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Role of Curvature in Visual Perception

(a). Attneave’s cat (b). Curvature map.

“Information is concentrated along contours and is further concentrated

at those points on a contour at which its direction changes most rapidly”

- Attneave, ’54.
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Aliasing and JPEG Artefacts

(a). Google Map. (b). Filtering by LLS. (c). Curvature Map.
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Jordan Curve

Definition

We call simple arc or Jordan arc the image Γ of a continuous
one-to-one function x : [0, 1]→ R2, x(t) = (x(t), y(t)).

We say that Γ is a simple closed curve or Jordan curve if the
mapping restricted to (0, 1) is one-to-one and if x(0) = x(1).
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Arc - length

Definition

If x is continuously differentiable on [0, 1], we define the arc length
of the segment of the curve between x(t0) and x(t) by

L(x, t0, t) =

∫ t

t0

|x′(τ)|dτ =

∫ t

t0

√
x′(τ) · x′(τ) dτ. (2.1)

In particular, set

L(t) = L(x, 0, t) =

∫ t

0
|x′(τ)|dτ =

∫ t

0

√
x′(τ) · x′(τ) dτ.
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Arc-length parameterization

Definition

We say that a curve Γ admits an arc-length parameterization
s 7→ x(s) if the function x is C 1 and

L′(s) = |x′(s)| = 1

for all s. In case Γ is closed, we identify [0, l(Γ)] algebraically with
the circle group by adding elements of [0, l(Γ)] modulo l(Γ).

We say that Γ is Cm, m ∈ N, m ≥ 1, if the arc-length
parameterization x is a Cm function.
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We want the definition of “smoothness” to describe an intrinsic
property of Γ rather than a property of some parameterization x(s)
of Γ. A C∞ parameterized curve may not conform to our idea of
being smooth, which at a minimum requires a tangent at every
point y ∈ Γ. For example, the motion of a point on the boundary
of a unit disk as it rolls along the x-axis is described by
x(t) = (t − sin t, 1− cos t), which is a C∞ function. Nevertheless,
the curve has cusps at all multiples of 2π. The problem is that
x′(2kπ) = 0.
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Arc-length parameterization

Proposition

Suppose that Γ is a C 1 Jordan curve with arc-length
parameterization x : [0, l(Γ)]→ Γ. Then any other arc-length
parameterization y : [0, l(Γ)]→ Γ is of the form

y(s) = x(s + σ)

or
y(s) = x(−s + σ)

for some σ ∈ [0, l(Γ)].
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Arc-length parameterization

Proof.

Denote by C the interval [0, l(Γ)], defined as an additive subgroup
of R modulo l(Γ). Let x, y : C 7→ Γ be two length preserving
parameterizations of Γ. Then

f = x ◦ y−1

is a length preserving bijection of C . Using the parameterization of
C , this implies

f (s) = ±s + σ for some σ ∈ [0, l(Γ)]

and the proof is easily concluded.
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Tangent, normal and curvature vectors

Definition

Assume that Γ is C 2 and let s 7→ x(s) be an arc-length
parameterization. The tangent vector τ is defined as

τ (s) = x′(s).

The curvature vector of the curve Γ is defined by

κ(s) = x′′(s).

The normal vector n(s) is defined by

n(s) = τ⊥,

where (x , y)⊥ = (−y , x).
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Tangent, normal and curvature vectors

Proposition

Let Γ be a C 2 Jordan curve, and let x and y by any two arc-length
parameterizations of Γ.

(i) If x(s) = y(t), then x′(s) = ±y′(t).

(ii) The vector κ is independent of the choice of arc-length
parameterizations and it is orthogonal to τ = x′.
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Tangent, normal and curvature vectors

Proof.

From the previous theorem we have y(s) = x(±s + σ) and (i)
follows by differentiation. This is also geometrically obvious: x′(s)
and y′(t) are unit vectors tangent to Γ at the same point. Thus,
they either point in the same direction or they point in opposite
directions.

