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ABSTRACT

The most popular image matching algorithm SIFT, introduced by D.
Lowe a decade ago, has proven to be sufficiently scale invariant to
be used in numerous applications. In practice, however, scale invari-
ance may be weakened by various sources of error. The density of
the sampling of the Gaussian scale-space and the level of blur in the
input image are two of these sources. This article presents an empir-
ical analysis of their impact on the extracted keypoints stability. We
prove that SIFT is really scale and translation invariant only if the
scale-space is significantly oversampled. We also demonstrate that
the threshold on the difference of Gaussians value is inefficient for
eliminating aliasing perturbations.

Index Terms— SIFT, invariance, scale-space, sampling, alias-
ing

1. INTRODUCTION

SIFT [1, 2] is a popular image matching method extensively used
in image processing and computer vision applications. SIFT relies
on the extraction of keypoints and the computation of local invariant
feature descriptors. The property of scale invariance is crucial. The
matching of SIFT features is used in various applications such as,
image stitching [3], 3D reconstruction [4] and camera calibration [5].

SIFT was proved to be theoretically scale invariant [6]. Indeed,
SIFT keypoints are covariant, being the extrema of the image Gaus-
sian scale-space [7, 8]. In practice, however, the computation of the
SIFT keypoints is affected in many ways, which in turn limits the
scale invariance. For instance, the extraction of continuous extrema
from a discrete scale-space is a challenging task. We shall show that
the solution adopted by SIFT is rudimentary and may be affected by
the sampling and the noise in the input image. We prove that the
blur level in the input image also limits SIFT performance. Artifacts
caused by undersampling degrade the SIFT keypoint stability.

The literature on SIFT focuses on variants, alternatives and ac-
celerations [3, 9–33]. Yet, the huge amount of citations of the SIFT
articles indicates that it has become a standard and a reference in
many applications. In contrast there are almost no articles discussing
the SIFT settings and trying to compare SIFT with itself. By this
comparison we mean the question of comparing the SIFT invariance
claim with its empirical invariance, and the influence of the SIFT
parameters on its own performance. On this strict subject D. Lowe’s
paper [2] remains the principal reference, and it seems that very few
of its claims on the parameter choices of the method have undergone
a serious scrutiny. This paper intends to fill in the gap for the main
claim of the SIFT method, namely its scale invariance, and inciden-
tally on its translation invariance.

In this paper we investigate the role of the SIFT parameters by
means of a strict image simulation framework. This permits to con-
trol the main image and scale-space sampling parameters: initial

blur, scale and space sampling, noise level. We prove that scale-
space sampling has an important influence on the scale invariance
and that the robust extraction of all scale-space extrema requires to
significantly oversample the Gaussian scale-space. We experimen-
tally demonstrate that the invariance is limited by the aliasing in the
input image whereas large scale detections are less affected. Also,
we show that the contrast threshold proposed in SIFT is ineffective
to remove the unstable detections due to aliasing in the input image.

The remainder of the paper is organized as follows. Section 2
briefly presents the SIFT algorithm and details how the Gaussian
scale-space is implemented. Section 3 exposes the theoretical scale
invariance. With that aim in view, we explicit the camera model
consistent with SIFT. The experiments in Section 4 explore the limits
of SIFT numerical consistency. In particular we exhibit how the
invariance property is significantly affected by the sampling of the
scale-space and by the blur level in the input image. Section 5 is a
conclusive discussion.

2. THE SIFT METHOD

2.1. SIFT overview

SIFT derives from scale invariance properties of the Gaussian scale-
space [7,8]. The Gaussian scale-space of an initial image u is the 3D
function

v : (σ,x) 7→ Gσu(x),

whereGσu(x) denotes the convolution of u(x) with a Gaussian ker-
nel of standard deviation σ (the scale). In this framework, the Gaus-
sian kernel acts as an approximation of the optical blur introduced in
the camera (represented by its point spread function). Among other
important properties [8], the Gaussian approximation is convenient
because it satisfies the semi-group property

Gσ(Gγu)(x) = G√
σ2+γ2

u(x). (1)

In particular, this permits to simulate distant snapshots from closer
ones. Thus, the scale-space can be seen as a stack of images, each
one corresponding to a different zoom factor. Matching two images
with SIFT consists in matching keypoints extracted from these two
stacks.

