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Extracting Straight Lines
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Abstract-This paper presents a new approach to the extraction of
straight lines in intensity images. Pixels are grouped into line-support
regions of similar gradient orientation, and then the structure of the
associated intensity surface is used to determine the location and prop-
erties of the edge. The resulting regions and extracted edge parameters
form a low-level representation of the intensity variations in the image
that can be used for a variety of purposes. The algorithm appears to
be more effective than previous techniques for two key reasons: 1) the
gradient orientation (rather than gradient magnitude) is used as the
initial organizing criterion prior to the extraction of straight lines, and
2) the global context of the intensity variations associated with a straight
line is determined prior to any local decisions about participating edge
elements.

Index Terms-Boundary extraction, edge-analysis, gradient-based
segmentation, image processing, line parameters, line representation,
plane-fitting, straight lines.

I. INTRODUCTION
T HE organization of significant local intensity changes

into the more global abstractions called "lines" or
"boundaries" is an early, but important, step in the trans-
formation of the visual signal into useful intermediate
constructs for interpretation processes. Despite the large
amount of research appearing in the literature, effective
extraction of straight lines has remained a difficult prob-
lem in many image domains. There are two goals of this
paper: 1) the development of mechanisms for extracting
straight lines from complex images, including lines of ar-
bitrarily low contrast; and 2) the construction of an inter-
mediate representation of edge/line information through
which high-level interpretation mechanisms have efficient
access to relevant lines.
To the degree that straight lines may be effectively ex-

tracted and efficiently represented, a variety of other in-
termediate processing goals are greatly facilitated. Curved
lines can be approximated reasonably well as aggregates
of piecewise-linear segments. In many cases, continuous
representations of a boundary may be derived from adja-
cent linear segments by treating differences in their ori-
entations as local curvature estimates. In addition, tex-
tured regions can be extracted as aggregates of line
elements with specific common properties of length, con-
trast, orientation, etc.
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A. Problems in Edge Extraction
Edges are usually defined as local discontinuities or

rapid changes in some image feature, such as image lu-
minance or texture. These changes are detected by a local
operator, usually of small spatial extent with respect to
the image, that measures the magnitude of the change and,
in many cases, its orientation as well. Lines are com-
monly defined as collections of local edges that are con-
tiguous in the image. Thus, many algorithms rely on a
two-step process for line extraction: detection of local
edges that are then aggregated into the more globally de-
fined lines on the basis of various grouping criteria.

In the one-dimensional case, an ideal edge is a step
change in the value of the underlying feature. In two di-
mensions, the ideal edge may be viewed as a step discon-
tinuity in the values of the image feature in a direction
perpendicular to the spatial orientation of the edge. We
will refer to a straight line as a set of collinear and con-
tiguous edges; i.e., a straight line has a length associated
with a continuous discontinuity. Shortly, we will discuss
the additional constraints that we impose on the intensity
change to organize them into straight lines. Since ideal
step changes are rarely found in real images, the magni-
tude of the feature change across a line is usually distrib-
uted over an area. Hence, the underlying image structure
supporting a line has a width measured perpendicular to
the line orientation in addition to its length. We refer to
the collection of pixels so defined as a line-support re-
gion.
Note that our use of the term "line" differs from some

researchers [26], [7], [13] who use the term "line" to
refer to image events in which the intensity surface forms
a ridge, possibly of narrow width, for which there is no
distinct location for the boundaries on either side of the
ridge. This view is related to the "roof" intensity profile
of edges in the Binford-Horn line tracker [15]. In our
view, these narrow linear image events will have a width
formed by two locally parallel lines of opposite contrast.
It is only the location of the lines that is ambiguous, not
their existence. In the case where the ridge in the intensity
surface is very narrow, even to a subpixel level, we are
taking the position that if the difference in adjacent pixels
is meaningful, it can be used to define a narrow region
with parallel lines delimiting this image event.
The problems encountered with local edge operators are

widely known and are related to 1) the possibly small spa-
tial extent of the operator relative to the events they are
designed to detect, 2) the deviation of actual image data
from assumed models, and 3) aliasing due to the discrete
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nature of the digitization process. The intensity variation
representing a local edge is often spatially distributed over
an extended area due to complex scene lighting conditions
interacting with scene surfaces exhibiting varying surface
orientation and reflectances. In real images, edges usually
do not consist of step functions, but rather are formed by
wider and more irregular changes in measured intensity.
In most practical situations, the image data are noisy and,
since edges are high spatial-frequency events, edge detec-
tors enhance the noise. The edge maps resulting from ap-
plication of a local edge detector are usually very dense
and do not distinguish between edges resulting from ob-
ject boundaries, shadows, and changes in surface reflec-
tance and/or orientation. When the intensities on one side
of a line change (e.g., a changing background behind an
occluding surface), then there may be significant variation
in edge contrast down the length of the line.

In order to overcome the problems caused by the mis-
match between gradient widths and operator spatial ex-
tents, a family of approaches involving hierarchical edge
masks have been proposed [28]. The most well known of
these is the Marr-Hildreth zero-crossing operator [21],
defined as the Laplacian of a Gaussian over increasingly
larger spatial extents. However, since fine-detail (high-
frequency) image events and coarse-structured (low-fre-
quency) image events respond optimally to different size
operators, the appropriate size of the operator must be de-
termined in each different area of the image. Related al-
gorithms involve the application of a set of hierarchical
edge masks of varying resolution at selected orientations
at all image locations.

Following the initial edge extraction process, various
techniques have been proposed to aggregate the local in-
formation into more global line-like structures and to dis-
card unimportant or redundant information, a difficult task
in many domains. These methods include Hough trans-
forms [5] that may be generalized to detect nonlinear
boundaries and specific shapes [1]; edge tracking and
contour following [23], curve fitting [25], graph theoretic
methods [22], relaxation algorithms [30], hierarchical-re-
finement techniques [16], [8], [14], and high-level model-
based processes [29].
The problems cited above in the discussion on edge op-

erators pose difficulties for the aggregration processes as
well. In many cases, the local operators misplace or en-
tirely miss edges, a single real edge may result in several
strong operator responses at different (often parallel) lo-
cations, and the underlying data may not conform to ex-
pectations built into the grouping process. Low-contrast
lines, because of their low signal-to-noise ratio, are often
troublesome.

B. Gradient Magnitude versus Gradient Orientation
The straight-line extraction technique developed in

Section II is based on two observations about many line
extraction algorithms: 1) they lack a global view of the
underlying image structure prior to making local deci-
sions about edge events and 2) they relegate information

about edge orientation to a secondary role in the process-
ing. In most edge and line extraction algorithms, the mag-
nitude of the intensity change is used in some manner as
a measure of the importance of the local edge. While edge-
orientation information may be used to modulate the
grouping process applied to the strong edges, the edge
magnitude usually has the central and dominating influ-
ence. It is our view that edge orientation carries important
information about the set of pixels that participate in the
intensity variation that underlies the straight line, partic-
ularly its spatial extent.

Gradient orientation is defined as the direction of max-
imum gray-level change as measured over a small area
around a pixel, or equivalently, as the local direction of
steepest ascent (or descent) on the intensity surface. Our
model of the pixels comprising the intensity surfaces as-
sociated with straight lines in digitized images has two
characteristics:

1) the local gradient magnitude (measured over a small
local window) will vary significantly over the intensity
surface, for reasons cited earlier, particularly in the direc-
tion orthogonal to the line; and

2) the local gradient orientation will vary relatively lit-
tle throughout the entire intensity surface.