Using any of the above representations and differentiating twice

x′′ = y′′.

Since x′ · x′ = 1, differentiating this expression shows that

x′′ · x′ = 0.

Thus, x′′ and x′ are orthogonal and x′′ and x′⊥ are collinear.
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Curvature vector

Definition (and notation)

Given a C 2 curve Γ, which is parameterized by length as s 7→ x(s)
and x = x(s) a point of Γ, we denote in three equivalent ways the
curvature of Γ at x = x(s),

κ(x) = κ(x(s)) = κ(s) = x′′(s).

In the first notation, κ is the curvature of the curve Γ at a point x
implicitly supposed to belong Γ. In the second notation a particular
parameterization of Γ, x(s), is being used. In the third one, x is
omitted.
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Notations and conventions

• No distinction between a Jordan curve Γ as a subset of the
plane and a function s 7→ x(s) such that Γ = {x(s)}.

• Families of Jordan curves dependent on a parameter t > 0, we
will most often denote these families by x(t, s),

• x(t, s) has three meanings: a family of Jordan curves, a family
of functions that represent these curves, and a particular point
on one of these curves.
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Curve evolution

Figure: Simultaneous curve smoothing.
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Intrinsic Heat Equation or Curve Shortening

Definition

Let x(t), t > 0, be a family of C 2 Jordan curves. We say that x(t)
satisfies the intrinsic heat equation if

∂x

∂t
= κ(x(t)). (CS)
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Intrinsic Heat Equation or Curve Shortening

Theorem (Grayson)

Let x0 be a C 1 Jordan curve. By using the intrinsic heat equation,
it is possible to evolve x0 into a family of Jordan curves x(t, s)
such that x(0, s) = x0(s) and such that for every t > 0, x(t, s) is
C∞ (actually analytical) and satisfies the equation (CS).

Furthermore, for every t > 0, x(t, s) has only a finite number of
inflection points and curvature extrema, and the number of these
points does not increase with t. For every initial curve, there is a
scale t0 such that the curve x(t, s) is convex for t ≥ t0 and there is
a scale t1 such that the curve x(t, s) is a single point for t ≥ t1.
This evolution satisfies the inclusion principle: if x0 surrounds
y0 then x(t) surrounds y(t).
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Affine Shortening

A surprising variant of Curve Shortening is given by the Affine
Shortening equation

∂x

∂t
= |κ|−

2
3 κ(x(t)) (AS)

Theorem (Angenent, Sapiro, Tannenbaum)

Let x0 be a C 2 Jordan curve. Then there is a unique classical
solution x(t) of (AS). The curve eventually becomes convex and
thereafter evolves towards an ellipse before collapsing.
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Dynamic Shape Evolution

Figure: Curve evolution by the intrinsic heat equation.



Introduction Curves and Curvature Flows Bilinear Level Lines Image Curvature Microscope

Dynamic Shape Evolution

Algorithm (Mackworth and Mokhtarian)

Input: Polygon Γ0, gaussian-like kernel G
Output: Evolved polygon Γn, after n iterations
for all i = 0, n do1

sample uniformly curve Γi ;2

convolve curve Γi with G .3
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Discrete Curve Shortening

Theorem

Let x be a C 2 curve parameterized by its length parameter
s ∈ [0, L] and G a centered probability density law with variance
2c. Set Gh(x) = 1

h
1
2

G ( x

h
1
2

). Then

Gh ∗ x(s)− x(s) = chκ(x(s)) + o(h). (2.2)

where c is a positive constant.
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Dynamic Shape Evolution

Proof.

Using the definition of the convolution we write the left-hand side
of the equation as

Gh ∗ x(s)− x(s) =

∫
Gh(s − τ)x(τ)dτ −

∫
Gh(τ)x(s)dτ

=

∫
1

h1/2
G (

τ

h1/2
)[x(s − τ)− x(s)]dτ

=

∫
G (τ)[x(s − h1/2τ)− x(s)].



