
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Figure 1: When the camera is set to a burst mode, several
photographs are captured sequentially. Due to the random
nature of hand tremor, camera shake blur is mostly inde-
pendent from one frame to the other. An image consisting
of white dots was photographed with a handheld camera

at 1/4” to depict the camera motion kernels. The kernels
are mainly unidimensional regular trajectories that are not
completely random (perfect random walk) nor uniform.

burst of 8-10 images of several megapixels. The very re-
cent work by Park and Levoy [22] relies on an attached
gyroscope, now present in many phones and tablets,
to align all the input images and to get an estimation
of the blurring kernels. Then, a multi-image non-blind
deconvolution algorithm is applied. By taking a burst
of images, the multi-image deconvolution problem be-
comes less ill-posed allowing the use of simpler priors.
This is explored in [12] where the authors introduce a
total variation prior on the underlying sharp image.

All these papers propose kernel estimation and to
solve an inverse problem of image deconvolution. The
main inconvenience of tackling this problem as a decon-
volution, on top of the computational burden, is that if
the convolution model is not accurate or the kernel is
not accurately estimated, the restored image will con-
tain strong artifacts (such as ringing). Our approach
is radically different. The idea is to fuse all the images
in the burst without explicitly estimating the blurring
kernels and subsequent inverse problem approach, but
taking the information that is less degraded from each
image in the burst. In that sense our work is closer
to multi-image denoising [2], however we consider that
the input images may also be blurred.

3. Fourier Burst Accumulation

Camera shake originated from hand tremor vibra-
tions has undoubtedly a random nature [4, 11, 27].
The independent movement of the photographer hand
causes the camera to be pushed randomly and unpre-
dictably, generating blurriness in the captured image.
Figure 1 shows several photographs taken with a DSLR
handheld camera. The photographed scene consists of
a laptop displaying a black image with white dots. The
captured picture of the white dots illustrates the trace
of the camera movement in the image plane. If the
dots are very small —mimicking Dirac masses— their

photographs represent the blurring kernels themselves.
The kernels mostly consist of unidimensional regular
random trajectories. This stochastic behavior will be
the key ingredient in our proposed approach.

Let F denote the Fourier Transform and k the
Fourier Transform of the kernel k. Images are defined
in a regular grid indexed by the 2D position x and
the Fourier domain is indexed by the 2D frequency
(. Let us assume, without loss of generality, that the
kernel k£ due to camera shake is normalized such that
J k(x)dx = 1. The blurring kernel is nonnegative since
the integration of incoherent light is always nonnega-
tive. This implies that the motion blur does not am-
plify the Fourier spectrum:

Claim 1. Let k(x) > 0 and [ k(x) = 1. Then, |k(¢)| <
1,V¢. (Blurring kernels do not amplify the spectrum.)

< [ kol ax = [ kxyix =
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Proof.
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Most modern digital cameras have a burst mode
where the photographer is allowed to sequently take
a series of images, one right after the other. Let us
assume that the photographer takes a sequence of M
images of the same scene u,

vi=uxk; +n;, for i=1,...,M. (2)
The movement of the camera during any two images
of the burst will be essentially independent. Thus,
the blurring kernels k; will be mostly different for dif-
ferent images in the burst. Hence, each Fourier fre-
quency of u will be differently attenuated on each
frame of the burst. The idea is to reconstruct an im-
age whose Fourier spectrum takes for each frequency
the value having the largest Fourier magnitude in the
burst. Since a blurring kernel does not amplify the
Fourier spectrum (Claim 1), the reconstructed image
picks what is less attenuated from each image of the
burst.

More formally, let p be a non-negative integer, we
will call Fourier Burst Accumulation (FBA) to the
Fourier weighted averaged image,

up (Z wz Uz ) (X)v (3)
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where ©0; is the Fourier Transform of the individual
burst image v;. The weight w; := w;({) controls the
contribution of the frequency ( of image v; to the fi-
nal reconstruction u,. Given ¢, for p > 0, the larger
the value of |0;(¢)|, the more 9;({) contributes to the
average, reflecting what we discussed above that the
strongest frequency values represent the least attenu-
ated u components.

The integer p controls the aggregation of the images
in the Fourier domain. If p = 0, the restored image
is just the average of the burst (as standard for exam-
ple in the case of noise only), while if p — oo, each
reconstructed frequency takes the maximum value of
that frequency along the burst. This is stated in the
following claim; the proof is straightforward and it is
therefore omitted.