It is our observation that these characteristics are true
of most of the straight lines that we wish to extract in
digitized images. Based upon the consistency of the local
gradient orientation, we have developed a simple algo-
rithm for extracting the "line-support region," the entire
set of pixels comprising each such intensity surface. In
this way, the difficult step of extracting whole lines can,
to a large extent, be reduced to a simple grouping and
connected-components process. The additional benefit of
isolating these support regions is that other aspects of the
line, such as contrast and width (or fuzziness), can be
more accurately measured.

Surprisingly, global approaches for straight-line extrac-
tion, such as Hough transform methods [5], [1], do not
exploit orientation as much as one might think. Although
the histogram buckets in (r, theta) coordinates encode
edge orientation in terms of collinear sets of edges, once
again the magnitudes of edges are likely to dominate. The
global process for extracting lines is dependent upon find-
ing strong peaks in the transform. All Hough techniques
use edge magnitude in the voting process in some manner,
either via a proportional weight or via thresholding so that
only strong edges vote. Thus, it is very difficult to extract
long, coherent, low-contrast lines in a general manner be-
cause their response in (r, theta)-space is reduced by the
voting process, they may be hidden by high-contrast in-
formation and there may be other types of noise present.

C. A New Approach-Organizing Line-Support Contexts
The technique presented here was motivated by a need

for a straight-line extraction method that would find
straight lines in reasonably complex images, particularly
those lines that are long but not necessarily of high con-

426



BURNS et al.: EXTRACTING STRAIGHT LINES

trast. A key characteristic of the approach that distin-
guishes it from most previous work is the global organi-
zation of the supporting line context prior to any decisions
about the relevance of local intensity changes.
An estimate of the local gradient orientation at each

pixel is the basis of these first organizing processes.
Grouping pixels into line-support regions avoids the
plethora of responses from masks of varying sizes and ori-
entations, as well as unnecessary complexity in the sub-
sequent organizing mechanisms. It allows the extraction
of straight lines despite weaknesses in line clarity due to
local variations in width, contrast, and orientation. It di-
rectly addresses the problems associated with the size of
the edge operators and determines the extent of support to
be given to edges and lines directly from the underlying
data.
The approach has its roots in the "gradient-collection"

processes of Hanson, Riseman, and Glazer [10]. In the
terms discussed in this paper, the gradient-collection pro-
cess utilized a data-directed mechanism to organize the
full context of the edge in one direction at a time (the
horizontal and vertical components) over the width of a
monotonically increasing or decreasing section of the in-
tensity profile contributing to the edge (i.e., where the
gradient sign was constant). The total gradient contrast
was then distributed around the location of the centroid of
the local gradient magnitudes in the edge profile. This
process organized contrast information across the width
of an edge without committing to any fixed size or set of
sizes for the edge operator. In a similar vein, Ehrich and
Foith [6] organized one-dimensional intensity profiles into
a hierarchical data structure before interpreting the infor-
mation and making decisions about what constitutes a
meaningful edge. Both of these techniques capture global
gradient information that results in a more accurate as-
sessment of total edge magnitude across its width.

Haralick [12] also processes the intensity surface in or-
der to make decisions about lines, but the key difference
is that his surface patches are local, and one faces the
same sort of difficulties in organizing this information as
one does in the output of local edge operators.
The approach in this paper has generalized the global,

contextual organizing processes to two dimensions,
grouping image pixels across the width of an edge as well
as down the length of the edge, to form the basis for ex-
tracting a straight line. All pixels in these line-support
regions contribute to both the final representation of the
line and the generation of a set of descriptive attributes
that are useful for further processing of the line data. The
line-support regions might also be useful in separating the
straight lines into intrinsic images [3] representing edges
and lines of different types, such as illumination, texture,
reflectance, orientation, etc.
II. A REPRESENTATION AND PROCESS FOR EXTRACTING

STRAIGHT LINES
A. Overview
The general approach to extracting straight lines is to

group the pixels into line-support regions on the basis

of gradient orientation, and then to extract from each re-
gion a straight-line segment. Note that every intensity
variation, including very low magnitude changes, will
initially be extracted as a weak line segment (sometimes
of great width). During the interpretation of these lines,
adjacent low-contrast support regions can be grouped into
homogeneous regions and filtered so that they are not
viewed as weak straight lines.

There are four basic steps in extracting straight lines.

1) Group pixels into line-support regions based on sim-
ilarity of gradient orientation. This allows data-directed
organization of edge contexts without commitment to
masks of a particular size.

2) Approximate the intensity surface by a planar sur-
face. The planar fit is weighted by the gradient magnitude
associated with the pixels so that intensities in the steepest
part of the edge will dominate.

3) Extract attributes from the line-support region and
the planar fit. The attributes extracted include the repre-
sentative line and its length, contrast, width, location,
orientation, and straightness.

4) Filter lines on the attributes to isolate various image
events such as long straight lines of any contrast; high-
contrast short lines (heavy texture); low-contrast short
lines (light texture); homogeneous regions of adjacent
very low contrast lines; and lines at particular orientations
and positions.

B. Grouping Pixels into Line-Support Regions via
Gradient Orientation

Fig. 1 shows four representative images used to illus-
trate the grouping and straight-line extraction process.
Fig. 2(a) is a 32 x 32 intensity subimage used to illustrate
the details of the algorithm; results are shown for the full
images in subsequent sections. Fig. 2(b) shows the inten-
sity surface of this subimage, while Fig. 2(d) depicts the
corresponding gradient image in which the length of the
vector encodes gradient magnitude. Gradient magnitude
and orientation have been estimated by convolving the
image with the two masks shown in Fig. 2(c). Note that
the sign of the gradient encodes dark-to-light or light-to-
dark intensity changes that are 180 degrees apart. Thus,
intensity surfaces that form a ridge will be detected as two
different line-support regions.

1) Choice ofMask for Computing the Gradient: There
are a variety of masks that can be employed in the com-
putation of the gradient, including those organized hier-
archically according to mask resolution. Large masks tend
to smooth the image and reduce the clarity of fine detail,
or even remove it completely. Since one of our primary
goals is the recovery of lines corresponding to fine detail,
we wish to select the smallest possible masks that will
produce estimates of gradient orientation. The mask se-
lected must maintain lines associated with alternating one-
pixel-wide regions [such as parts of the rain-gutter, siding
and window-trim in Fig. 1(a) and (b)] and also provide
symmetric responses with respect to rotation of the line
in the image.
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Fig. 1. Four natural images used to demonstrate straight-line extraction.