Introduction Curves and Curvature Flows Bilinear Level Lines Image Curvature Microscope

Dynamic Shape Evolution

Proof.

By Taylor’s formula with Peano remainder

x(s−h1/2τ)− x(s) = −h1/2τ
∂x

∂s
(s) +

h

2
τ2∂

2x

∂s2
(s) +

h

2
α(s−h1/2τ),

with α a continuous function such that limh→0 α(s − h1/2τ) = 0.
Thus, we have

Gh ∗ x(s)− x(s) = h
∂2x

∂s2
(s)

1

2

∫
G (τ)τ2 +

h

2

∫
α(s − h1/2τ)dτ

= chκ(x(s)) + o(h).
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Discrete Affine Shortening

Definition

A σ-chord is a chord determined by two points of the curve
(x(s − δ), x(s + δ)), where δ > 0 is chosen in order that the area of
the region enclosed by this chord and the piece of curve x

∣∣
(s−δ,s+δ)

be equal to σ.
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Discrete Affine Shortening

Algorithm (Moisan)

Input: Polygon Γ0,
Output: Evolved polygon Γσ, at scale σ2/3

break the curve into convex and concave parts for every4

convex/concave component do
replace each component by the sequence of the middle points5

of each σ-chord such that one endpoint is a vertex of the
polygonal curve;
concatenate the pieces of curves previously obtained.6
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Discrete Affine Shortening

Theorem

Let x be a C 2 curve parameterized by its length parameter
s ∈ [0, L] and σ > 0. To each point of x(s), we associate xσ(s),
defined as the middle point of the σ-chord (x(s − δ), x(s + δ)),
where δ > 0 is chosen in order that the area of the region enclosed
by this chord and the piece of curve x

∣∣
(s−δ,s+δ)

be equal to σ. Then

xσ(s)− x(s) = cσ2/3|κ(x)|−2/3κ(x) + o(σ2/3) as σ → 0

where c is a positive constant.
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From Images to Curves: Implicit Function Theorem

Theorem

Let u ∈ F be a C 1 function such that Du(x0) 6= 0 at some
x0 = (x0, y0). Let i denote the unit vector in the direction (ux , uy ),
let j denote the unit vector in the orthogonal direction (−uy , ux),
and write x = x0 + x i + y j. Then there is a disk D(x0, r) and a
unique C 1 function ϕ, ϕ : [−r , r ]→ R, such that if x ∈ D(x0, r),
then

u(x , y) = u(x0) ⇐⇒ x = ϕ(y).
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From Images to Curves: Structure of Level Lines

Corollary

Assume that u ∈ F is C 1 and let u−1(λ) = {x | u(x) = λ} for
λ ∈ R. If λ 6= u(∞) and Du(x) 6= 0 for all x ∈ u−1(λ), then
u−1(λ) is a finite union of disjoint Jordan curves.
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Proof.

From the Implicit Function Theorem we know that for each point
x ∈ u−1(λ) there is an open disk D(x, r(x)) such that
D(x, r(x)) ∩ u−1(λ) is a C 1 Jordan arc x(s) and we can take the
endpoints of the arc on ∂D(x, r(x)). Since λ 6= u(∞), u−1(λ) is
compact. Thus there is a finite number of points xi , i = 1, . . . ,m,
such that

u−1(λ) ⊂
m⋃

i=1

D(xi , r(xi )).

This implies that u−1(λ) is a finite union of Jordan arcs which we
can parameterize by length. The rest of the proof is very intuitive
and is left to the reader. It consists of iteratively gluing the Jordan
arcs until they close up into one or several Jordan curves.
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From Images to Curves: Level Lines Structure

Theorem (Sard’s theorem)

Let u ∈ F ∩ C 1. Then for almost every λ, the set u−1(λ) is
nonsingular, which means that for all x ∈ u−1(λ), Du(x) 6= 0.

