LSD: a Line Segment Detector

Rafael Grompone von Gioi, Jérémie Jakubowicz, Jean-Michel Morel, Gregory Randall

October 2010

Abstract

LSD is a linear-time Line Segment Detector that gives accurate results, a controlled number of false detections, and requires no parameter tuning [1]. The method is based in Burns, Hanson, and Riseman method [2], and uses an a contrario validation approach according to Desolneux, Moisan, and Morel theory [3].

1 Overview

LSD is aimed at detecting locally straight contours on images. That is what we call line segments. Contours are zones of the image where the gray level is changing from dark to light or the opposite. Thus, the gradient and level-lines of the image are key concepts, as is shown on the following figure:

The algorithm starts by computing the level-line angle at each pixel to produce a level-line field. Then, this field is segmented into connected regions of pixels that share the same level-line angle up to a certain tolerance τ. These connected regions are called line support regions:

Image

Level-Line Field

Line Support Regions

Each line support region (a set of pixels) is a candidate for a line segment. But the corresponding geometrical object (a rectangle in this case) must be associated with it. The principal inertial axis of the line support region is used as main rectangle direction; the size of the rectangle is chosen to cover the full region:

Each rectangle is subject to a validation procedure. The pixels in the rectangle whose level-line angle corresponds to the angle of the rectangle up to a tolerance τ are called aligned points. The total number of pixels in the rectangle, n, and its number of aligned points, k, are counted and used to validate or not the rectangle as a detected line segment.

The validation step is based on the a contrario approach and the Helmholtz principle proposed by Desolneux, Moisan, and Morel [3]. The so-called Helmholtz principle states that no perception (or detection) should be produced on noise images. Accordingly, the a contrario approach propose to define a noise or a contrario model where the desired structure is not present. Then, an event is validated if the expected number of events as good as the observed one is small on the a contrario model. In other words, structured events are rare on the a contrario model.

In the case of line segments, we are interested in the number of aligned points and we consider the events that has at least the same number of aligned points as the observed one. Given an image i and a rectangle r, we will note $k(r, i)$ the number of aligned points and $n(r)$ the total number of pixels in the r. Then, the expected number of events as good as the observed one are

$$
N_{\text {test }} \cdot P_{H_{0}}[k(r, I) \geq k(r, i)]
$$

where the number of tests $N_{\text {test }}$ is the total number of possible rectangles considered, $P_{H_{0}}$ is the probability on the a contrario model H_{0}, and I is a random image on H_{0}.

The a contrario model H_{0} for line segment detection is a level-line field satisfying the following properties:

- $\{L L A(j)\}_{j \in \text { Pixels }}$ is composed of independent random variables
- $L L A(j)$ is uniformly distributed over $[0,2 \pi]$
where $L L A(j)$ is the level-line angle at pixel j. On this setting, the probability that a pixel on the a contrario model is an aligned point is

$$
p=\frac{\tau}{\pi}
$$

and, as a consequence of the independence of the random variables, $k(r, I)$ follows a binomial distribution. Then, the probability term $P_{H_{0}}[k(r, I) \geq k(r, i)]$ is given by

$$
P_{H_{0}}[k(r, I) \geq k(r, i)]=B(n(r), k(r, i), p)
$$

where $B(n, k, p)$ is the tail of the binomial distribution:

$$
B(n, k, p)=\sum_{j=k}^{n}\binom{n}{j} p^{j}(1-p)^{n-j}
$$

The number of tests $N_{\text {test }}$ corresponds to the total number of rectangles considered. That is all the rectangles starting and ending in pixels of the image. In a $N \times M$ image that gives $N M \times N M$ different configurations. Also, $\sqrt{N M}$ different width values are considered for each one. Then, the number of tests is

$$
(N M)^{5 / 2}
$$

Finally, we define the Number of False Alarms (NFA) associated with a rectangle r on image i as

$$
\operatorname{NFA}(r, i)=(N M)^{5 / 2} \cdot b(n(r), k(r, i), p) .
$$

That corresponds to the expected number of rectangles, as good as r, to be found on H_{0}. When the NFA value associated with a rectangle on an image is large, that means that such an event is expected on the a contrario model, i.e., common and thus not a relevant one. On the other hand, when the NFA value is small, the event is rare and probably a meaningful one. A threshold ε is selected and rectangles with $\operatorname{NFA}(r, i) \leq \varepsilon$ are called ε-meaningful rectangles and are the detections of the algorithm.