The sensitivity to detail and rotational symmetry of four
small edge masks, I x 2, 1 x 3, 2 x 2, and 3 x 3,
shown in Fig. 3(a) will be compared by applying them to
two test images. Note that all masks are no larger than a
3 x 3 window, and one of them is the smallest possible
edge operator, a I x 2 mask.
The first test image shown in Fig. 3(b) is composed of

a field of alternating horizontal black and white strips of
1 pixel width and is intended to test the ability of the mask
to respond to fine detail. Fig. 4(a)-(d) shows the results of
applying the four masks to the dense field of strips. Note
that the 1 x 3 and 3 x 3 completely fail to detect any
intensity variation at all! Thus, these masks will be re-
jected because high-constrast 1-pixel-wide regions can be
missed.
The test image of Fig. 3(c) is composed of a diagonal

edge reflected about the vertical axis. This test image will
give a sense of edge responses to rotated lines. Fig. 4(e)-
(h) demonstrates the symmetric response of the 2 x 2

mask to the two diagonal lines versus the nonsymmetric
response of 1 x 2 mask that is the smallest possible mask.
On the basis of the criterion described, the 2 x 2 mask

appears to be the best choice. In addition, Haralick has
shown that this particular mask is optimal among 2 x 2
operators [121. Thus, the 2 x 2 mask was chosen as our
operator to estimate gradient magnitude and orientation.
All results shown in the following sections were obtained
using the 2 x 2 mask. The local gradient orientation was
computed by

tan-' Gv(i, J)/G,H(i, j)
where Gv(i, j) and GH(i, j) are the vertical and horizontal
components of the gradient obtained from the mask ap-
plied at pixel i, j. Further studies will be required to de-
termine the impact of the size and form of the edge op-
erator on the overall process.

2) Segmentation of the Gradient-Orientation Image
Using Fixed Partitions: Once local gradient orientations
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(a) (b)

(c)
(d)

Fig. 2. The first step in forming gradient regions involves estimating the
gradient direction (orientation) at all points in the image. (a) A 32 x 32
subarea of a house image that will be used to illustrate the process. (b)
An intensity-profile representation of the intensity array. (c) The 2 x 2
operators used to estimate dlIdx and dlldy. from which the local gradient
orientation is obtained. (d) The resulting gradient vectors encoding mag-
nitude (vector length) and orientation.

have been estimated, they are grouped into regions. The
problem can be viewed as one of segmenting the gradient-
orientation image, and the usual difficulties of region-seg-
mentation algorithms are encountered. Although local
groupings can assure local similarity, regions can be
formed that include pixels with very dissimilar orientation
attributes due to a slow drift in the orientation from pixel
to pixel. Thus, region-growing techniques [5], [21 are not

applicable because even occasional over-grouping errors
can cause disastrous results. Changes in line orientation
at corners and junctions of straight lines [as in the image
in Fig. 5(b)] can produce intermediate gradient orienta-
tions instead of a clear discontinuity in gradient orienta-
tion; the result could be undesirable pixel groupings if
local region-growing is employed.
A grouping process was employed that avoids some of
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Fig. 3. Edge masks and test images. (a) Three other small edge masks that
could be used to estimate the horizontal and vertical components of gra-

dient magnitude. (b) Test image of horizontal stripes for analyzing re-

sponses for high frequency data. (c) An image of a diagonal boundary
reflected about its central, vertical axis to compare symmetry of edge-
mask responses.

these problems. We shall introduce the basic idea with a
simplified approach using fixed partitioning of the orien-
tation feature; in the next subsection we extend it to a

more effective process using overlapping partitions. In the

fixed-partition scheme, the 360 degree range of gradient
directions is arbitrarily quantized into a small set of reg-
ular intervals, say, eight 45 degree intervals or sixteen
22.5 degree intervals [Fig. 5(a)], and each gradient vector
is labeled according to the partition into which it falls. A
simple connected-components algorithm is then used to
form distinct region labels for groups of adjacent pixels
with the same orientation label [Fig. 5(b)]. If our conjec-
tures about edge orientation are correct, then pixels par-
ticipating in the line-support context of a straight line will
be in the same (or sometimes adjacent partitions), and ad-
jacent pixels that are not part of the same straight line will
usually have different orientations.

3) Segmentation of the Gradient-Orientation Image
Using Overlapping Partitions: Problems with the simple
approach to grouping described in the previous section are
related to the arbitrary placement of the boundaries of the
fixed partitions and the resulting insensitivity to the pos-
sible distributions of edge directions of any particular
straight line. First, visually distinct straight lines that are
spatially contiguous can be improperly overmerged be-
cause they have similar orientations and (partially) fall in
the same orientation bucket. Second, a straight line can
produce fragmented support regions if the distribution of
gradient orientations happens to lie across a partition
boundary. The overmerging problem tends to be reduced
as the partition size gets smaller, but the fragmentation
problem demands larger sizes. Fig. 6 illustrates a gradient
orientation segmentation of two subimages using 8 and 16
partitions (45 degree and 22.5 degree intervals, respec-
tively) on each. These examples demonstrate the over-
merging/fragmentation tradeoff.
A reasonably simple and effective extension to the fixed-

partitioning scheme involves the use of two overlapping
sets of partitions: when one partition fragments a line be-
cause it lies across a partition boundary, the other will
tend to place this same line entirely within a partition.
Fig. 7(a), (b) shows a roof boundary that serves as a clear
example. Fig. 7(a) was generated by eight 45-degree par-
titions, with the first centered on 0 degrees; Fig. 7(b) was
also produced using eight 45-degree partitions, but the set
was rotated half a partition so that the first bucket is cen-
tered at 22.5 degrees. Note that the first set recovers the
top boundary, while the second set recovers the side. Re-
gions of low contrast outside those shown were removed
to isolate the gradient regions for illustrative purposes.
The critical problem of this approach is the merging of

the two representations in such a way that a single line in
the image is principally associated with a single line-sup-
port region. The region considered best for pixel associ-
ations is the one that provides an interpretation of the line
that is longest. The following scheme is used to select
regions and lines from the overlapping representations: 1)
line lengths are determined for every region; 2) since each
pixel is a member of exactly two regions (one in each
segmentation), every pixel votes for and is associated with
that region of the two that provides the longest interpre-
tation; 3) each region receives a count of the number of
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Fig. 4. (a)-(d) Gradient estimates for the horizontal-stripe image (1 x 2,
1 x 3, 2 x 2, and 3 x 3, respectively). Note that the 1 x 3 and 3 x 3
masks are unable to detect any of these intensity changes.
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(f)

(h)

Fig. 4. (Continued.) (e)-(h) Gradient estimates for the reflected boundary
(1 x 2, 1 x 3, 2 x 2, and 3 x 3, respectively). Note that the response
of the 1 x 2 mask on the two boundaries is not symmetric.
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(a)

(b)
Fig. 5. Gradient-orientation regions are formed by grouping pixels based
on the similarity of the local gradient-orientation estimates. (a) A parti-
tioning of the data into fixed-orientation classes. (b) Regions produced
by a connected-components algorithm applied to the labels of the ori-
entation partitions.

its pixels that voted for it; and finally, 4) the "support"
each region of the two representations is given is the per-
centage of the total number of pixels voting for it. The
regions selected are those that have a majority, i.e., the
support is greater than 50 percent. It should be noted that
most regions have either very low or very high support.
Fig. 7(c)-(d) show the regions in each segmentation that

received support greater than 50 percent: notice how the
edges are now uniquely represented by gradient regions
that cover their full extent.

