
Ray Histogram Fusion

Mauricio Delbracio

July 24, 2014

1 Ray Distribution Similarity

1.1 Monte Carlo Path Tracing

The global illumination light transport problem can be stated in the space of
light paths, as shown by Veach in [10]. Under this path integral formulation,
each pixel color u(x) = (uR(x), uG(x), uB(x)) is given by the integral over all
possible light paths

u(x) =

∫
Ωx

f(p)dµ(p), (1)

where Ωx is the space of paths originated at pixel x, p is a path of any length,
and dµ(p) is a measure in the path-space. The function f(p) describes the light
contribution through a path p and is the product of several scene factors due
to the interaction of light within the path plus initial self-emitted radiance and
importance distributions. As a result of this formulation, the image color at

pixel x can be estimated from ns(x) random paths p1
x, . . . , p

ns(x)
x , generated by

an appropriate Monte Carlo sampling procedure. That is, if cjx denotes the color
transported by random path pjx (for instance, in path tracing cjx = f(pjx)), the
Monte Carlo approximation of (1) is computed as

ũ(x) =
1

ns(x)

ns(x)∑
j=1

cjx. (2)

Figure 1 illustrates this rendering procedure. The Monte Carlo approximation
error n(x) can then be written as n(x) = ũ(x)− u(x). Even though the Monte
Carlo approximation is unbiased, the mean squared error E[n2(x)] decays only
linearly with the number of samples ns(x). Consequently, unless the rendering
system produces thousands of samples (spending several hours or even days),
the resulting images will be contaminated by noise. One possible solution to
reduce the error while keeping the rendering time reasonable is to only compute
a few samples, and to filter the pixel values afterwards. Filtering will result
in a significant variance reduction, but, it may also increase the approximation

1

u Digital images, defined in a rectangular grid x = (x, y) ∈ {0, . . . ,M−1}×{0, . . . , N−1}.

ũ Noisy digital images, generated with a finite number of Monte Carlo color samples (see (2)).

h Color sample distribution, defined in a rectangular grid x = (x, y) ∈ {0, . . . ,M−1}×{0, . . . , N−1}.

h(x) Color sample distribution for pixel x, h(x) ∈ Rnb where nb is the number of histogram bins.

h(x)[k] Bin k of the pixel color sample distribution h at pixel x.

cjx Color sample transported by a random path pjx started at image plane position (sx, sy) ∈ R2 from pixel x.

ns(x) Number of color samples cast from pixel x.

Cx Set of color samples cast from pixel x, i.e., Cx = {c1x, . . . , c
ns(x)
x }.

Px Patch of half size w centered at pixel x.

u(Px) Evaluation of u on each pixel in patch Px.

Gσ Digital Gaussian convolution of standard deviation σ.

Ds Gaussian subsampling operator by a factor s, (Dsu)(x) = Gσ
√
4s−1u(2sx), s ≥ 1.

Us Digital bicubic interpolator by a factor s.

Table 1: Summary of the notation used in the article.

camera

light source

ligh path i

= ...+ + + + + +

Pixel Color Distribution

Color Samples
(light paths)

Figure 1: Pixel color computed as average of values along light paths cast
from the image pixel, going through the camera aperture, bouncing in the
scene and reaching a light source. During rendering a lot of information
is computed. In particular, the color of each ray hitting a given pixel. The
color distribution of the rays cast from every pixel can be generated and
used to cluster similar pixels.

bias. The only filtering processes that do not introduce bias are those combin-
ing pixels x having the same ideal value u(x). While identifying two similar
pixels x and y based on the unknown pixel values u(x) and u(y) is of course

impossible, it is reasonable to expect that their color samples {c1x, . . . , c
ns(x)
x }

and {c1y, . . . , c
ns(y)
y } will follow similar distributions. Moreover, if N pixels share

the same color sample distribution, the union of the samples can be seen as an
N times larger super-set following the same underlying distribution. By simply
averaging them the variance is reduced by a factor of N .

The cornerstone of the rhf filter therefore is to find similar pixels to each
given pixel by comparing their underlying sample color distributions. This is
what we describe next.