Theorem:

$$
E_{H_{0}}\left[\sum_{r \in \mathcal{R}} \mathbb{1}_{N F A(r, I) \leq \varepsilon}\right] \leq \varepsilon
$$

where E is the expectation operator, $\mathbb{1}$ is the indicator function, \mathcal{R} is the set of rectangles considered, and I is a random image on H_{0}.

The theorem states that the average number of ε-meaningful rectangles on a contrario model H_{0} images is less than ε. ε controls the number of detections on noise and it can be made as small as desired. In other words, it shows that LSD satisfies the Helmholtz principle.

Proof.

We define $\hat{k}(r)$ as

$$
\hat{k}(r)=\min \left\{n \in \mathbb{N}, P_{H_{0}}[k(r, I) \geq n] \leq \frac{\varepsilon}{N^{5}}\right\}
$$

Then, $\operatorname{NFA}(r, i) \leq \varepsilon$ is equivalent to $k(r, i) \geq \hat{k}(r)$. Now,

$$
E_{H_{0}}\left[\sum_{r \in \mathcal{R}} \mathbb{1}_{\mathrm{NFA}(r, I) \leq \varepsilon}\right]=\sum_{r \in \mathcal{R}} P_{H_{0}}[\mathrm{NFA}(r, I) \leq \varepsilon]=\sum_{r \in \mathcal{R}} P_{H_{0}}[k(r, I) \geq \hat{k}(r)]
$$

But, by definition of $\hat{k}(r)$ we know that

$$
P_{H_{0}}[k(r, I) \geq \hat{k}(r)] \leq \frac{\varepsilon}{N^{5}}
$$

and using that $\# \mathcal{R}=N^{5}$ we get

$$
E_{H_{0}}\left[\sum_{r \in \mathcal{R}} \mathbb{1}_{\mathrm{NFA}(r, I) \leq \varepsilon}\right] \leq \sum_{r \in \mathcal{R}} \frac{\varepsilon}{N^{5}}=\varepsilon
$$

Following Desolneux, Moisan, and Morel [3], we set $\varepsilon=1$ once for all. This corresponds to accepting on average one false detection per image in the a contrario model, which is reasonable. Also, the detection result is not sensible to the value of ε so setting it to any reasonable value would produce very similar results.

2 Algorithm

The LSD algorithm takes a gray-level image as input and returns a list of detected line segments. The algorithm can be described by the following 12 steps that will be described in detail below. The auxiliary image STATUS has the same size as the scaled image, and is used to keep track of the pixels already used.

1. Scale the input image to scale S using Gaussian sub-sampling ($\sigma=\Sigma / \mathrm{S}$).
2. Compute the gradient magnitude and level-line orientation at each pixel.
3. Build a list of pixels pseudo-ordered according to their image gradient magnitude.
4. Set all pixels in the auxiliary image STATUS to the value NOT USED.
5. Mark the STATUS of pixels whose gradient magnitude is less than ρ to the value USED.
6. For each pixel P in the list, starting with the ones with the higher gradient magnitude, and with STATUS set to NOT USED do:
7. Starting from P as a seed pixel, grow a region R of connected and NOT USED pixels, that share the same level-line angle up to a tolerance τ. Mark the STATUS of the pixels in the region as USED.
8. Compute the rectangular approximation for the connected region R of pixels found.
9. If the density of aligned points in the rectangle is less than D , cut the region, until the density restriction is satisfied.
10. Compute the NFA value for the rectangle found.
11. Try to modify the rectangle to improve the NFA value.
12. If $\mathrm{NFA}(r) \leq \varepsilon$, add the rectangle to the output list.

The algorithm depends on six parameters: $\mathrm{S}, \Sigma, \rho, \tau, D$, and ε. As we will see, all of these parameters have reasonable default values that produce good results in most images. Except D that is set to an empirical value, all the other parameters have a justified default value. Thus, there is no need for parameter tuning.

2.1 Image scaling

The first step of LSD is to scale the input image. This step can be useful to analyze structures present at different scales of an image. This step can also be skipped (by selecting $S=1$) to process the image at full resolution. The scale S is, a priori, a choice of the user and in a sense a true parameter or tool to control the analysis performed by LSD. However, the default value sets a scaling to 80% of the image size ($\mathrm{S}=0.8$); the reason is to avoid aliasing and quantization artifacts (especially the staircase effect) present in many images while producing almost the same result as a full scale analysis. 80% is the smallest image reduction that solves the staircase problem.