Claim 2. Mean/Maz aggregation. Suppose that 9;(C)
fori = 1,...,M are such that |0;, ()| = |9:,(¢)] =
s = |ﬁlq(C)| > |@iq+1 (C)‘ > |ﬁiq+2(C)| 2.2 ‘@IM(C)
and w;(¢) is given by (3). If p = 0, then w;(¢) =
ﬁ,Vi (arithmetic mean pooling), while if p — oo, then
w;(¢) = % for i =i1,...,1g and w;(¢) = 0 otherwise

(mazimum pooling).

The Fourier weights only depend on the Fourier
magnitude and hence they are not sensitive to image
misalignment. However, when doing the average in (3),
the images v; have to be correctly aligned to mitigate
Fourier phase intermingling and get a sharp aggrega-
tion. The images in our experiments are aligned us-
ing SIFT correspondences and then finding the domi-
nant homography between each image in the burst and
the first one (implementation details are given in Sec-
tion 5). This pre-alignment step can be done exploiting
the camera gyroscope and accelerometer data.

Dealing with noise. The images in the burst are
blurry but also contaminated with noise. In the ideal
case where the input images are not contaminated with
noise, (3) is reduced to

0P kAl |k (4)
Zjle |@j‘p Zgj\il |kj 'ﬁ|p Zgle |kj|p,
as long as |a] > 0. This is what we would like to
have: a procedure for weighting more the frequencies
that are less attenuated by the different camera shake
kernels. Since camera shake kernels have typically a
small support, of maximum only a few tenths of pixels,
its Fourier spectrum magnitude varies very smoothly.
Thus, |0;] can be smoothed out before computing the
weights. This helps to remove noise and also to stabi-
lize the weights (see Section 5).

P =
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(b) Fourier Aggregation results for different p values.

(d) Weighted frames energy
distribution

(c) Weights energy distribution

Figure 2: Weights distribution of the Fourier Burst Aggre-
gation when changing the value of p. As p increases, the
weights are concentrated in fewer images and the aggre-
gated image becomes sharper but also noisier.

4. Fourier Burst Accumulation Analysis
4.1. Weights Distribution

The value of p balances sharpness and noise reduc-
tion. Although, one would always prefer to get a sharp
image, due to noise and the unknown Fourier phase
shift introduced by the aggregation procedure, the re-
sultant image would not necessary be better as p — oo.
Figure 2 shows an example of the proposed FBA for a
burst of 7 images, and the amount of contribution of
each frame to the final aggregation. As p grows, the
weights are concentrated in fewer images. The weights
maps clearly show that different Fourier frequencies are
recovered from different frames. In this example, the
high frequency content is uniformly taken from all the
frames in the burst. This produces a strong noise re-
duction behavior, in addition to the sharpening effect.

4.2. Statistical Performance

To show the statistical performance of the Fourier
weighted accumulation, we carried out an empirical
analysis applying the proposed aggregation with dif-
ferent values of p. We simulated motion kernels follow-
ing [11], where the (expected value) amount of blur is
controlled by a parameter related to the exposure time.
We also controlled the number of images in the burst
and the noise level in each frame. The kernels were gen-
erated by simulating the random shake of the camera
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Figure 3: Simulated kernels due to hand tremor follow-
ing [11]. Each row shows a set of simulated kernels (left
panel) for different exposures Texp = 1/10,1/5,1/2,2/3 and
the respective Fourier spectrum magnitude (right panel).
The parameter Texp controls the amount of expected blur.

from the power spectral density of measured physiolog-
ical hand tremor [4]. All the images were aligned by
pre-centering the motion kernels before blurring the
underlying sharp image. Figure 3 shows several dif-
ferent realizations for different exposure values Toxp.
Actually, the amount of blur not only depends on the
exposure time but also on the focal distance, user ex-
pertise, and camera dimensions and mass [1]. However,
for simplicity, all these variables were controlled by the
single parameter Toxyp.

We computed the empirical mean square error (MSE)
by randomly sampling hundreds of different motion
kernels and Gaussian noise realizations, and then ap-
plying the Fourier aggregation procedure. The mean
square error was decomposed into the bias and vari-
ance terms, namely MSE(u,) = bias(u,)? + var(u,), to
help visualize the behavior of the algorithm.

Figure 4 shows the average algorithm performance
when changing the acquisition conditions. In general,
the larger the value of p the smaller the bias and the
larger the variance. There is a minimum of the mean
square error for p € [7,30]. This is reasonable since
there exists a tradeoff between variance reduction and
bias. Although both the bias and the variance are af-
fected by the noise level, the qualitative performance
of the algorithm remains the same. The bias is not
altered by the number of frames in the burst but the
variance is reduced as more images are used, implying a
gain in the expected MSE as more images are used. On
the other hand, the exposure time mostly affects the
bias, being much more significant for larger exposures
as expected.