2

Figure 2: This figure singles out three pixels in Cornell Box scene and their
color sample distributions. (The samples with color values falling out of
the [0, 1]3−box are by convention colored in red.) The first pixel, situated
on the brown wall, has a unimodal sample color distribution. The other
two pixels belong to an occlusion boundary showing a bimodal green-brown
distribution.

1.2 Color distribution pixel similarity

Consider the empirical distribution of the color samples at a given pixel. In
Figure 2 we depict this distribution for three different pixels on the cornell

box scene, for samples generated by a Monte Carlo path-tracing algorithm. In
this example the three pixels were selected because their colors are very similar.
A quick visual inspection shows that the samples of the two edge pixels follow
roughly the same color distribution, and that this distribution is conspicuously
different from the one of the background pixel. This example illustrates to
what extent the information provided by the sample color distribution can help
discriminate pixels of different nature, even when their pixels color are similar.

Let us denote by Cx = {c1x, . . . , c
ns(x)
x } the set of the color of samples

cast from pixel x, and by h(x) the corresponding empirical color distribution.
To measure pixel similarity the binned empirical distributions will be used as
pixel descriptors. Since in general one deals with tri-stimulus color images, we
can choose to build this descriptor either as a single histogram in the three-
dimensional color space, or as three one-dimensional histograms (one per color
channel).

Given the samples color Cx and Cy at pixels x and y, and their correspond-
ing nb-binned distributions (represented as nb dimensional vectors) h(x) =
(h1(x), h2(x), . . . , hnb(x)) and h(y) = (h1(y), h2(y), . . . , hnb(y)), we consider
the following metric, based on the Chi-Square distance

dχ2(Cx, Cy) =
1

k(x,y)

nb∑
i=1

(√
ns(y)
ns(x)hi(x)−

√
ns(x)
ns(y)hi(y)

)2

hi(x) + hi(y)
, (3)

where ns(x) =
∑
i hi(x) and ns(y) =

∑
i hi(y) are the number of color samples

3

of x and y respectively, and k(x,y) is the number of non-empty bins in h(x) +
h(y). This normalization by k(x,y) is necessary since only the bins carrying
information should be considered in the comparison.

To take into account spatial coherence, the previous pixel-wise distance can
be extended to patches of half-size w centered at x and y by

dχ2(Px, Py) =
∑
|t|≤w

dχ2(Cx+t, Cy+t). (4)

Comparing patches instead of pixels has two advantages. First, matching errors
are reduced by enforcing spatial coherence. Second, the denoising will proceed
by averaging similar patches. Since each pixel belongs to several patches, it
will therefore receive several distinct estimates. Averaging them, an operation
usually called aggregation of estimates, further improves the denoising perfor-
mance. In practice, very small patches are used (i.e., 3× 3), and thanks to the
self-similarity and redundancy properties of images, many similar patches are
typically found and averaged for any reference patch in the image.

The order in which the samples are calculated is irrelevant. Thus, the sample
color distribution appears as a natural and complete descriptor of the compared
sets. There are different ways of measuring the similarity between two dis-
tributions depending on the data type. For continuous data, the Cramer-von
Mises [1, 2], the Kolmogorov-Smirnov [9, 6] or the Kantorovich-Mallows-Monge-
Wasserstein distances (also known as the Earth Mover’s Distance [8]) are all
accepted ways to compare distributions. These three similarity measures are
computed as Lp distances between the two cumulative distributions (L∞, L2

and L1 respectively). For categorical data, the most popular measure to com-
pare distributions is the χ2 distance previously defined in (3).

By discretizing the data in a fixed number of histogram bins, the compu-
tational complexity of measuring the similarity between two data sets is kept
bounded and independent of the number of samples. This is important, this
distance being computed a large number of times. Thus, the color space will be
divided into fixed bins, and the χ2 distance fits well to this form of categorical
data. Nevertheless, if an image is rendered with very few samples, one of the
other two metrics would be preferable.