The scaling is performed by a Gaussian sub-sampling: the image is filtered with a Gaussian kernel to avoid aliasing and then sub-sampled. The standard deviation of the Gaussian kernel is determined by $\sigma=\Sigma / \mathrm{S}$, where S is the scaling factor. The value of Σ is set to o. 6 that gives a good balance between aliasing and blurring of the image.

2.2 Gradient computation

The image's gradient is computed at each pixel using a 2×2 mask. Given

\ddots	\vdots	\vdots	\cdots
\cdots	$i(x, y)$	$i(x+1, y)$	\cdots
\cdots	$i(x, y+1)$	$i(x+1, y+1)$	\cdots
\cdots	\vdots	\vdots	\ddots

where $i(x, y)$ is the image gray level value at pixel (x, y), the image gradient is compute as

$$
g_{x}(x, y)=\frac{i(x+1, y)+i(x+1, y+1)-i(x, y)-i(x, y+1)}{2}
$$

$$
g_{y}(x, y)=\frac{i(x, y+1)+i(x+1, y+1)-i(x, y)-i(x+1, y)}{2} .
$$

The level-line angle is computed as

$$
\arctan \left(\frac{g_{x}(x, y)}{-g_{y}(x, y)}\right)
$$

and the gradient norm as

$$
G(x, y)=\sqrt{g_{x}^{2}(x, y)+g_{y}^{2}(x, y)}
$$

The reason for using this simple schema is to use the smallest possible mask size in its computation, thus reducing to the minimum possible the dependence of the computed gradient values (thus, approaching the theoretical independence in the case of a noise image).

The gradient and level-line angles encode the direction of the edge, that is the angle of the dark to light transition. Note that a dark to light transition and a light to dark transition are different, having a 180 degree angle difference between the corresponding gradient or level-line angles. This means that the resulting line segments detected by LSD are oriented and that the order of the start and end points is not arbitrary as it encode which side of the line segment is darker. For example, if an image is inverted (changing black for white and white for black) the result of LSD would be the same but the start and end points will be exchanged on every line segment.

Note that the computed value corresponds to the image gradient at coordinates ($\mathrm{x}+0.5, \mathrm{y}+0.5$) and not (x, y). This half-pixel offset is then added to the output rectangles coordinates to produce coherent results.

In the a contrario model, the level-line field is composed of independent random variables at each pixel. But the computed level-line field is never independent because adjacent pixel values are used to compute it. This does not prevent to use an a contrario approach, but requires a more involved analysis to compute the detection threshold. Actually, numerical simulations have shown that the same threshold deduced for the case of independent level-line field also controls the number of false detections when computed by the 2×2 mask, see [4].

2.3 Gradient Pseudo-ordering

LSD is a greedy algorithm and the order in which pixels are processed has an impact on the result. Pixels with high gradient magnitude corresponds to more contrasted edges, and in an edge, the center pixels usually have higher gradient magnitude. So it makes sense to start looking for line segments at pixels with the higher gradient magnitude. Sorting pixels by gradient value is computational expensive as it cannot be done in linear time.

However, a pseudo-ordering of pixels is possible in linear-time. Pixels are classified into bins according to their gradient value, and then a list is made beginning with the pixels in the bin with highest gradient values, then the pixels on the second bin and so on, ending the list with the pixels in the bin with smallest gradient values.

By default, 1024 bins are used, sorting pixels almost by strict gradient value when gray level values are quantized in the integer range $[0,255]$.

2.4 Gradient threshold

Pixels with small gradient norm corresponds to flat zones or slow gradients. Also, they naturally present a higher error in the gradient computation due to the quantization of its values. In LSD the pixels with gradient magnitude smaller then ρ are rejected and are not used in the constructions of line-support regions or rectangles.

Assuming a quantization noise n, what we observe is the image

$$
\tilde{i}=i+n \quad \nabla \tilde{i}=\nabla i+\nabla n
$$

We have

$$
\mid \text { angle error } \left\lvert\, \leq \arcsin \left(\frac{q}{|\nabla i|}\right)\right.
$$

where q is a bound to $|\nabla n|$. Imposing |angle error $\mid \leq \tau$ we get

$$
\rho=\frac{q}{\sin \tau}
$$

The threshold ρ is set using the last expression where q is a bound to the possible error in the gradient value due to quantization effects [1], and τ is the angle tolerance to be used in the region growing algorithm. In the usual case, the pixel values are quantized to integer values in $\{0,1, \ldots, 255\}$. Thus, the maximum possible error in the gradient is 2 (when adjacent pixels have quantization errors of one that do not compensate). The default value is then $q=2$.