SIFT keypoints are defined as the 3D extrema of the difference
of Gaussians (DoG) scale-space. Let v be the Gaussian scale-space,
the DoG is the 3D function

w : (σ,x) 7→ v(κσ,x)− v(σ,x),

where κ > 1 is a parameter controlling the scale sampling density.
The DoG operator can be seen as an approximation of the normal-
ized Laplacian of the scale-space σ2∆v(σ,x) [2, 8].



Extracting the 3D continuous extrema from the observed dis-
crete Gaussian scale-space is a difficult task. SIFT proceeds as fol-
lows. The DoG scale-space is first scanned for discrete extrema, each
voxel being compared to its 26 neighbors. Then a local quadratic
model is computed around each extremum to refine the extrema po-
sition. As we will show, this rudimentary approach is significantly
sensitive to scale-space sampling. To compensate this shortcoming,
SIFT incorporates two filters that seek to discard the unreliable de-
tections. Uncontrasted detections are filtered out by discarding those
keypoints with a small DoG value. Keypoints lying on edges are
also discarded since their location is not precise due to their intrin-
sic translation invariant nature. A reference keypoint orientation is
computed based on the dominant gradient orientation in the key-
point surrounding. This orientation along with the keypoint coor-
dinates are used to extract a covariant patch. Finally, the gradient
orientation distribution in this patch is coded into a 128 elements
feature, the so-called SIFT descriptor. We shall not discuss further
the constitution of the descriptor and refer to the abundant litera-
ture [17, 18, 30, 33–35].

2.2. The architecture of the Gaussian scale-space

The Gaussian digital scale-space consists of a set of digital images
with different blur levels and different sampling rates, all of them
derived from the input image with assumed blur level c.

The construction of the digital scale-space begins with the com-
putation of a seed image. The input image is oversampled by a factor
1/δmin and filtered by a Gaussian kernel G(σmin

2−c2)1/2 to reach the
minimal level of blur σmin and inter-pixel distance δmin. The scale-
space set is split into subsets where images share a common inter-
pixel distance. Since in the original SIFT algorithm the sampling rate
is iteratively decreased by a factor of two, these subsets are called
octaves. Denoting by nspo the number of scales per octave, each im-
age at each octave has a different blur level. The subsequent images
are computed iteratively from the seed image using the semi-group
property (1) to simulate the blurs following a geometric progression
σs = σmin2

s/nspo , s ≥ 1. The standard values proposed in [1] are
nspo = 3 and δmin = 1/2.

The digital scale-space architecture is defined by four parame-
ters: the number of octaves noct, the number of scales per octave nspo,
the initial oversampling factor δmin, and the minimal blur level σmin

in the scale-space. Finally, the DoG scale-space is computed from
the Gaussian scale-space as the difference between two successive
images. The ratio between two successive blur levels is κ = 21/nspo .
Thus, by increasing nspo the scale dimension can be sampled arbi-
trarily finely. In the same way by considering a small δmin value, the
2D position can be sampled finely.

3. THE THEORETICAL SCALE INVARIANCE

3.1. The camera model

In the present framework, the camera point spread function is mod-
eled by a Gaussian kernel Gc and all digital images are frontal snap-
shots of an ideal planar object described by the infinite resolution
image u0. In the underlying SIFT invariance model, the camera is
allowed to rotate around its optical axis, to take some distance, or to
translate while keeping the same optical axis direction. All digital
images can then be expressed as

u =: S1GcHT Ru0,

where S1 denotes the sampling operator, H a homothety, T a trans-
lation and R a rotation.

3.2. The SIFT method is invariant to zoom outs

It is not difficult to prove that SIFT is consistent with the camera
model. Nevertheless, the proof in [6] is inexact, as pointed out in
[36]. Let uλ and uµ denote two digital snapshots of the scene u0.
More precisely,

uλ = S1GcHλu0 and uµ = S1GcHµu0.