5. Algorithm Implementation

The burst restoration algorithm is built on three
main blocks: Burst Registration, Fourier Burst Ac-
cumulation, and Noise Aware Sharpening as a post-
processing. These are described in what follows.

Burst Registration. There are several ways of regis-
tering images (see [33] for a survey). In this work, we
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Figure 4: Bias-Variance tradeoff. Average algorithm per-
formance with respect to p when changing (a) the amount
of noise in the input images s, (b) the number of images in
the burst M, and (c) the exposure time Texp. The rest of
the parameters are set to M = 16, s = 0.04 and Texp = /3,
unless other specified. With short exposures, the arithmetic
average (p = 0) produces the best MSE since the images are
not blurred. The bias does not depend on M, but the vari-
ance can be significantly reduced by taking more images
(light accumulation procedure). Noise affects the bias and
the variance terms (with the exception of p = 0 where the
bias is unaffected). The MSE plots show the existence of
a minimum for p € [7,30], indicating that the best is to
balance a perfect average and a max pooling.

use image correspondences to estimate the dominant
homography relating every image of the burst and a
reference image (the first one in the burst). Although
restrictive, the homography assumption is valid if the
scene is planar (or far from the camera) or the view-
point location is fixed, e.g., the camera only rotates
around its optical center. Image correspondences are
found using SIFT features [19] and then filtered out
through the ORsA algorithm [21], a variant of the so
called RANSAC method [10]. Recall that as in prior art,
e.g., [22], the registration can be done with the gyro-
scope and accelerometer information from the camera.

Fourier Burst Accumulation. Given the registered
images {v; }M, we directly compute the corresponding
Fourier transforms {#;}*,. Since camera shake mo-
tion kernels have a small spatial support, their Fourier
spectrum magnitudes vary very smoothly. Thus, |9
can be lowpass filtered before computing the weights,
that is, [0;| = G, |9;|, where G, is a Gaussian filter of
standard deviation o. The strength of the low pass fil-
ter (controlled by the parameter o) should depend on



the assumed kernel size (the smaller the kernel the more
regular its Fourier spectrum magnitude). In our imple-
mentation we set 0 = min(mn.mw)/k,, where ks = 50 pix-
els and the image size is my, X m,, pixels. Although this
low pass filter is important, the results are not too sen-
sitive to the value of o.

The final Fourier burst aggregation is (note that the
smoothing is only applied to the weights calculation)

M
up:f_1<2wi-{/i>, wi:zjw%
i=1

j=1 |/0J|p

The extension to color images is straightforward.
The accumulation is done channel by channel using the
same Fourier weights for all channels. The weights are
computed by arithmetically averaging the Fourier mag-
nitude of the channels before the low pass filtering.

Noise Aware Sharpening. While the results of the
Fourier burst accumulation are already very good, con-
sidering that the process so far has been computa-
tionally non-intensive, one can optionally apply a fi-
nal sharpening step if resources are still available. The
sharpening must contemplate that the reconstructed
image may have some remaining noise. Thus, we first
apply a denoising algorithm (we used NLBAYES [15] 1),
then on the filtered image we apply a Gaussian sharp-
ening. To avoid removing fine details we finally add
back a percentage of what has been removed during
the denoising step.

Memory and Complexity Analysis. Once the im-
ages are registered, the algorithm runs in O(M - m -
logm), where m = my, X m,, is the number of image
pixels and M the number of images in the burst. The
heaviest part of the algorithm is the computation of
M FFT, very suitable and popular in VLSI implemen-
tations. This is the reason why the method has a very
low complexity. Regarding memory consumption, the
algorithm does not need to access all the images simul-
taneously and can proceed in an online fashion. This
keeps the memory requirements to only three buffers:
one for the current image, one for the current average,
and one for the current weights sum.

6. Experimental Results

We captured several handheld bursts with different
number of images using a Canon 400D DSLR camera
and the back camera of an iPad tablet. The full re-
stored images and the details of the camera parame-
ters are shown in Figure 5. The photographs contain

LA variant of this is already available on camera phones, so
we stay at the level of potential on-board implementations.

complex structure, texture, noise and saturated pixels,
and were acquired under different lighting conditions.
All the results were computed using p = 11.

Comparison to multi-image blind deblurring.
Since this problem is typically addressed by multi-
image blind deconvolution techniques, we selected two
state-of-the-art algorithms for comparison [25, 30].
Both algorithms are built on variational formulations
and estimate first the blurring kernels using all the
frames in the burst and then do a step of multi-image
non-blind deconvolution, requiring significant memory
for normal operation. We used the code provided by
the authors. The algorithms rely on parameters that
were manually tuned to get the best possible results.
We also compare to the simple align and average algo-
rithm (which indeed is the particular case p = 0).