2.5 Region Growing

Starting from a pixel in the list of unused pixels, the seed, a region growing algorithm is applied to form a linesupport region. Recursively, the unused neighbors of the pixels already in the region are tested, and the ones whose level-line angle is equal to the so-called region angle $\theta_{\text {region }}$ up to a tolerance τ are added to the region. The initial region angle $\theta_{\text {region }}$ is the level-line angle of the seed point, and each time a pixel is added to the region the region angle value is updated to the following

$$
\arctan \left(\frac{\sum_{j} \sin (\text { level-line-angle }}{j} \text {) }\right)
$$

where the index j runs over the pixels in the region. If we associate to each pixel in the region an unitary vector with its level-line angle, the latter formula corresponds to the angle of the mean vector. The process is repeated until no other pixel can be added to the region. The following pseudo-code gives a precise definition:
. The initial point P is added to the Region
. $\theta_{\text {region }}$ is set to the level-line angle of pixel P
$S_{x} \leftarrow \cos \left(\theta_{\text {region }}\right)$
4. $S_{y} \leftarrow \sin \left(\theta_{\text {region }}\right)$
5. For each pixel P in the Region do:

1. For each pixel Q neighbor of P and $\operatorname{Status}(Q) \neq \operatorname{USED}$ do:
2. If AngleDifference $\left(\theta_{\text {region }}\right.$, level-line-angle $\left.(Q)\right)<\tau$ do:
3. Add Q to the Region
4. $\operatorname{Status}(Q) \leftarrow$ USED
5. $S_{x} \leftarrow S_{x}+\cos ($ LevelLineAngle $(Q))$
6. $S_{y} \leftarrow S_{y}+\sin ($ LevelLineAngle $(Q))$
7. $\theta_{\text {region }} \leftarrow \arctan \left(S_{y} / S_{x}\right)$

The neighborhood used is 8 -connected, so the neighbors of pixel $i(x, y)$ are $i(x-1, y-1), i(x, y-1)$, $i(x+1, y-1), i(x-1, y), i(x+1, y), i(x-1, y+1), i(x, y+1)$, and $i(x+1, y+1)$.

An extensive set of experiments support the selection of the value used for τ. Its default value is 22.5 degree or $\pi / 8$ radian, that corresponds to a 45 degree range or $1 / 8$ of the full range of orientations. It is near the largest possible value that still makes sense to call "oriented" along the rectangle. Regions that would be obtained with a smallest value are also obtained. In some cases, some extra pixels could be added. However, in the validation process, smallest values of precision p are tested, so this parameter value only affects the region growing algorithm and not the validation.

2.6 Rectangular Approximation

A line segment corresponds to a geometrical event, a rectangle. Before evaluating a line-support region, the rectangle associated with it must be found. The region of pixels is interpreted as a solid object and the gradient magnitude of each pixel is used as the "mass" of that point. Then, the center of mass of the region is selected as the center of the rectangle and the main direction of the rectangle is set to the first inertia axis of the region. Finally, the width and length of the rectangles are set to the smallest values that makes the rectangle to cover the full line-support region.

The center of the rectangle $\left(c_{x}, c_{y}\right)$ is set to:

$$
\begin{aligned}
& c_{x}=\frac{\sum_{j \in \text { Region }} G(j) \cdot x(j)}{\sum_{j \in \text { Region }} G(j)} \\
& c_{y}=\frac{\sum_{j \in \text { Region }} G(j) \cdot y(j)}{\sum_{j \in \text { Region }} G(j)}
\end{aligned}
$$

where $G(j)$ is the gradient magnitude of pixel j, and the index j runs over the pixels in the region. The main rectangle's angle is set to the angle of the eigenvector associated with the smallest eigenvalue of the following matrix:

$$
M=\left(\begin{array}{ll}
m^{x x} & m^{x y} \\
m^{x y} & m^{y y}
\end{array}\right)
$$

with

$$
\begin{gathered}
m^{x x}=\frac{\sum_{j \in \text { Region }} G(j) \cdot\left(x(j)-c_{x}\right)^{2}}{\sum_{j \in \text { Region }} G(j)} \\
m^{y y}=\frac{\sum_{j \in \text { Region }} G(j) \cdot\left(y(j)-c_{y}\right)^{2}}{\sum_{j \in \text { Region }} G(j)} \\
m^{x y}=\frac{\sum_{j \in \text { Region }} G(j) \cdot\left(x(j)-c_{x}\right)\left(y(j)-c_{y}\right)}{\sum_{j \in \text { Region }} G(j)} .
\end{gathered}
$$

