LSD: a Line Segment Detector

rafael grompone von gioi

Cachan, October 1, 2010

Outline

- What is LSD, demo
- Overview
- Theoretical background
- Details of the algorithm
- Projects proposed

LSD

- LSD is a Line Segment Detector
- It is based in Burns, Hanson, and Riseman method
- It uses a false detection control based on Desolneux, Moisan, Morel theory.
- LSD is fast, produces precise results, and controls false detections.

Resources

Google: Isd + grompone

> Google: Isd + morel
www.ipol.im \rightarrow LSD: A LINE SEGMENT DETECTOR

Examples

Examples

Examples

Examples

Overview

Gradient and Level-Line Field

image

level-line field

LSD in three steps

1. Partition the image into groups of connected pixels that share the same level-line angle up to a certain tolerance
2. Find rectangular approximations
3. Validation

Image

Level-line field

partition

rectangles

Line-Support Regions

A group of connected pixels that share the same level-line angle up to a certain tolerance.

Rectangular Approximation of Regions

- Pixel's mass is proportional to the gradient modulus
- Region's center of mass \longrightarrow rectangle's center
- First inertia axis of the region \longrightarrow rectangle's angle
- Length and width to envelope most of region's mass

Validation

Helmholtz Principle

There is no perception on noise.

A Contrario Detection [Desolneux, Moisan, Morel]

Structure is detected as outliers of a noise model H_{0} :

Non-Structured Level-Line Orientations:

- angles are independent random variables
- uniformly distributed in $[0,2 \pi]$

More precisely: an observed geometric structure becomes meaningful when the expectation of its number of occurrences is very small in the non-structured data model.

Aligned Point

A point whose level-line angle is equal to the rectangle angle up to a certain tolerance τ.

$k(r, i)$ is the number of aligned points of rectangle r in image i. $n(r)$ is the total number of pixels in the rectangle r.
In the example, $k(r, i)=8$ and $n(r)=27$.

Meaningful Rectangle

Given a rectangle r with $k(r, i)$ observed aligned points, we define

$$
\operatorname{NFA}(r, i)=N_{\text {test }} \cdot P_{H_{0}}[k(r, l) \geq k(r, i)]
$$

where:
I is a random image on H_{0},
$N_{\text {test }}$ is the number of tests.
NFA (r, i) is the expected number of event as good as (r, i) in H_{0}. When NFA (r, i) is large: a common event in H_{0} and not meaningful. When $\operatorname{NFA}(r, i)$ is small: a rare event in H_{0} and probably meaningful.

A rectangle with $\operatorname{NFA}(r, i) \leq \varepsilon$ is called ε-meaningful rectangle.

Number of Tests

Probability term

In H_{0}, the probability that a pixel is an aligned point is

$$
p=\frac{\tau}{\pi} .
$$

Because of the independence in $H_{0}, k(r, I)$ follows a binomial distribution. Then,

$$
P_{H_{0}}[k(r, I) \geq k(r, i)]=B(n(r), k(r, i), p)
$$

where $B(n, k, p)$ is the tail of the binomial distribution:

$$
B(n, k, p)=\sum_{j=k}^{n}\binom{n}{j} p^{j}(1-p)^{n-j}
$$

NFA

The final expression for the Number of False Alarms for a rectangle is:

$$
\operatorname{NFA}(r, i)=N^{5} \cdot \sum_{j=k(r, i)}^{n(r)}\binom{n(r)}{j} p^{j}(1-p)^{n(r)-j}
$$

Theorem

$$
E_{H_{0}}\left[\sum_{r \in \mathcal{R}} \mathbb{1}_{\mathrm{NFA}(r, l) \leq \varepsilon}\right] \leq \varepsilon
$$

where E is the expectation operator, $\mathbb{1}$ is the indicator function, \mathcal{R} is the set of rectangles considered, and $/$ is a random image in H_{0}.

The theorem states that the average number of ε-meaningful rectangles on the a contrario model H_{0} images is less than ε.

In other words, it shows that LSD satisfies the Helmholtz principle.

Proof

We define $\hat{k}(r)$ as

$$
\hat{k}(r)=\min \left\{n \in \mathbb{N}, P_{H_{0}}[k(r, l) \geq n] \leq \frac{\varepsilon}{N^{5}}\right\} .
$$

Then, $\operatorname{NFA}(r, i) \leq \varepsilon$ is equivalent to $k(r, i) \geq \hat{k}(r)$. Now,
$E_{H_{0}}\left[\sum_{r \in \mathcal{R}} \mathbb{1}_{\mathrm{NFA}(r, l) \leq \varepsilon}\right]=\sum_{r \in \mathcal{R}} P_{H_{0}}[\mathrm{NFA}(r, I) \leq \varepsilon]=\sum_{r \in \mathcal{R}} P_{H_{0}}[k(r, I) \geq \hat{k}(r)]$.
But, by definition of $\hat{k}(r)$ we know that

$$
P_{H_{0}}[k(r, I) \geq \hat{k}(r)] \leq \frac{\varepsilon}{N^{5}}
$$

and using that $\# \mathcal{R}=N^{5}$ we get

$$
E_{H_{0}}\left[\sum_{r \in \mathcal{R}} \mathbb{1}_{\mathrm{NFA}(r, l) \leq \varepsilon}\right] \leq \sum_{r \in \mathcal{R}} \frac{\varepsilon}{N^{5}}=\varepsilon
$$

$$
\varepsilon=1
$$

The result is not very sensible to the value of ε.

image

$\varepsilon=1$

$\varepsilon=0.1$

$\varepsilon=0.01$
$\varepsilon=1$ means, on average, one false detection per image.