Assuming that the images are well sampled and taking advantage of
the semi-group property (1), the respective scale-spaces are

vλ(σ,x) = G√
σ2−c2

I1S1GcHλu0(x) = GσHλu0(x),

vµ(σ,x) = GσHµu0(x),

where I1 denotes the interpolation operator. In fact, both scale-
spaces only differ by a reparameterization. Indeed, if v0 denotes
the Gaussian scale-space of the infinite resolution image u0 (i.e.,
v0(σ,x) = Gσu0(σ,x)) we have

vλ(σ,x) = Hλ(Gλσu0(x)) = v0(λσ, λx),

vµ(σ,x) = v0(µσ, µx),

thanks to a commutation relation between homothety and convolu-
tion. With a similar argument, the two respective DoG functions are
related to the DoG function w0 derived from u0. For a ratio κ > 1
we have

wλ(σ,x) = vλ(κσ,x)− vλ(σ,x)

= v0(κλσ, λx)− v0(λσ, λx) = w0(λσ, λx)

and wµ(σ,x) = w0(µσ, µx). Consider an extremum point (σ0,x0)
of the DoG scale-space w0. Then if σ0 ≥ max(λc, µc), this ex-
tremum corresponds to extrema (σ1,x1) and (σ2,x2) of wλ and
wµ respectively, satisfying σ0 = λσ1 = µσ2. This equivalence of
extrema between the two scale-space guaranties that the SIFT de-
scriptors are identical.

4. THE NUMERICAL SCALE INVARIANCE

To show how the scale invariance is affected by the scale-space sam-
pling and the blur in the input image, we shall measure the invari-
ance level by accurately simulating image pairs related through a
scale change, a translation or a blur. We define the non repeata-
bility ratio (NRR) as the number of keypoints detected in one im-
age but not detected in the expected position of the other divided by
the total number of detected keypoints. To define if a keypoint was
correctly located, we used a more conservative tolerance than the
classical one adopted by [11, 37]. We took an absolute tolerance of
∆x = ∆y = 0.5 px for the spatial position, and a relative tolerance
of ∆s = 21/4s for the scale.

4.1. Simulating the digital camera

In our experiments, images were simulated to be accurately con-
sistent with the SIFT camera model. Specifically, digital images
were simulated from a large reference real digital image uref through
Gaussian convolution and subsampling. To simulate a Gaussian
camera blur c, a Gaussian convolution of standard deviation cS,
with S > 10 was first applied. The convolved image was then
subsampled by a factor S. Assuming that the reference image has
an intrinsic Gaussian blur of cref � cS, the resulting Gaussian blur
was

√
c2 + (cref/S)2 ≈ c. The blur level in natural images was



Fig. 1. Synthesized images deer and pool consistent with the
image model. The respective blur levels are c = 0.5 and c = 1.0.

estimated from the point spread function of a consumer digital reflex
camera following [38]. The obtained Gaussian blur levels varied
from c = 0.35–0.95, depending on the aperture of the lens (blur
level increases with the aperture size). Different zoomed-out and
translated versions were simulated similarly by adjusting the scale
parameter S and by translating the sampling grid.

Thanks to the large subsampling factor, the generated images
could be considered to be noiseless. In addition, the images were
stored with 32 bit precision to mitigate quantization effects. Figure 1
shows two of the simulated images used in the experiments.

It might be objected that our simulations are highly unrealistic
as the images to be compared by SIFT in practice are not perfectly
sampled or noiseless. Nevertheless, with an ever growing image
resolution, more and more images will be compared after a large
subsampling, so that these properties can become exact in practice.
Furthermore, even if applying SIFT to the originals and regardless
of initial noise and blur, the images at large scales also become any-
way perfect so that the accuracy and repeatability issues under such
favorable conditions are relevant.