2.7 NFA Computation

A key concept in the validation of a rectangle is that of p-aligned points, that are pixels in the rectangle whose level-line angle is equal to the rectangle's main orientation, up to a tolerance $p \pi$. The precision p is initially set to the value τ / π but other values are also tested as we will show later. The total number of pixels in the rectangle is denoted by n and the number of p-aligned points is denoted by k (we drop r and i when they are implicit to simplify the notation). Then, the Number of False Alarms (NFA) value associated with the rectangle r is

$$
\mathrm{NFA}(r)=(N M)^{5 / 2} \cdot b(n, k, p)
$$

where N and M are the number of columns and rows of the image, and $b(n, k, p)$ is the binomial tail defined by

$$
b(n, k, p)=\sum_{j=k}^{n}\binom{n}{j} p^{j}(1-p)^{n-j}
$$

All in all, for each rectangle being evaluated and given a precision p, the numbers k and n are counted, and then the NFA value is computed by

$$
\operatorname{NFA}(r)=(N M)^{5 / 2} \cdot \sum_{j=k}^{n}\binom{n}{j} p^{j}(1-p)^{n-j}
$$

The rectangles with NFA $(r) \leq \varepsilon$ are validated as detections.
As stated before, and following Desolneux, Moisan, and Morel [3], we set $\varepsilon=1$ once for all.

2.8 Aligned Points Density

In some cases, the τ-angle-tolerance method produces a wrong interpretation. This problem can arise when two straight edges are present in the image forming an angle between them smaller than the tolerance τ. The following image shows an example of a line-support region found (in gray) and the rectangle corresponding to it.

This line-support region could be better interpreted as two thinner rectangles, one longer than the other, forming an obtuse angle.

In LSD this problem is handled by detecting problematic line-support regions and cutting them into two smaller regions, hoping to cut the region in the right place to solve the problem. Once a cut region is accepted, the rectangle associated is recomputed and the algorithm is resumed.

The detection of this "angle problem" is based on the density of aligned points in the rectangle. When this problem is not present, the rectangle is well adapted to the line-support region and the density of aligned points is high. On the other hand, when the "angle problem" is present, as can be seen on the previous figure, the density of aligned points is very low. Also, when a slightly curved edge is being locally approximated by a sequence of straight edges, the degree of the approximation (how many line segments are used to cover part of curve) is related to the density of aligned points; this parameter, then, also controls how curves are approximated by line segments.

The density of aligned points of a rectangle is computed as the ratio of the number of aligned points (k in the previous notation) to the area of the rectangle:

$$
d=\frac{k}{\operatorname{length}(r) \cdot \operatorname{width}(r)}
$$

A threshold D is defined and rectangles should have a density d larger or equal to D to be accepted. The default value of this parameter is $0.7(70 \%)$ which provides good balance between solving the "angle problem", providing smooth approximations to curves, without over-cutting too much line segments.

Two methods of cutting the region are actually tried: reduce angle tolerance and reduce region radius. In both methods, part of the pixels in the region are kept, while the others are re-marked again as NOT USED, so they can be used again in future line-support regions. We will describe now these two methods:

2.8.1 Reduce angle tolerance

The first method, reduce angle tolerance, tries to guess a new tolerance τ^{\prime} that adapts well to the region, and then the region growing algorithm is used again with the same seed but using the newly estimated tolerance value. When two straight regions that form an obtuse angle are present, this method is expected to get the tolerance that would get only one of these regions, the one containing the seed pixel.

If all the pixels in the region were used in the estimation of the tolerance, the new value would be such that all the pixels would still be accepted. Instead, only the pixels near the seed are used. Actually, only the pixels whose distance to the seed point is less than the width of the rectangle initially computed are used. In that way, the size of the neighborhood used in the estimation of τ^{\prime} adapts to the size of the region.