Why is it better to compare distributions than just comparing av-
erages? State of the art image denoising algorithms measure pixel similarity
by comparing pixel colors. Indeed, the bilateral filter and NL- Means replace
each noisy pixel by a weighted average of the most similar ones. In the case
of NL-Means, the pixel comparison is performed with patches centered around
each pixel. Nevertheless, image denoising algorithms must know or measure the
noise variance to evaluate properly the similarity of noisy samples. Monte Carlo
rendering is an almost ideal situation where mean and variance values of the
rays cast from each pixel can be directly estimated from their observed distribu-
tions. The main disadvantage of this formulation is that it cannot distinguish
noise from intrinsic pixel variability. As a first example, suppose that a pixel

4

is situated on an edge. In that case the sample color distribution will be at
least bi-modal. Thus, it will probably have a large variance. This variance will
result in a large tolerance to differences in the means, and consequently different
pixel types may be wrongly mixed up. A case of this type is shown in Figure 2.
On the other hand, by directly comparing distributions, pixels lit from several
sources can be better clustered. In the case of the histogram comparison, no
implicit nor explicit noise model assumption will be needed. By comparing the
ray color distributions, it is nevertheless possible to conclude that pixels are of
the same “nature”, while this conclusion could not be reached when comparing
only the averages.

1.3 Color distribution-driven average

Let x be a pixel and Nκ(x) the set of pixels y whose centered patches Py are
such that dχ2(Px, Py) ≤ κ. If κ is such that these pixels are of the same nature
as x, the maximum likelihood estimator of the noiseless pixel color is simply
their arithmetic mean

ū(x) =
1

|Nκ(x)|
∑

y∈Nκ(x)

ũ(y).

Unlike the previous estimator, where only the center of the patch is averaged,
one can proceed to denoise the image patchwise. This is a very classic procedure
in patch based image denoising [3, 4, 7]. Given a noisy patch Px centered at
pixel x its denoised version Vx is first computed by averaging all the patches
being at a Chi-square distance smaller than κ:

Vx =
1

|Nκ(x)|
∑

y∈Nκ(x)

ũ(Py), (5)

where we denoted by ũ(Py) the evaluation of u on each pixel in patch Py.
In this way, we have denoised all patches, not just all pixels. Since each

patch contains (2w + 1)2 pixels, each pixel is conversely contained in (2w + 1)2

patches and we therefore obtain a large number of estimates for its color. These
estimates are finally aggregated at each pixel location to build the final denoised
image:

ũ(x) =
1

(2w + 1)2

∑
|y−x|≤w

Vy(y − x). (6)

Taking the mean as done in the preceding formula is the simplest possible ag-
gregation method as proposed in other denoising algorithms [3, 4].

1.4 Removing Low-Frequency Noise

In a pure Monte Carlo scenario the approximation error is a white random noise.
This means that all frequencies are equally contaminated by noise. The rhf

5

filtering procedure described so far filters noise at patch scale. Indeed, long
wavelength noise cannot be eliminated by this procedure, because large struc-
tures cannot be captured by small patches. Removing noise at lower frequencies
thus requires a multi-scale extension of the method.

Let

Dsu(x) := (Gσ
√

4s−1 ∗ u)(2sx) (7)

be the 2s× Gaussian downsampling operator and Us the 2s× bicubic interpo-
lator. We denoted by Gσ

√
4s−1 the convolution with a Gaussian function of

standard deviation σ
√

4s − 1, where σ = 0.55. Now, for each scale s, the cor-
responding histograms hs(x) have to be computed. Since each pixel at scale s
results from the fusion of a set of neighboring pixels in the original finer scale,
the new histograms are obtained by fusing the color histograms of all pixels in
the same neighborhood. To obtain hs(x), the same down-sampling operator Ds

is applied to the original color distribution h(x). Then, at each scale, the re-
sulting histograms are re-normalized so that the sum of their areas is preserved
across scales (thus preserving the original total number of samples in the finer
scale).

Given a noisy image input ũ(x) and its respective pixel color distribution
h(x) the multi-scale histogram fusion proceeds as follows:

1. Generate the Gaussian multi-scale sequence: ũ0 = ũ, ũs = Dsũ, s =
1, . . . , N , and their respective sample color distributions hs.