C. Interpreting the Line-Support Region as a Straight
Line

Each line-support region represents a candidate area for
a straight line since the local gradient estimates share a
common orientation. Once the line is extracted, its posi-
tional parameters will serve as the core of the structure's
symbolic description as well as a local coordinate system
about which other attributes will be measured-such as
length, width, contrast, and straightness. The key prob-
lem is to use the information contained in the underlying
intensity surface to find the line.
The intensity surface associated with each line-support

region is assumed to be a noisy representation of an ideal
ramp, or sloped facet [12], that can be characterized by a
planar surface. The parameters of this plane may be ob-
tained by a weighted least-squares fit to the feature val-
ues. The weighting is a linear function of the local gra-
dient magnitude and determines the contribution of a
pixel's intensity (or feature) value to the final planar fit.
This has the effect of allowing strong local intensity vari-
ations to dominate the fit. In practice, the weighting is
necessary to reduce the contribution of pixels near the tails
of the intensity change where the magnitude of the change
is often fairly small. Fig. 8 presents two examples of the
weighted planar fit.
Now that a planar fit to the intensity surface is avail-

able, an obvious constraint on the orientation of the line
is that it be perpendicular to the gradient of the fitted
plane. Thus, this leaves only the problem of locating the
line along the projection of the gradient. The region de-
picted in Fig. 9(a) and as dots in the surface plot of Fig.
9(b) will serve as our example. Note that the line-support
region shown in Fig. 9(d) includes all the pixels contrib-
uting to the gradient estimate, as determined by taking the
union of the set of pixels to which the mask was applied
in computing the grouped gradient vectors. (Fig. 9(a)
shows only the point estimates of the gradient.) A simple
approach is to intersect the fitted plane with a horizontal
plane representing the average intensity of the region
weighted by local gradient magnitude as shown in Fig.
9(c); the straight line resulting from the intersection of the
two planes is shown in Fig. 9(d) overlaid on the line-sup-
port region.

This approach is related to the gradient-collection
mechanism used in [10], where the position of an edge in
a one-dimensional intensity profile is determined as the
centroid of the local gradient magnitudes along the one-
dimensional profile. Thus, the larger gradient components
of monotonically increasing or decreasing intensity
changes are weighted more in determining the edge po-
sition. It is also similar to the slope-facet model proposed
by Haralick [12], where the local intensity surface in the
neighborhood of a pixel is modeled as a planar surface
patch. This planar fit served as a model of the region
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(c) (d)
Fig. 6. Orientation partitions of different sizes affect the over-merging and

fragmentation tradeoff. (a), (b) Use of a large number of partitions, say
16 intervals of 22.5 degrees, can have the desirable effect of reducing
over-merging as shown in (a), but causes some undersirable fragmenta-
tion as in (b); (c), (d) Use of a smaller number of partitions, say 8 in-
tervals of 45 degrees each, has the opposite effect. These segmentation
problems cannot be solved by simple parameter tuning, although the par-
titioning technique provides a starting point for more sophisticated al-
gorithms.
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(a) (b)
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Fig. 7. Example of dual overlapping-partition technique applied to a sim-
ple roof-sky boundary (note that regions of low contrast have been re-
moved for clarity). (a) Result of 8 partitions (45 degrees) with the first
bucket centered at 0 degrees. (b) Result of partitioning with same bucket
sizes, but with the first bucket centered at 22.5 degrees. (c) Removal of
regions in (a) with support < 0.5. (d) Removal of the regions of (b) with
support < 0.5. Note that there is exactly one region that covers the area
completely for each straight line, though these regions may overlap
slightly at their junction.

(d)
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(a) (b)

(c) (d)

Fig. 8. Typical lines appearing in outdoor scene images and simple models
of their profiles. (a) Surface plot of a relatively sharp and high-contrast
edge. (b) Planar model of the line obtained by a least-squares fit weighted
by gradient magnitude. (c) The set of pixels in the foreground of the
surface plot represents a wide, low-contrast shadow boundary. (d) The
planar model (foreground of plot) reasonably approximates the infor-
mation in the shadow boundary line.
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(a) (b)

(c) (d)
Fig. 9. A straight line is obtained from the group of pixels comprising the

line-support region. (a) Gradient region resulting from grouping on the
basis gradient orientation. (b) Pixels included in the line-support region
are highlighted by dots. (c) The straight line is obtained by intersecting
the weighted planar fit to the intensities with the horizontal plane rep-
resenting the average intensity, again weighted by magnitude. (d) The
resulting straight line overlaid on the set of pixels making up the line-
support region.
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structure and was used to determine whether or not the
pixel was at a region boundary. In our case, however, the
neighborhood size has been determined dynamically by
the process that groups on orientation, rather than being
fixed a priori.

III. ATTRIBUTES OF THE LINE-SUPPORT REGION

The line-support regions provide an excellent opportu-
nity to study aspects of the line's behavior beyond the
basic orientation and position parameters. In this section
we demonstrate how the line-support region can be used
as a source of detailed information about the line by using
the underlying intensities to characterize the line and its
associated region as a structure with length, width, con-
trast, steepness and, finally, straightness. The measures
defined here should be considered first approximations to
more complex analyses of the underlying structure of the
intensity surface that are possible. These properties pro-
vide selection criteria for lines with particular properties.
Some properties of the line are immediately derivable

from the parameter extraction process. Length is simply
the distance between the two endpoints. Another measure
is the gradient-weighted average intensity level of the
plane used to find the line's lateral position.

A. Contrast, Steepness, and Width of a Line

Some other potentially interesting attributes of a line
are properties of its profile (perpendicular to the edge).
Characteristics of the profile of the intensity surface across
a line include 1) contrast-the cumulative intensity change
that occurs across the line; 2) width or fuzziness-the size
of the interval, across the profile, within which the bulk
of the intensity change occurs; and finally 3) steepness-
the surface's slope within this interval. Clearly, these
three properties are roughly related by contrast = width
* steepness; and having measured two, one can use them
to roughly estimate the other. These relationships are very
clear and precise in the ideal ramp structure shown in Fig.
8(b).

Unfortunately, many actual intensity profiles across a
line are highly nonlinear and the way that the intensity
change is concentrated along the profile varies consider-
ably; Fig. 8(a) and (c) shows the intensity surfaces asso-
ciated with typical straight lines.
The slope of the plane fit to the intensity surface is one

possible measure of the edge's steepness. However, the
presence of wide soft shoulders on the profile will lower
this slope below that which would be obtained by mea-
suring the slope over the area of maximum (or "high")
rate of change of the intensity surface. Of course the gra-
dient weighting mechanism for pixel contribution to the
plane fit reduces this effect, but there is still an issue of
whether the whole intensity profile should be included.
An alternative could be to fit piecewise-planar surfaces to
more accurately reflect the nonlinear intensity surface,
but in practice it may not be obvious how to accomplish
this. Thus, for our treatment here the slope of the weighted
plane fit will be used as the measure of the steepness.

Contrast seems to be much less affected by the actual
shape of the profile, since it strictly involves the cumu-
lative intensity change. For a single slice across the edge,
contrast will simply be defined as the difference between
the Max and Min of the values in the line-support region.
A more effective version of this would be the average of
the high feature values on one side of the line and the
average of the low feature values on the other side of the
line. This can be achieved by averaging the feature values
of pixels in the upper and lower N percent of the line-
support region, where N might be in the range of 10 per-
cent.