All the pixels in that neighborhood of the seed point are evaluated, and the new tolerance τ^{\prime} is set to twice the standard deviation of the level-line angles of these pixels. With this new value, the same region growing algorithm is applied, starting from the same seed point. Before that, all the pixels on the original regions are set to NOT USED, so the algorithm can use them again, and the discarded ones are available for further regions.

2.8.2 Reduce region radius

The previous method, reduce angle tolerance, is tried only once, and if the resulting line-support region fails to satisfy the density criterion a second method is repetitively tried. The idea of this second method is to gradually remove the pixels that are farther from the seed until the criterion is satisfied or the region is too small and rejected. This method work best when the line-support region corresponds to a curve and the region needs to be reduced until the density criterion is satisfied, usually meaning that a certain degree of approximation to the curve is obtained.

The distance from the seed point to the farther pixel in the region is called the radius of the region. Each iteration of this method removes the farthest pixels of the region to reduce the region's radius to 75% of its value.

This process is repeated until the density criterion is satisfied or there are not enough pixels in the region to form a meaningful rectangle.

2.9 Rectangle Improvement

Before rejecting a line-support region for being not meaningful (NFA $>\varepsilon$), LSD tries some variations to the rectangle's configuration initially found with the aim to get a valid one.

The relevant factors tested are the precision p used and the width of the rectangle.
The initial precision used, corresponding to the region growing tolerance τ is large enough so only testing smaller values make sense. The same is true for width of the rectangle because the initial width was chosen to cover all the line-support region. But in some cases, for example, reducing in one pixel the width may reduce the number of aligned points only by one, while reducing the total number of pixels by a number equal to the length of the rectangle; the balance could improve the NFA value greatly.

The rectangle improvement routine of LSD consists of the following steps:

1. try finer precisions
2. try to reduce width
3. try to reduce one side of the rectangle
4. try to reduce the other side of the rectangle
5. try even finer precisions

If a meaningful rectangle is found ($\mathrm{NFA} \leq \varepsilon$) the improvement routine will stop after the step that found it.
Step 1 tries the following precision values: $p / 2, p / 4, p / 8, p / 16$, and $p / 32$, where p is the initial precision value. The value that produces the best NFA value (the smallest) is kept.

Step 2 tries up to five times to reduce the rectangle width in 0.5 pixels. That means that the width values tested are $W, W-0.5, W-1, W-1.5, W-2$, and $W-2.5$, where W is the initial width value. Again, the value that produces the best NFA value is kept.

Step 3 tries five times to reduce only one side of the rectangle in 0.5 pixel. This implies reducing the width of the rectangle in 0.5 pixels but also moving the center of the rectangle in 0.25 pixels in order that the other side of the rectangle remains on its place. So the side displacements tested are $0.5,1,1.5,2$, and 2.5 pixels. As before, the value that produces the best NFA value is kept.

Step 4 do the same thing as step 3 but to the other side.
Step 5 tries again to reduce the precision even more. This step tests the precision values $\hat{p} / 2, \hat{p} / 4, \hat{p} / 8, \hat{p} / 16$, and $\hat{p} / 32$, where \hat{p} is the precision at the beginning of this step. The value that produces the best NFA value is kept.

3 Examples

The following set of examples try to give an idea of the kind of results obtained with LSD, both good and and bad results:
Office: A good result. The line segments detected corresponds to straight structures in the image. The detection corresponds roughly with the expected result.

LSD: Note that LSD detect locally straight edges, so each black strokes produce two detections, one for each white to black transition. Also note that there is a minimal length that a line segment must have, and smaller ones cannot be detected. (For example, the base of the number ' 2 '.) This minimal size adapts with the image size.

Pipi: Note that when curves are present, LSD produce short line segments corresponding to curve sections that are locally straight. The result is a polygonal approximation for curves.

Noise: LSD was designed to provide a good false detection control. Its false detection control is based in automatically providing detections thresholds that prevent detections that could happen by chance on noise images.

Square: The square is masked by noise and is not detected by LSD. But the square can be detected if the image is analyzed at a different scale by Gaussian sub-sampling.

Square-subsampling: When a Gaussian sub-sampling is applied to the previous image, the noise is partially removed and the expected line segments are detected.

Wall: Some regions are partially anisotropic and partially straight. This regions can produce unexpected detections.

Map: In some images we get detections that seems strange at first sight, even if they are correct.

Gibbs: Image compression Gibbs effect is responsible of many unexpected detections.