Figures 6 and 7 show some crops of the restored
images by all the algorithms. In addition, we show
two input images for each burst: the best one in the
burst and a typical one in the series. The full sequences
are available in the supplementary material. The pro-
posed algorithm obtains similar or better results than
the one by Zhang et al. [30], at a significantly lower
computational and memory cost. Since this algorithm
explicitly seeks to deconvolve the sequence, if the con-
volution model is not perfectly valid or there is mis-
alignment, the restored image will have deconvolution
artifacts. This is clearly observed in the bookshelf se-
quence where [30] produces a slightly sharper restora-
tion but having ringing artifacts (see Jonquet book).
Also, it is hard to read the word “Women” in the spine
of the red book. Due to the strong assumed priors,
[30] generally leads to very sharp images but it may
also produce overshooting/ringing in some regions like
in the brick wall (parking night).

The proposed method clearly outperforms [25] in all
the sequences. This algorithm introduces strong ar-
tifacts that degraded the performance in most of the
tested bursts. Tuning the parameters was not trivial
since this algorithm relies on 4 parameters that the au-
thors have linked to a single one (named 7). We swept
the parameter v to get the best possible performance.

Our approach is conceptually similar to a regular
align and average algorithm, but it produces signifi-
cantly sharper images while keeping the noise reduction
power of the average principle. In some cases with nu-
merous images in the burst (e.g., see the parking night
sequence), there might already be a relatively sharp
image in the burst (lucky imaging). Our algorithm
does not need to explicitly detect such “best” frame,
and naturally uses the others to denoise the frequencies
not containing image information but noise.



parking night 10 imgs
150 1600, 1/3”
Canon 400D

woods 13 imgs
150 1600, 1/8”
Canon 400D

bookshelf 10 imgs
150 100, 1/6”
Canon 400D

auvers 12 imgs
150 400, 1/2”, iPad

anthropologie [22] 8 imgs
150 100, 353 ms

tequila [22] 8 imgs
180 100, 177 ms

Figure 5: Restoration of image bursts captured using different cameras. Full images and additional results given in the

supplementary material [3].

Execution time. Once the images are registered,
the proposed approach runs in only a few seconds in
our Matlab experimental code, while [30] needs several
hours for bursts of 8-10 images. Even if the estimation
of the blurring kernels is done in a cropped version (i.e.,
200 x 200 pixels region), the multi-image non-blind de-
convolution step is very slow, taking several hours for
6-8 megapixel images.

Multi-image non-blind deconvolution. Figure 8
shows the algorithm results in two sequences provided
n [22]. The algorithm proposed in [22] uses gyroscope
information present in new camera devices to register
the burst and also to have an estimation of the local
blurring kernels. Then a more expensive multi-image
non-blind deconvolution algorithm is applied to recover
the latent sharp image. Our algorithm produces similar
results without explicitly solving any inverse problem
nor using any information about the motion kernels.

7. Conclusions

We presented an algorithm to remove the camera
shake blur in an image burst. The algorithm is built on
the idea that each image in the burst is generally differ-
ently blurred; this being a consequence of the random
nature of hand tremor. By doing a weighted average
in the Fourier domain, we reconstruct an image com-
bining the least attenuated frequencies in each frame.

This algorithm has several advantages. First, it
does not introduce typical ringing or overshooting ar-
tifacts present in most deconvolution algorithms. This
is avoided by not formulating the deblurring problem
as an inverse problem of deconvolution. The algorithm
produces similar or better results than the state-of-the-
art multi-image deconvolution while being significantly
faster and with lower memory footprint. As a future
work, we would like to incorporate a gyroscope registra-
tion technique, e.g., [22], to create a real-time system
for removing camera shake in image bursts. We are
also exploring the use of the framework presented in
this paper for HDR [18, 31] and video deblurring [7],
with excellent preliminary results.

L > . 3 .'_-‘l','-
Sroubek & hod
Milanfar [25]

Figure 6: Real data burst deblurring results and compari-
son with multi-image blind deconvolution methods (auvers).

Best Shot

Park &
Levoy [22]

proposed
method

Figure 8: Restoration results with the data provided in [22]
(anthropologie and tequila sequences).



Typical Shot Best Shot Align and average Sroubek & Zhang et al. [30] proposed method proposed method

Milanfar [25] (no final sharp.)

Figure 7: Real data burst deblurring results and comparison to state-of-the-art multi-image blind deconvolution algo-
rithms (woods, parking night, bookshelf sequences).
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