This leaves the width of the line. It can be measured
directly or taken as contrast divided by steepness from the
above relationship. One would think that the spread of the
total intensity change across the profile should be the ma-
jor factor in determining width. However, it is hard to
clearly relate this spread to some "width" measure be-
cause very wide low-gradient shoulders can distort this
measure. One way is by means of the steepness measure
presented above that already reflects the degree of spread:
since it is derived by weighting with local gradient mag-
nitude, the narrower the spread, the larger this measure is
with respect to the average slope of the profile. If width
is set to contrast/steepness, a narrower width than the di-
rect computation from the intensity surface is obtained.
The definition also forces the relationship between the
three properties to be strict-allowing us to express our
description of the actual edge in form of a simple, planar
ramp approximation with a clear width, height and steep-
ness (see Fig. 8(b) and (d) for resulting models).

B. Straightness of a Line via Orientation Variance and
Iso-Contours
One final attribute that is quite important to estimate is

straightness, that is, the degree to which the intensity sur-
face of the support region truly represents a straight line.
A wavering line whose local orientation remains within
the range of a single partition can produce a line-support
region and planar surface fit that is equivalent to that of a
straight line. The global attributes of contrast, orienta-
tion, length, position, and average width of a wavering
and a straight line could all be the same. However, the
spatial distribution of the gradient-orientation vectors in
the support region may be quite different.
A simple straightness measure is the variance in ori-

entation, since it will be low if all vectors are similarly
oriented. Of course, this measure is slightly complicated
because it is computed on a circular scale. Mardia's [19]
measure of the mean minimizes the cumulative cord length
from the data to the estimate. The center of mass is found
for the sample set by vector addition followed by division
by the total magnitude. The resulting vector, the center
of mass, points in the mean direction and the arcosine
of its magnitude (radius) is the standard deviation (stan-
dard deviating angle) from the mean direction.

Another method for generating a straightness measure
is to compute properties of the intensity iso-contour pass-
ing through the region. The contours are generated by
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(c)

Fig. 10. Line straightness can be measured as the straightness of an iso-
intensity contour passing through the line-support region. The contours
depicted are of regularly spaced intensties, with the dotted contour being
at the average intensity of the region, weighted by local gradient mag-
nitude. (a) A relatively straight smooth line. (b) A straight but locally
rough line. (c) A synthetic circular boundary. (d) Curved line obtained
from an image of a fold in a shirt.

computing the intersection of a horizontal plane repre-

senting an intensity value with the actual intensity sur-

face. In general, the iso-contours tend to run parallel to
the extracted line because, of course, the orientation will
be constrained to lie within a single orientation partition

in the gradient segmentation. However, the iso-contours
will vary locally as a function of the intensity surface and
may reflect any lack of straightness. Fig. lO(a)-(d) shows
several intensity iso-contours for various types of lines:
1) the smooth straight line used as an example in Section

(a) (b)

(d)
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1I-C and Fig. 9; 2) a rough but still straight roof line; 3)
a synthetic, 45-degree circular arc; and 4) a rougher
curved line. Simple linear interpolation of the intensity
surface was used to compute the contour-scanline inter-
sections.
The particular iso-contour used as the basis for the

comparison is the gradient-weighted average intensity of
the line-support region. This contour will tend to pass
through points on the steepest parts of the intensity sur-
face (depicted with dots in Fig. 10). These dots represent
the interpolated locations between pixels where the con-
tour has been detected.
The basic idea is to measure the average distance of the

contour points to a straight-line fit to them and then divide
this amount by the line length. This latter step is taken to
make the measure scale independent: the straightness
measure is then a unitless proportionality of lateral devia-
tion of the curve over its length. The smaller this ratio is,
the straighter the line is. Since this value tends to be very
small, we multiply it by a thousand to give it a more rea-
sonable range. The average distance of the contour points
to a straight-line fit is computed using an eigenvector
technique [5] and is taken to be the square-root of the
mean-squared distance (SMSD).

This measure was applied to the four examples of Fig.
10 and appears to be effective. The smooth, straight edge
[Fig. 10(a)] has a ratio of 2.0 (per 1000); the rougher
straight edge [Fig. 10(b)] has a value 50 percent larger
(3.0 per 1000). The curved edges have ratios more than
ten times that of the smooth straight edge [27.0 per 1000
for both Fig. 10(c) and (d)]. Thus, the measure tends to
separate the straight edges from the curved ones, although
some smoothing of the contour or raw data might reduce
some of the minor local variations due to digitization or
noise. In comparison, the standard deviating angle of the
gradient distribution and the average plane-fit error do not
separate the straight from the curved as dramatically: the
standard deviating angles (in degrees) for Fig. 10(a)-(d)
were 6.1, 8.6, 12.7, and 11.7, respectively. The average
plane-fit errors are 7.0, 23.2, 23.6, and 29.7, respectively
(see Sections IV-C and IV-D for further results).

C. Straightness of a Line via Piecewise Average
Orientation

This measure is more complex, but focuses upon the
spatial distribution of orientation vectors that carries most
of the information about curvature of the line. Once the
representative line for each support region is determined,
the best planar fit of the pixels associated with each se-
quential subsection of this line (say in sections of 1/2,
1/4, 1/8, - - , depending upon its length), can be com-
puted. In other words we are applying the same algorithm
for computing the surface fit and line orientation of the
whole support region to spatially contiguous subsections
of the support region. This will give us the orientation of
any line, curved or straight, up to the angular resolution
of the subsections. If a linear feature is present, all por-

tions will produce approximately the same orientation;
however, the spatial distribution of wavering, irregular,
or smoothly curving convex or concave lines can be ap-
proximately determined. In the limit, the gradient direc-
tion at every point on the representative line of the support
region can be computed. Rather than carrying out this
computation for every support region, this could be done
for selected regions, e.g., those whose variance is greater
than some threshold. Unfortunately, this approach was not
programmed and no results using this technique are pre-
sented. However, if the reader examines particular ex-
amples in the following section, it should be obvious that
the nonlinear portions of some of the lines should be de-
tectable by this technique.

IV. EXPERIMENTAL RESULTS

A. Basic Line Extraction and Filtering Strategies

The line and feature extraction algorithms described in
the preceding sections were applied to the full images
shown in Fig. 1. The algorithm utilized overlapping par-
titions as described in Section II-B; the partition size was
45 degrees, rotated by 22.5 degrees. Figs. 11-14 dem-
onstrate the performance of the algorithm on a variety of
image types. In each case, the first image contains all the
lines produced by both partitions that have a support
greater than 0.5. This means that each line selected must
have at least 50 percent of the pixels in its line-support
region to choose it over the line generated from the other
partitioning. The decision is based on which region gen-
erated the longest line, as described in Section lI-B. No-
tice that this filter-step reduces the redundancy of rep-
resentation of the lines in the image caused by the
overlapping partitions and the resulting dual representa-
tion of a line.

Subsequent portions of Figs. 11-14 demonstrate the ap-
plication of different filters applied to the initial data; these
filter on the properties of line length, gradient steepness,
line orientation, and image position measured in pixel co-
ordinates. The "steepness" of the gradient was taken to
be the slope of the plane fit to the intensity surface, the
contrast as the difference between Max and Min values in
the line-support region, and the width as contrast divided
by steepness, as described in Section III.