2. Apply the rhf denoising algorithm separately to each scale to recover
ū0, ū1, . . . , ūN .

3. Compute the final image ū = û0 by the recursion ûi = ūi − U1D1ūi +
U1ûi+1 initialized with ûN = ūN .

2 Implementation details

The rhf algorithm builds on two blocks: the estimation of each pixel sample
color distribution, and a non-local multi-scale filtering based on averaging pixels
having similar sample color distributions. This requires two kinds of data from
the rendering system: the noisy Monte Carlo image ũ(x) and the associated
sample color histograms h(x).

The computation of the pixel color distribution is coded on top of pbrt-v2
[5]. To fully understand how the function implementing the color distribution
estimation is integrated on this system we refer the reader to the very complete
and comprehensive book by Pharr and Humphreys [5] where the implementation
of pbrt-v2 is detailed. In what follows we present the implementation details
to estimate the pixel’s sample color distribution and to perform the non-local
multi-scale filtering.

6

2.1 Computing the samples color distribution

A fundamental aspect of the method is that sample color histograms can be
computed on the fly, in parallel with the Monte Carlo rendering process. This
is extremely important, since it makes the memory requirements independent
from the number of rendered samples.

To approximate the distribution of the samples using a histogram, the range
of possible values have to be discretized into bins and the number of samples
within each bin have to be counted. Smoother estimates can be produced using
kernel density estimation, by interpolating the contribution of each sample using
a kernel. In this work, we opted for a triangular kernel to linearly interpolate the
contribution of each sample color value to its adjacent bins. Sample values have
generally a three dimensional color representation. We can either compute one
3D distribution where bins are boxes in the 3D color space, or estimate three one
dimensional distributions, one for each color. Although 3D color distributions
capture inter-color correlations, a much larger number of bins are required to
keep the same quantization level, and consequently many more samples. There-
fore, we opted to compute three one-diminensional distributions, one for each
color. Let us denote by h(x) = (hR(x), hG(x), hB(x)), the concatenation of the
color histograms for each of the color channel. Thus, the total number of bins
is nb = 3× nbins, where nbins is the number of bins used to encode each of the
color channels.

Despite the fact that the saturation value for pixels (perfect white) is one1,
the rays brightness may largely exceed that value. This does not mean that the
pixel value would be saturated: indeed, pixel values are obtained by averaging
sample color values. To take into account the fact that very bright samples
are less frequent than low-energy ones, the bins are designed so that their sizes
increase with the sample value, following an exponential law of exponent γ = 2.2.
More precisely, the bins lower values bi for i = 0, . . . , nbins are computed as

bi =

{ (
M ·i

nbins−2

)γ
if i = 0, . . . , nbins − 2,

(Ms)γ if i = nbins − 1,

where nbins is the number of bins, M = 7.5 and s = 2 are two constants that
define the maximum value covered by the histogram. This choice was purely
empirical. Algorithm 1 details the online implementation on top of pbrt-v2:
giving a new sample the algorithm computes the sample contribution to the
pixel color distribution using linear interpolation. It is worth mentioning that
although histogram comparison is not particularly sensitive to these parameters,
they must be chosen to cover the dynamic range adequately.

2.2 The RHF filter

The implementation of the rhf filter is straightforward. In addition to the
parameters needed to compute the histogram, four parameters are involved in

1Although this is an arbitrary choice it is consistent to the pbrt-v2 renderer.

7

Algorithm 1: Online Color Histogram Computation

input :

- A new color sample c = (cR, cG, cB) and its 2D position in the image
plane s = (sx, sy) .

- Pixel x within the neighbor of s, the number of current pixel color
samples ns(x) and its current color histogram
h(x) = (hR(x), hG(x), hB(x)).

- The histogram parameters s,M, nbins and γ.

output: updated pixel histogram h(x) = (hR(x), hG(x), hB(x)), updated
number of pixel color samples ns(x).