4.2. The influence of scale-space sampling

We examined the detection stability when varying the number of
scales per octave nspo and the distance δmin. Figure 3 shows the
number of detected 3D extrema extracted from image deer using
nspo = 2–35 and δmin = 1, 1/2, 1/4, 1/8, 1/16. For a given spatial sam-
pling rate, the number of detected extrema increases with nspo and
stabilizes for nspo > 15. Setting nspo = 10 and δmin = 1/4 gives
a good trade-off between detection number and computational cost.
Increasing the oversampling factor leads to a decrease of the number
of detections which stabilizes for δmin ≤ 1/8. The stabilization of the
detection number seems to indicate that, once a sufficiently dense
sampling is achieved, keypoint detection is stable.

By choosing a reference fine discretization, we were in a posi-
tion to compare different configurations to check the stability of the
detected keypoints. As a reference, we chose the keypoints detected
with nspo =24, δmin =1/16. We compare its detections to the ones ob-
tained from coarser discretizations. Figure 2 shows that with coarse
discretizations, SIFT fails to robustly detect the 3D extrema.

To examine the detection stability for different sampling param-
eters to image transformations, we considered a sub-pixel translation
and a zoom-out. Figures 3 and 4 show the NRR and the number of
detections for the translation and zoom-out respectively. The denser
the sampling, the lower the NRR value, indicating that the extracted
keypoints are more invariant to the transformations when the scale-
space sampling is fine. In addition, the results show that it does not
make sense to combine a high scale sampling rate with a low space
sampling rate (or vice versa) as it leads to fewer invariant keypoints.
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Fig. 2. Stability to different scale-space discretizations (nspo, δmin).
We considered as reference the keypoints detected from the finest
discretization (nspo = 24, δmin = 1/16). The left plot shows, as a
function of the sampling parameters, the percentage of keypoints in
coarser scale-spaces that are not invariant 3D extrema (i.e., not de-
tected in the reference). The right plot shows the percentage of 3D
extrema that are not detected in the coarser discretizations. All this
indicates that SIFT fails to detect all 3D extrema unless the scale-
space is significantly oversampled.
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Fig. 3. The influence of scale-space discretization for a pair of trans-
lated images (deer, c = 0.5, translation of 0.25 px). On the left,
the number of keypoints plotted as a function of the number of scales
per octave nspo for different spatial sampling rates δmin. For a given
δmin, the number of detections increases with nspo and stabilizes for
nspo ≥ 15. For a given nspo, the number of detections stabilizes for
large oversampling factors (δmin ≤ 1/8). The NRRs shown on the
right plot indicates that keypoints detected with significantly over-
sampled scale-spaces are more stable to translation.

In conclusion, the standard setting of nspo = 3, δmin = 1/2 is
insufficient to robustly extract the 3D scale-space extrema. While the
Gaussian scale-space may be well sampled according to the Nyquist
rule, the rudimentary scanning for 3D extrema used in SIFT requires
significant scale-space oversampling, e.g., nspo =20 and δmin = 1/16,
to reliably detect all 3D extrema.

4.3. The influence of image blur

We also varied the input image blur c and examined how SIFT in-
variance is affected. Figures 5 and 6 show the number of detections
and the NRR as a function of the minimal blur σmin for the cases of a
sub-pixel translation and a zoom-out respectively. The number of de-
tections is the same regardless of the image blur. However, the NRR
increases for lower values of c (see caption for details). The reason is
that small c values produce undersampled sharp images that present
aliasing artifacts generating non-invariant detections. The impact de-
creases for large σmin but nevertheless stays noticeable in all octaves.
On the other hand, for c = 0.70–1.10, the effect of image blur is
not significant. Indeed, it is inexistent for σmin > 1.4, which corre-
sponds to structures larger than 3–4 pixels. As could be expected,
SIFT performs better with smoothed-out well sampled images than
with sharp aliased ones.
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Fig. 4. The influence of scale-space discretization for a pair of im-
ages with different simulated zoom factor (deer, c = 0.5, relative
zoom factor of 2.15). On the left, the number of keypoints in the
zoomed-out image plotted as a function of the number of scales per
octave nspo for different spatial sampling rates δmin. Oversampled
scale-spaces lead to lower NRR values (shown on the right) which is
an evidence of stability.
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Fig. 5. The influence of image blur for a pair of translated images
(pool, translation of 0.25 px). On the left, the number of keypoints
plotted as a function of the minimal detection scale σmin for different
input image blur levels. Apart from the fact that no detection can
be made below image blur (σmin ≥ c), the number of detections is
the same regardless of the image blur. On the right, the NRR values
plotted as a function of σmin indicate that if the input image is un-
dersampled (c < 0.80), aliasing will create non-invariant (spurious)
detections. For c = 0.30–0.60, the impact of image blur decreases
with σmin but nevertheless stays noticeable in all octaves. While for
c = 0.70–1.10, the impact of aliasing due to image blur is not sig-
nificant, especially for σmin > 1.4.