Fig. 11 shows results on a typical house image. The
white areas in 11(a) are areas of the original image that
are very dark and have little edge activity. Fig. I 1 (c) was
formed from 11(a) by selecting those lines that have a
length greater than 5 or a gradient steepness of greater
than 10 gray levels per pixel. Clearly, this type of filtering
does a reasonable job of removing lines that are due pri-
marily to low-contrast noise and some textural edges. Fil-
tering on the basis of gradient slope, or steepness, alone
[Fig. 1 1 (b) and 11(d)] or length alone [Fig. 1 1(e)] results
in different classes of line events being retained. Fig.
11(e), for example, represents long lines of some signif-
icance; in this case many of the structural lines in the
house are isolated. Fig. 1 1(f)-(h) demonstrates the effects
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(a) (b)

(c) (d)

Fig. 11. Line extraction and filtering on the house image of Fig. 1(a). (a)
Initial line set (with support 2 0.5). (b) Gradient steepness 2 2.5 gray
levels per pixel. (c) Line length 2 5 OR gradient steepness 2 10 gray
levels per pixel. (d) Steepness 2 10 gray levels per pixel.
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Fig. l1. (Continued.) (e) Length 2 5. (f)-(h) Results of filtering on ori-

entation and image location. (f) Orientation in range 3-28 degrees. (g)
Orientation in range 165-177 degrees. (h) Orientation in range 81-95
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(a) (b)

11 11 \\
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(c) (d)
Fig. 12. Line extraction and filtering on the house image of Fig. 1(b). (a)

Initial line set (with support 2 0.5). (b) Gradient steepness 2 10 gray
levels per pixel. (c) Short steep lines (length c 5, gradient steepness 2
10 gray levels per pixel). (d) Steep, long lines (length 2 15 and gradient
steepness 2 10 gray levels per pixel).

of filtering to produce lines for vanishing points and per-
spective analysis; they are obtained by filtering on line
orientation and lateral image position at ranges in angular
orientation of 3-28 degrees [Fig. 11(f)], 165-177 degrees
[Fig. 11(g)], and 81-95 degrees [Fig. 11(h)]. A variety
of other filters are possible and we are now exploring the

implications of various types of filters and the nature of
the edge and line events they select. An interesting exten-
sion concerns dynamic generation of filters based on
knowledge of the type of object and/or line-event sought.

Fig. 12(b) shows the results of filtering Fig. 12(a) on
the basis of gradient steepness alone and thus should be
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(d)
Fig. 13. Line extraction and filtering on the house image of Fig. l(c). (a)

Initial line set (with support 2 0.5). (b) Gradient steepness 2 10 gray
levels per pixel. (c) Steep short lines (steepness 2 10 gray levels per
pixel and length c 5). (d) Filtering for steep long lines (steepness 2 10
gray levels per pixel and length 2 10).

compared to Fig. 11(c). Of the lines remaining in Fig.
12(b), filtering on length results in the separation of the
lines into two disjoint sets, one corresponding to short
texture edges [Fig. 12(c)] and the other to longer lines
related to the macro structure of the image [Fig. 12(d)].
We are examining ways in which texture descriptors may

be constructed from the line-set remaining when a filter
similar to that which produced Fig. 12(c) is applied to the
initial low-level line representation. For example, it
should be possible to separate this line set into at least
two classes based on orientation or the lack of a preferred
orientation; this would result in the extraction of the roof
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(a)

(c) (d)
Fig. 14. Results of line extraction and filtering on the aerial image of Fig.

l(d). (a) Initial line set (with support 2 0.5). (b) Length 2 3 and gra-

dient steepness 2 10 gray levels per pixel. (c) Same as (b) but length
> 5. (d) Filtering on orientation (70-76 degrees) and image location.

texture (horizontally oriented) and the foliage texture (no
preferred orientation). In Fig. 12(d), the structural edges
representing the telephone wires were extracted from a

thin one-pixel-wide diagonally-oriented region, a very dif-
ficult problem for many line extraction processes. Fig. 13
provides similar results for a different house image.

Fig. 14 illustrates results on an aerial image. Fig. 14(b)
and (c) differ only in the line-length parameter of the fil-
ter. Fig. 14(d) is the result of filtering on angular orien-
tation (70-76 degrees) and image position. This figure, as

well as Fig. 11 (f)-(h), were actually produced by hand-
selecting local peaks in a (rho-theta) Hough transform of

(b)

1,

l
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(a)

(b) (c)
Fig. 15. A subwindow of the house image in Fig. 1(b) used to explore a

variety of lines in more detail. (a) The subwindow. (b) Straight lines
after filtering on steepness 2 10.0; the lines selected for further analysis
have been emphasized and labeled. (c) Corresponding gradient-support
regions.

the original line set. Automatic peak selection methods,
such as those developed in [17], [27], will be examined
in future work.

B. Specific Examples with Attributes
Figs. 15(a) and 16(a) are two subimages of Fig. l(b),

from which particular examples of lines have been se-
lected. In each figure, (b) shows the lines selected and (c)

shows the corresponding line-support regions. The line
set includes examples of lines that are truly straight, lines
that, for a variety of reasons, are not actually straight, and
lines whose placement has been distorted by anomalies in
the intensity-surface data.

Figs. 17-22 provide a more detailed analysis of the be-
havior of the intensity surface in the support region and
provide descriptor data for each line. In each figure, (a)
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(a)

(b) (c)
Fig. 16. A subwindow from Fig. I(b) containing a road fragment. (a) The
subwindow. (b) Straight lines after filtering on length 2 30.0; the lines
selected for further analysis have been emphasized and labeled. (c) Cor-
responding gradient-support regions.

shows the local gradient vectors overlaid on the support
region, (b) is a histogram of the local gradient orientation,
(c) shows the resulting straight line superimposed on the
intensity region corresponding to the line-support region
as well as the isocontour generated by the intersection of
the intensity surface with a plane whose altitude is equal
to the average intensity, and (d) shows the full feature
descriptor for each line. Fig. 17 has been included as a

basis of comparison for the remaining figures and as a
demonstration that the curvilinear nature of the true line
can be detected from the attributes associated with the ex-
tracted straight line.
The feature descriptor forms the basis of the line data

base for an image, and over which all of the filtering op-
erations described earlier were performed. The manner in
which the values of many of these features are computed
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81.

72-

148.5

(b)

Statistics for Edge - circular-arc:

mean local gradient orientation ...... 135. (degrees)
SO of local gradient orientation. 12.707 (degrees)
ro ............................... 17.284 (pixels)
theta ............................... 45.0 (degrees)
*in-t ............................... -24.749 (pixels)
max-t ............................... 24.749 (pixels)
length ............................... 49.497 (pixels)
steepness (intensity change per pixel) 18.288 (int/pixel)
minimum intensitW in region ... ....... 0.0 (intensitW)
maximum intensity in region ... ....... 108.8 (intensitW)
contrast (overall intensity drop) ..... 108.0 (intensity)
width (contrast/steepness) .... ........ 9.72 (pixels)
average intensitW in region........... 49.754 (intensity)

deviation from straightness( 2.7e-2 (unitless)
plane-fit error ...... ................ 23.623 (intensity)
plane-fit error over plane steepness.. 2.296 (pixels)
end-points - ((-5.278 29.722) (29.722 -S.278)) (pixels)

.e- @ e--*---****-ee-e----.90-.. -6-.040060-.--60-*.S-

(d)
Fig. 17. A synthetic circular arc. (a) Associated gradient-support region.