1 wx
s = ReconFilter(s− x); Reconstruction filter at position s for pixel x (see

caption [*])

2 ns(x) = ns(x) + wx
s ; Update pixel total samples with sample contribution wx

s

3 for channel i in (R,G,B) do
4 v = wx

s · ci;
5 if v < 0 then v = 0; Truncate negative values

6 v = v
1
γ /M ; Compress dynamical range and renormalize

7 if v > s then v = s; Truncate to s

8 fbin = v · (nbins − 2);
9 ibinL = floor(fbin);

Check out of bounds

10 if ibinL < nbins − 2 then
11 //inbounds;

12 wH = fbin− ibinL;

13 ibL = ibinL; Low bin

14 wbL = 1− wH; Low bin weight

15 ibH = ibinL + 1; High bin

16 wbH = wH; High bin weight

17 else
18 //out of bounds, v >= 1;
19 wH = (v − 1)/(s− 1);

20 ibL = nbins − 2; Low bin

21 wbL = 1− wH; Low bin weight

22 ibH = nbins − 1; High bin

23 wbH = wH; High bin weight

24 hi(x)[ibL] += wbL;
25 hi(x)[ibH] += wbH;

[*] The reconstruction filter ReconFilter is used to interpolate the samples near

a particular pixel. The final value of a pixel is computed as a weighted average

of the samples within the reconstruction filter support. For instance, the filter

ReconFilter can be a box filter averaging with the same weight all the samples

within a square window of side 1 pixel. Other popular interpolation filters are

the Gaussian filter or the Mitchell filter (see [5, Chapter 7]).
8

the algorithm: the number of scales ns, half the patch size w, half the search
window size b, and the χ2 distance threshold.

The search of similar patches is restricted to a window of size (2b+1)×(2b+1).
This is reasonable since the probability that two patches are similar will be
smaller if one is distant from the other. A threshold κ (the user parameter)
is directly set on the normalized Chi-square distance. To guarantee that each
patch has a minimum number of kNN similar patches in the finest scale (i.e.,
s = 0), the κ threshold at this scale is set pixelwise as κx = max

(
κ, dxkNN

)
,

where dxkNN is the χ2distance to the kNN most similar patch of Px centered at
pixel x. In the current implementation kNN = 2.

The pseudo-code of both the filtering at each scale and the multi-scale gen-
eralization are presented in Algorithms 2 and 3, respectively. In Algorithm 2,
the denoised version of patch Pi is obtained by averaging all patches Qj such
that d2

χ(Pi, Qj) < κi.
The parameter κ controls the amount of noise that is removed, or in other

words the trade-off between image smoothness and noise reduction. The op-
timal choice of κ depends mostly on the sample generation process, i.e., the
considered renderer. An intuitive explanation for this dependence comes from
the observation that the value of κ is related to the confidence associated to
the color samples. If samples are computed with low confidence, the distance
threshold should be less restrictive. For instance, in Monte Carlo path trac-
ing, each sample represents the contribution of energy of a single light path,
while in volumetric ray tracing each sample is computed as the average of sev-
eral light paths. Therefore, the samples generated with pure path tracing have
lower confidence, and this explains why the threshold should be less restrictive.
Nevertheless, the tuning of κ is not time consuming. Since the distance between
patches (the heaviest computational task) is independent of κ, its computation
can be first performed and then several values of the parameter can be tested
with practically no additional cost.

2.3 Computational Complexity and Memory Requirements

The complexity of the filtering at each scale is O(N · w · b · nb) where N is the
number of pixels, which is independent of the number of samples.

Since the low-frequency noise filtering is done on a much smaller image, the
computational cost is not significantly increased. Indeed, the computational cost
is always upper bounded by 133% of the filtering time at the finest resolution,
independently of the number of scales.

The memory consumption of the rhf filter is determined by the number of
pixels in the image and the color histogram representation of each pixel. In
all the examples shown here, the color distributions were computed using three
histograms of nbins = 20 bins, that is, 60 additional counters per pixel. If
each counter is represented by a floating-point number, the additional memory
consumption of the filter for a 1280×720 image would be approximately 0.2GB,
regardless of the number of samples per pixel.