4.4. The DoG threshold

SIFT discards not well contrasted detections by using a threshold on
the keypoint DoG values. To evaluate its effect, we applied a varying
DoG threshold and examined if the surviving detections were more
stable when considering different scale-space samplings and input
image blurs. Figure 7 shows for two blur levels and two scale-space
discretizations, the number of surviving detections and the NRR as
a function of the DoG threshold for a subpixellically shifted image
pair. This experiment proves that the elimination of keypoints re-
sulting from the DoG threshold fails to improve the overall stability
(see caption for details). We conclude that the unstable detections
due to aliasing in the input image are well contrasted and cannot be
discarded efficiently with the SIFT threshold.

5. CONCLUDING REMARKS

The above study demonstrates that the original parameter choice in
SIFT is not sufficient to ensure a theoretical and practical scale in-
variance, which is the main claim of the SIFT method. The experi-
ments also revealed that sharp images may deteriorate SIFT perfor-
mance due to aliasing artifacts.
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Fig. 6. The influence of image blur for a pair of images with different
simulated zoom factors (pool, c = 0.5, relative zoom factor of
2.15). On the left, the number of keypoints in the zoomed-out image
plotted as a function of σmin for different input image blur levels.
The NRR values as a function of σmin are plotted on the right. High
NRR values for low blur levels are explainable by unstable keypoints
detected on aliased structures. Less sharp images lead to lower NRR
values. The impact of image blur decreases with σmin.
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Fig. 7. Effect of the DoG threshold. We simulated a pair of trans-
lated images (pool, translation 0.25 px) with two image blurs
c = 0.4, 0.7. SIFT was applied with two scale-space discretizations:
the reference (nspo = 3, δmin = 1/2) denoted Lowe and an oversam-
pled scale-space (nspo = 30, δmin = 1/16) denoted OverSamp. On
the left, the number of surviving detections as a function of the DoG
threshold. On the right, the NRRs as a function of the DoG thresh-
old. The DoG threshold fails to significantly improve the overall
stability of keypoints.

Our scope was not to propose a new or optimized SIFT. Never-
theless, some practical conclusions can be drawn from our observa-
tions. The repeatability curves for an oversampled SIFT show that a
4× space oversampling (instead of 2) and a 10× scale oversampling
(instead of 3) ensure a twice lower non-repeatability and twice more
keypoints. There is no question that this detection/repeatability im-
provement is desirable. The main objection is its computational cost,
which is multiplied by 7 per detected keypoint. Yet, this increased
computational expense affects only the detection phase. The found
descriptors are more repeatable and therefore better. It follows that
the overall efficiency of the method is increased at fixed cost per im-
age. Thus when matching an image to a large descriptor database,
this oversampling is preferable, as the main computational cost is for
descriptor comparison. Furthermore, the complexity objection does
not apply to the keypoint comparison after the third octave, when
JPEG, aliasing and noise artifacts are minimal and therefore the sub-
sampled images are almost perfect.

In short, a significantly more invariant SIFT can be made by
simply oversampling in scale and space after the third octave for
normal images, and by oversampling from the first scale for good
quality uncompressed images.

The DoG was originally conceived as an approximation of the
the Laplacian of Gaussian. However, this is not necessarily true and
will be the object of future research. Finally, the present analysis did
not tackle image noise and an uncertainty in the input image blur.
These are left as future work.
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