(b) Local gradient-orientation histogram of region. (c) Interpreted
straight-line, region of pixels used in plane-fit and iso-contour used in
straightness test. (d) Statistics for region and straight line.

has been described in earlier sections, particularly Sec-
tions II-C and III. Theta is the angle between the hori-
zontal (x-) image axis and the perpendicular to the line.
Min-t, max-t are the coordinates of the endpoints of the
line in a parameterized representation formed by rotating
the x-y picture coordinate frame theta degrees with respect

to the x axis. In the new (p,t) frame, p is the distance from
the origin to the line and t is the coordinate of points on
the line [5].
The set of lines has been chosen in order to demonstrate

the effectiveness of the algorithm, as well as to point out
some of the known limitations and remaining problems.

(a)

(c)
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(a) (b)

Statistics for Edge - gutter-edge:

mean local gradient orientation ...... 269.075 (degrees)
SD of local gradient orientation ..... 4.688 (degrses)
ro .............................. 12.959 (pixels)
theta .............................. -88.414 (degrees)
min-t .............................. -15.148 (pixels)
max-t .............................. 31.862 (pixels)
length .............................. 47.81 (pixels)
steepness (intensity change per pixel) 17.918 (int/pixel)
minimum intensity in region ..... ..... 188.8 (intensi ty)
maximum intensity in region .... 236.8 (intensity)
contrast (overall intensity drop)... .128.8 (intensity)
width (contrast/steepness) ..... ....... 7.144 (pixels)
average intensity in region........... 1S9.689 (intensity)
deviation from strai ghtness( S.e-3 (unitless)
plane-fit error .......... ............ 6.9 (intensity)
plane-fit error over plane steepness.. 8.385 (pixels)
end-points - ((15.581 -12.534) (-31.491 -13.836)) (pixels)
..................................................

(c) (d)
Fig. 18. "Gutter-edge" from Fig. 15. (a) Associated gradient-support re-

gion. (b) Local-gradient-orientation histogram of region. (c) Interpreted
straight line, region of pixels used in plane-fit and iso-contour used in
straightness test. (d) Statistics for region and straight-line.

The reader is invited to examine and compare the absolute C. Discussion of Specific Classes of Problems
and relative values of the attributes and to qualitatively
assess their effectiveness. In the next section, we will dis- In this section, we discuss some of the specific prob-
cuss particular remaining weaknesses of our approach and lems with the algorithm that are known to exist and that
outline possible directions for future research. we are continuing to examine. In general, the algorithm
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(b)

Statistics for Edge - wall-edge:

mean local gradient orientation ...... 176.227 (degrees)
SO of local gradient orientation ..... 9.964 (degrees)
ro ................................... 17.117 (pixels)
theta ................................ 2.744 (degrees)
min-t ................................-. 17.689 (pixels)
max-t ...................... O..* ...... 12.325 (pixels)
length ............................... 38.113 (pixels)
steepness (intensity change per pixel) 31.817 (int/pixel)
minimum intensity in region .......... 86.8 (intensity)
maximum intensity in region ..... ..... 237.8 (intensity)
contrast ,(overall intensity drop) ..... 151.8 (intensity)
width (contrast/steepness) ..... ....... 4.746 (pixels)
average intensity in region........... 189.124 (intensitW)
deviation from etraightness 1.Se-2 (unitless)
plane-fit error ....... ............... 19.494 (intensity)
plane-fit error over plane steepness.. 0.613 (pixels)
end-points - ((16.251 18.488) (17.687 -11.491)) (pixels)

(d)

Fig. 19. "Wall-edge" from Fig. 15. (a) Associated gradient-support re-

gion. (b) Local gradient orientation histogram of region. (c) Interpreted
straight line, region of pixels used in plane-fit and iso-contour used in
straightness test. (d) Statistics for region and straight line.

will group pixels into a line-support region when the local
gradient-orientation estimates are sufficiently similar.
There are several cases where this may not produce de-
sirable results, including:

1) a low-magnitude gradient that does not represent a

real line;
2) distortion of the location or orientation of a line due

to grouping errors;

(a)

(c)

V I
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A,
A

(a)

(c
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(b)

Statistics for Edge - bush-edge:

mean local gradient orientation ...... 38.726 (degrees)
SO of local gradient orientation ..... 10.972 (degrees)
ro . ............................. 8.79 (pixels)
theta ............................. -32.624 (degrees)
min-t ............................. -15.889 (pixels)
max-t ............................. -1.97 (pixels)
length ............................. 13.838 (pixels)
steepness (intensity change per pixel) 52.395 (int/pixel)
minimum intensity in region ..... ..... 75.0 (intensity)
maximum intensity in region ..... ..... 234.8 (intensity)
contrast (overall intensity drop) ..... 159.8 (intensity)
width (contrast/steepness) ............ 3.835 (pixels)
average intensity in region........... 170.363 (intensity)
deviation from straightness 3.5e-2 (unitless)
plane-fit error ........ .............. 23.482 (intensity)
plane-fit error over plane steepness.. 0.447 (pixels)
end-points - ((0.688 17.38) (-6.341 6.398)) (pixels)
..........................................................

(d)
Fig. 20. "Bush-edge" from Fig. 15. (a) Associated gradient-support re-

gion. (b) Local gradient-orientation histogram of region. (c) Interpreted
straight line, region of pixels used in plane-fit and iso-contour used in
straightness test. (d) Statistics for region and straight line.

3) a curved line being approximated as a straight line; line-support regions can be processed more carefully and
4) multiple straight lines being grouped into a single accurately.

line. There are obvious situations where the algorithm ex-
In this section, we will briefly consider each of these tracts low-contrast low-steepness lines that are not mean-

problems. Our approach in the next section will be to ex- ingful. In Fig. 12(a), the sky is filled with short lines from
amine measures for detecting these problems so that such small line-support regions produced by very minor inten-
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(b)

Statistics for Edge - shadow-edge:

mean local gradient orientation ...... 319.502 (degrees)
SD of local gradient oriontation. 11.815 (degrees)
ro .............-.......**........... .22.634 (pixels)
theta ................................ 35.374 (degrees)

min-t .-12.724 (pixels)
max-t .-1.912 (pixels)
length.1.812 (pixels)

steepness (intensity change per pixel) 28.953 (int/pixel)
minimum intensity in region. ..... 121.0 (intensity)
maximum intensity in region ... ....... 248.8 (intensity)
contrast (overall intensity drop).o.. 11S.10 (intensity)
width (contrast/steepness)........ .. 5.679 (pixels)
average intensity in region ........, 197.391 (intensity)
deviation from straightness 8.e-3 (unitless)
plane-fit error .... 6.421 (intensity)
plane-fit error over plane steepness.. 0.306 (pixeIls)
end-points - ((-25.822 -2.728) (-19.562 -11.544)) (pixels)
.s*-**--**@ X--*-*-*@-@--@-@ @---*w*-...... ... -e-..........