Color: LSD is designed to work on gray-level images. Before applying LSD to a color image it must be converted to a gray-level image. However, some color edges could be lost in this conversion. For example, the following image presents a clear edge (left), but after the standard conversion to a gray-level image (middle) the edge is lost. The reason is that both, the red values and the green values are converted to the same gray value. Thus, LSD will produce no detection (right) because none is present in the input image to LSD (middle). The edge is lost on the color to gray image conversion and not at LSD. However, LSD can be blamed for not handling natively color images; such an extension is possible but was not done on the current implementation.

Natural scene: All in all, LSD usually produces a reasonable result on natural images.

4 Projects

Among the various attempts to understand vision, the Gestalt school is especially important for us. It included some outstanding experimenters and theoreticians, to cite a few, Wertheimer, Köhler, Koffka, Metzger, Kanizsa,

Metelli [5]. Their technique was to display clever geometric figures to subjects and ask simple questions.

The Gestalt school tried to show that the first steps in visual perception work like a geometric grouping machine, independently of the knowledge of the scene being analyzed. A reduced set of grouping laws act in collaboration, but also produce conflicts that should be solved by some kind of competition. This grouping step should aid to agglomerate elements and guide the search for an interpretation of the scene. The proposed collection of figures includes many different levels of complexity, some of them involving very few grouping rules and requiring reduced knowledge for their full understanding.

LSD is the result of an attempt of formalization of the Gestalt grouping laws [3]. The three projects presented here are part of the same programme and also aim at formalizing geometrical grouping laws. All the three are based on the same Helmholtz principle and the a contrario framework.

4.1 Point alignments

The first project concerns how to define and detect alignments of points. The following figure illustrates the problem:

The same set of seven aligned points is present in the three previous figures. But it is not, however, perceived as an alignment on the last one; the alignment is masked by full set of points. The problem is how to define an alignment criterion that handles this correctly.

The solution proposed in $[6,3]$ is based on an a contrario approach, where the geometric event is a strip in which a large number of points are present. The a contrario model is N points uniformly distributed on the domain.

The final objective is to create an IPOL publication in which an image is first processed with LSD, and the end-points of the line segments found are used as point data. Then, the point alignment algorithm is applied to this data.

4.2 Line segment length grouping

The second project aims at finding relevant group of length of line segments. LSD is applied to an image to extract line segments. In many figures, as in the first two cases below, there are relevant groups of line segments with roughly the same length, while in the last one there is probably none. The problem is to do this task, detecting the meaningful groups without false detections.

The algorithm to be studied starts by building a histogram of line segment lengths. Then, an a contrario methods is used to detect meaningful modes in the histogram. The algorithm is described at $[6,3]$. The a contrario model for the length of line segments is related to the distribution of random line segments in the image.

The objective is to create an IPOL publication that takes an image, applies LSD, and then found the meaningful groups of length, if there is one present.

4.3 Line segment angle grouping

The last project is similar to the previous one, but looks for relevant groups of orientation of line segments. As an example, there are 12 groups in the first of the following images and none in the second.

As in the previous case, the algorithms is based on meaningful modes detection on histograms. But here, the histogram is circular because zero and 2π are the same angle. Also, the a contrario model is simpler, just uniform on $[0,2 \pi]$.

The objective is to create an IPOL publication that takes an image, applies LSD, and then found the meaningful groups of orientation, if there is one present.

References

[1] Rafael Grompone von Gioi, Jérémie Jakubowicz, Jean-Michel Morel, Gregory Randall, LSD: A Fast Line Segment Detector with a False Detection Control, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 4, pp. 722-732, April 2010.
[2] J. Brian Burns, Allen R. Hanson, Edward M. Riseman, Extracting Straight Lines, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no. 4, pp. 425-455, 1986.
[3] Agnès Desolneux, Lionel Moisan, Jean-Michel Morel, From Gestalt Theory to Image Analysis, a Probabilistic Approach, Springer 2008.
[4] Rafael Grompone von Gioi, Jérémie Jakubowicz, Jean-Michel Morel, Gregory Randall, On Straight Line Segment Detection, Journal of Mathematical Imaging and Vision, vol. 32, no. 3, pp. 313-347, November 2008.
[5] G. Kanizsa, Grammatica del vedere, il Mulino, 1980.
[6] Agnès Desolneux, Lionel Moisan, Jean-Michel, A grouping principle and four applications, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 4, pp. 508-513, April 2003.