Algorithm Summary

1. Partition the image into Line-Support Regions
2. For each Line-Support Region:
3. Find the Rectangular Approximation
4. Compute NFA value
5. Rectangles with NFA ≤ 1 are added to the output.

more examples

Examples

Examples

Examples

Examples

Examples

Examples

Examples

Examples

Details of the algorithm

LSD

1. Scale the input image to scale $S(\sigma=\Sigma / S)$.
2. Compute level-lines field.
3. List pixels by decreasing gradient magnitude.
4. Set STATUS(every pixel) to NOT USED.
5. Remove pixels where gradient magnitude $\leq \rho$.
6. From then next pixel P in the list with STATUS(P$)=$ NOT USED:
7. Grow region from P of NOT USED connected pixels that share level-line angle, tolerance τ. Mark pixels in the region as USED.
8. Compute the rectangular approximation.
9. Cut region until aligned point density $>D$.
10. Compute NFA value.
11. Try to improve rectangle.
12. If NFA $\leq \varepsilon$, detection!

Parameters S, Σ, ρ, τ, D, and ε.

Input image scaling

Staircase problem:

input image

80\% scaling
80% scale, then $S=0.8 . \quad$ Gaussian sub-sampling with $\sigma=\Sigma / S$ Good balance between blur and aliasing: $\Sigma=0.6$

Compute level-line field

The gradient is computed as:

$$
\begin{aligned}
& \begin{array}{l}
-+ \\
-+
\end{array} \\
& g_{x}(x, y)=\frac{i(x+1, y)+i(x+1, y+1)-i(x, y)-i(x, y+1)}{2} \\
& \begin{array}{l}
+++ \\
-+-
\end{array} g_{y}(x, y)=\frac{i(x, y+1)+i(x+1, y+1)-i(x, y)-i(x+1, y)}{2} .
\end{aligned}
$$

The level-line angle is computed as

$$
\arctan \left(\frac{g_{x}(x, y)}{-g_{y}(x, y)}\right)
$$

and the gradient norm as

$$
G(x, y)=\sqrt{g_{x}^{2}(x, y)+g_{y}^{2}(x, y)}
$$

Where $i(x, y)$ is the image value at coordinates (x, y).

Pseudo-ordering of pixels

image

gradient magnitude

Starting from pixels of high gradient magnitude, seed points are near the center of edges.

Sorting cannot be done in linear time. Instead, a pseudo-ordering is performed by classifying pixels in 1024 bin of gradient values.

Gradient threshold

$$
\tilde{i}=i+n \quad \nabla \tilde{i}=\nabla i+\nabla n
$$

where n is the quantization noise.

$$
\mid \text { angle error } \left\lvert\, \leq \arcsin \left(\frac{q}{|\nabla i|}\right)\right.
$$

where q is a bound to $|\nabla n|$. Imposing |angle error $\mid \leq \tau$ we get

$$
\rho=\frac{q}{\sin \tau} .
$$

$q=2$, maximum gradient quantization error in $[0,255]$ images.

Region Growing

Region's angle:

$$
\theta_{\text {region }}=\arctan \left(\frac{\sum_{j} \sin \left(\text { level-line-angle }_{j}\right)}{\sum_{j} \cos \left(\text { level-line-angle }_{j}\right)}\right) \quad j \in \text { region. }
$$

Recursively, the unused neighbors Q are added if

$$
\mid \text { level-line-angle }(Q)-\left.\theta_{\text {region }}\right|_{\bmod 2 \pi}<\tau .
$$

$\tau=22.5$ degree.

Angle problem

If two line segments for an angle of $180-\tau$ we get:

We define the density of aligned points as

$$
d=\frac{k}{\text { length }(r) \cdot \text { width }(r)}
$$

where k is the number of aligned points in the region.
The region is repeatedly cut until $d>D$ or there are no points left.
$D=0.7$ is an empirical value.

Improve rectangle

Before rejecting a region as not meanigful, some variations to the rectangle are tried:

1. try finer precisions p
2. try to reduce width
3. try to reduce one side of the rectangle
4. try to reduce the other side of the rectangle
5. try even finer precisions

Parameters

$S=0.8$, staircase effect
$\Sigma=0.6$, blur/aliasing balance
$\rho=q / \sin \tau, q=2$, quantization noise
$\tau=22.5$ degree, empirical but near optimum
$D=0.7$, empirical
$\varepsilon=1$, a contrario framework
Only D has an arbitrary value and determines how curves are approximated.

More details: www.ipol.im

Projects

Gestalt School

Project 1: point alignments

Project 1: point alignments

Project 1: point alignments

Demo IPOL:

Image

line segments

Project 2: line segment length grouping

Project 2: line segment length grouping

Meaningful histogram modes algorithm [Desolneux et al.]

The a contrario model for line segment length is related to the distribution of random line segments in the image.

Project 2: line segment length grouping

Demo IPOL:

Image

line segments

length groups

Project 3: line segment angle grouping

Project 3: line segment angle grouping

Meaningful histogram modes algorithm [Desolneux et al.]

- Circular histogram: zero and 2π is the same orientation.
- The a contrario model is a uniform distribution in $[0,2 \pi]$.

Project 3: line segment angle grouping

Demo IPOL:

Image

line segments

angle groups

IPOL Publication

- Detailed description of the algorithm
- Good quality code: standard and well commented
- A running demonstration

video

merci