9

Algorithm 2: Single-Scale Ray Histogram Fusion

input : mc image ũ, corresponding histograms h (computed by
Algorithm 1), patch size w, search window size b, distance
threshold κ, minimum number of similar patches kNN .

output: Filtered image ū

1 ū← 0;
2 n← 0; auxiliary counter at each pixel in the image

3 for every pixel x do
4 Px ← patch centered at pixel x;
5 Wx ← search window with size b for pixel x;
6 c← 0 and V ← 0;
7 for every y ∈Wx do
8 Qy ← patch centered at pixel y;
9 dy ← ChiSquareDistance(h(Px), h(Qy)); Given by (4)

10 Sx ← compute knn(kNN , {dy}); Sx : set of indices of kNN most similar

patches (smallest dy values)

Llines 11− 18 implement Equation (5)

11 for every pixel y ∈ Sx do
12 V ← V + ũ(Qy);
13 c← c+ 1;

14 for every y ∈Wx ∩ Scx do
15 if dy < κ then
16 V ← V + ũ(Qy);
17 c← c+ 1;

18 V ← V/c;

Aggregation given by Equation (6)

19 n(Px)← n(Px) + 1; +1 estimator for each pixel in Px

20 ū(Px)← ū(Px) +
(
V − ū(Px)

)
./n(Px);

Notation convention: ũ(Px) is the evaluation of ũ on each pixel in patch Px (the

same applies for ū, n, h). The operator ./ (line 18) represents element-wise division.

10

Algorithm 3: Ray Histogram Fusion

input : mc image ũ, corresponding histograms h (computed by
Algorithm 1), patch size w, search window size b, distance
threshold κ, minimum number of similar patches kNN and
number of scales ns

output: Filtered image ū = ū0

1 s← ns − 1 nT ←
∑

x,k h(x)[k]total number of samples

2 while s ≥ 0 do
3 us ← Ds(ũ);
4 hs ← Ds(h), nsT ←

∑
x,k h

s
k(x), hs ← nT

nsT
hs;

5 if s = 0 then
6 ūs ← rhf (us, hs, w, b, κ, kNN); Force a min. of kNN similar patches

(finest scale)

7 else
8 ūs ← rhf (us, hs, w, b, κ, kNN =0);

9 if s < ns − 1 then
10 ūs ← ūs − U1D1ūs + U1ūold

11 ūold ← ūs s← s− 1

References

[1] T. W. Anderson, On the distribution of the two-sample Cramer-
von Mises criterion, The Annals of Mathematical Statistics, 33 (1962),
pp. 1148–1159.

[2] T. W. Anderson and D. A. Darling, Asymptotic theory of certain
goodness-of-fit criteria based on stochastic processes, The Annals of Math-
ematical Statistics, 23 (1952), pp. 193–212.

[3] A. Buades, B. Coll, and J.-M. Morel, A review of image denoising
algorithms, with a new one, SIAM Journal on Multiscale Modeling and Sim-
ulation, 4 (2005), pp. 490–530. http://dx.doi.org/10.1137/040616024.

[4] K. Dabov, A. Foi, V. Katkovnik, and K. O. Egiazarian, Image de-
noising by sparse 3-d transform-domain collaborative filtering, IEEE Trans-
actions on Image Processing, 16 (2007), pp. 2080–2095.

[5] M. Pharr and G. Humphreys, Physically Based Rendering, Second Edi-
tion: From Theory To Implementation, Morgan Kaufmann, 2010.

[6] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery, Numerical Recipes 3rd Edition: The Art of Scientific Computing,
Cambridge University Press, New York, NY, USA, 3 ed., 2007.

11

[7] F. Rousselle, C. Knaus, and M. Zwicker, Adaptive rendering with
non-local means filtering, ACM Transactions on Graphics, 31 (2012),
pp. 195:1–195:11. http://doi.acm.org/10.1145/2366145.2366214.

[8] Y. Rubner, C. Tomasi, and L. J. Guibas, A metric for distributions
with applications to image databases, in Proceedings of the Sixth Interna-
tional Conference on Computer Vision, ICCV ’98, Washington, DC, USA,
1998, IEEE Computer Society, pp. 59–66.

[9] M. A. Stephens, Use of the Kolmogorov-Smirnov, Cramér-von Mises and
related statistics without extensive tables, Journal of the Royal Statistical
Society Series B, 32 (1970), pp. 115–122.

[10] E. Veach, Robust Monte Carlo methods for light transport simulation,
PhD thesis, Stanford University, Stanford, CA, USA, 1997.

12