(d)

Fig. 21. "Shadow edge" from Fig. 15. (a) Associated gradient-support
region. (b) Local gradient-orientation histogram of region. (c) Inter-
preted straight line, region of pixels used in plane fit and iso-contour
used in straightness test. (d) Statistics for region and straight line.

sity changes, possibly at the noise level. In other cases, a
very wide low-magnitude gradient will produce a large
support region that should really be viewed as a homo-
geneous region without any associated line. For example,
if a planar surface of uniform reflectance oriented at an

angle to the viewer is illuminated, then a uniform lighting

gradient is obtained over the surface. The algorithm would
group all the pixels associated with this gradient into a

line-support region and extract a straight-line interior to
the surface boundaries. Although this line can be removed
by the filtering processes discussed in the next section, in
some cases it may be necessary to examine the data in the
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1_

- Ln
247. 5 253. 5 259. 5 265. 5 271 .5

(b)

277. 283. 5 289. 5

Statistics for Edge - divider-top:

mean local gradient orientation ...... 275.897 (degrees)
SO of local gradient orientation ..... 6.33 (degrees)
ro .................-................... 2.145 (pixels)
theta ................................ 81.616 (degrees)
min-t ................................. 31.528 (pixels)
max-t ................. 30.132 (pixels)
length ............................... 61.66 (pixels)
steepness (intensity change per pixel) 12.753 (int/pixel)
minimum intensity in region ... ....... 75.8 (intensity)
maximum intensity in region ... ....... 187.8 (intensity)
contrast (overall intensity drop) ..... 112.0 (intensity)
width (contrast/steepness) ............ 8.782 (pixels)

average intensity in region........... 124.664 (intensity)
deviation from straightness 1.4e-2 (unitless)
plane-fit error ..... ................. 15.282 (intensity)
plane-fit error over plane steepness.. 1.198 (pixels)

end-points - ((-31.584 2.475) (29.498 -6.515)) (pixels)

(d)

Fig. 22. "Divider-top" from Fig. 16. (a) Associated gradient-support re-

gion. (b) Local gradient-orientation histogram of region. (c) Interpreted
straight line, region of pixels used in plane-fit and iso-contour used in
straightness test. (d) Statistics for region and straight line.

line-support region in detail to determine whether the line is the most efficient, but suffers from the danger of losing
corresponds to a real line or to a widely distributed gra- portions of true line-support regions; 2) after the plane fit,
dient. but before further extraction of attribute values-this al-

Places in the algorithm where homogeneous regions can lows global information via low slope of the planar fit of
be detected are: 1) immediately after the computation of the intensity surface to be utilized; 3) after the entire low-

the gradient, low-magnitude values can be grouped; this level representation has been computed, which allows all

(a)

(c)
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COMPAR

Figure Line Name

Synthetic Circular Arc

Gutter-Edge

Gutter-Edge 2

Wall-Edge

Window Edge

22 Bush Edge

23 Shadow Edge

24 Yellow Road Divider
Top

25 Yellow Road Divider
Bottom

TABLE I tation and the three lowest straightness deviation meas-
IISON OF ERROR FILTERING AT1TRIBUTES

ures. Thus, there is strong promise for their utility. The
SD of Deviation Plane Fit Plane Fit Actually Location and line with the highest smooth curvature, the circular arc,
Gradient From Error Error a and produced highest of orientation and the
Orientation Straightness (intensity Over Plane Straight Orientation thevalue variance(degrees) (times 1000) levels) Steepness Line of Line second largest value in the nonstraightness measure. High

(pixels)
values of plane-fit error and plane-fit error/steepness also12.7 27 23.6 2.30 NO BAD show the utility of these measures for detecting anoma-

4.7 5 6.9 .385 YES GOOD lies. In particular, the difficulties produced by the top yel-
1.9 2 9.6 .167 YES GOOD low-road divider breaking into two gradient-region arms
10.0 15 19.5 .613 PARTLY BAD is detected by the second highest plane-error/steepness.
9.7 10 8.9 .264 YES FAIR The curved line of the bush is detected by the second
11.0 35 23.4 .447 NO FAIR highest standard deviation or orientation, the highest non-
11.8 8 6.4 .306 NO GOOD straightness value, and a plane-fit error approaching that

6.3 14 15.3 1.20 YES BAD of the synthetic arc. We believe these measures, as well
as other possibilities, will allow us to detect many of the

5.2 3 12.8 .56 YES GOOD mistakes that the algorithm could potentially generate.

of the line attributes that are available to be employed.
Probably the latter case would be the most general be-
cause perception of homogeneity is undoubtedly affected
by several factors including width, steepness, and con-

trast.
A more difficult related case occurs when a low-gra-

dient magnitude region is incorrectly grouped with a cor-

rect line-support region. When a slow gradient is com-

bined with a sharper change, because of similar
orientations, the effect is to skew the placement of the
resulting line. Several examples of this can be seen in Fig.
11(b), where the lines corresponding to some of the siding
boundaries on the side of the house are not parallel as

would be expected. A second extreme example is shown
in Fig. 22; the line-support region corresponds to a sec-
tion at the right end of the line bordering the top of a

yellow stripe down the center of the road in Fig. l(b).
The line-support region has a "bulge" on the right end
of the line that results in the line being skewed from the
position it would normally be placed given the data from
the rest of the region.
The next type of problem is obvious and involves de-

tecting line-support regions that are actually associated
with curved lines. The degree of possible curvature, of
course, is related to the size of the orientation partitions.
However, we do not want these partitions too small or

else there will be significant undesirable fragmentation.
Finally, we would like to detect two distinct straight

lines with similar gradient orientation that have been
grouped. If such a situation is detected, such lines can be
processed more carefully.

D. Detection of Errors
As a first step we have constructed Table I, listing the

set of lines and just the attributes that measure some form
of error or straightness, so that their potential for focus-
sing attention and filtering mistakes can be qualitatively
judged. First, note that the three lines that are listed in
the table as actually being straight lines and that are qual-
itatively judged to be located and oriented properly have
the three lowest standard deviations (variance) for orien-

V. CONCLUSIONS

This paper has presented a novel method for extracting
straight lines and a general low-level representation of
straight lines that can be used for a variety of purposes.
The technique for finding straight lines is effective be-
cause it globally organizes the spatial extent of a straight
line without local decisions about the meaningfulness of
an edge event. It does this by utilizing gradient orientation
to provide a gradient segmentation of the pixels in the
formation of line-support regions. Analysis of the inten-
sity surface of the pixels in these regions yields the infor-
mation required to extract lines and characterize the in-
tensity variations in a variety of ways. The algorithm is
very robust and accurately extracts many low-contrast
long lines.
An additional contribution of this paper is the technique

employed for segmentation of gradient orientation. It takes
a very simple approach of partitioning via labels over fixed
intervals of orientation, and extends it to a dual version
with a second fixed-partition segmentation rotated a half
interval; results of the two partitions are integrated by se-
lecting lines from the two representations based upon a

pixel voting scheme.
The low-level line-support representation has potential

as the basis for intermediate processes for linking col-
linear line segments that were not extracted as a single
line or that are spatially disconnected. It also should allow
linking of piecewise-straight segments as an approxima-
tion of a curved line and mechanisms for extracting tex-
tured regions by treating the smaller lines as texture ele-
ments and grouping them (using such line attributes as

length, orientation, contrast, and average intensity). Fi-
nally, the gradient regions associated with each line can
be a very useful tool for integrating intensity-based image
segmentations with the extracted lines [27].
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