Corollary

Let u ∈ F ∩ C 1. Then for almost every λ in the range of u, the set
u−1(λ) is the union of a finite set of disjoint Jordan C 1 curves.

Proposition

Let u ∈ F ∩ C 1. Then u can be reconstructed from the following
data: the family of all of its level lines at nonsingular levels, the
level of each level line being also kept.
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From Images to Curves: Level Lines Structure

Proof.

Let G be the closure of the union of the ranges of all level lines of
u at nonsingular levels. If x ∈ G , then there are points xn

belonging to level lines of some levels λn such that xn → x. Hence,
λn = u(xn)→ u(x). So we get back the value of u(x).

Let now x belong to the open set G c . Let us first prove that
Du(x) = 0. Assume by contradiction that Du(x) 6= 0. By using the
first order Taylor expansion of u around x, one sees that for all
r > 0 the connected range u(B(x, r)) must contain some interval
(u(x)− α(r), u(x) + α(r)) with α(r)→ 0 as r → 0.
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From Images to Curves: Level Lines Structure

Proof.

(continues) By Sard’s theorem some of the values in this interval
are nonsingular. Thus we can find nonsingular levels λn → u(x)
and points xn → x such that u(xn) = λn. This implies that x ∈ G
and yields a contradiction.

Thus Du(x) = 0 and u is therefore constant on each connected
component A of G c . The value of u is then uniquely determined
by the value of u on the boundary of A. This value is known, since
∂A is contained in G .



Introduction Curves and Curvature Flows Bilinear Level Lines Image Curvature Microscope

Pixelization effects

Figure: Level lines from a digital image (zero-order interpolation). Left:
original image. Middle: all level lines for the small image inside the
rectangle. Right: level lines for a gray level quantization step of 10.
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Pixelization effects

Figure: Left: level lines from a digital image (zero-order interpolation).
The quantization step for the gray levels is 10, starting from 10. Middle:
level lines from the piecewise bilinear interpolated image. The
quantization step for the gray levels is 10, starting from 10. Right: level
lines from the piecewise bilinear interpolated image, with a gray level
quantization step of 10, starting at gray level 0:5.
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Bilinear interpolation

The general form of a bilinear function is

u(x , y) = axy + bx + cy + d .

For each set of four adjacent pixels ( Qpixel) parameters a, b, c
and d are fixed by the gray levels of the four pixels .
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Bilinear Level Lines

The equation for a level line at level λ of the bilinear interpolated
image inside a dual pixel can be written

a(x − xs)(y − ys) + (λs − λ) = 0

or
axy + bx + cy + (d − λ) = 0.
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Bilinear Level Lines

Proposition

(Properties of level lines of bilinear interpolates)

• Except for a finite set λ1, . . . , λn of levels, the level set
u(x , y) = λ is the union of a finite number of Jordan curves;

• All level lines are continuous and piecewise C 1.
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Bilinear tree of level lines

• One can decompose an image into a finite set of tagged
polygonal lines, indexed by half-integer gray values

T0 = {Γλ,i0 ; i ∈ Fλ, λ ∈ N + 1/2}. (3.3)

• The set is ordered in a tree structure, induced by the
geometrical inclusion.
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Direct algorithm: level lines decomposition

Figure: Reconstruction of the image from a family of level lines.
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Direct algorithm: level lines decomposition

Algorithm

Input: List L of bilinear level lines Γ
Output: Fill tree structure
Collect all (i, y, id) in array V;7

/* Intersection of curve index id with Qedgel at column i + 0.5 */;8

Order V lexicographically by key (i, y);9

Γ← ∅; /* Innermost shape */;10

for all (i , y , id) ∈ V do if Γ = Γid then11

Γ← Parent(Γ); /* Getting out of innermost shape */;12

else if Γ 6= ∅ and Parent(Γid) = ∅ then13

set Γid as a child of Γ;14

Γ← Γid . /* Innermost shape is now Γid */15
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Inverse algorithm: image reconstruction

Figure: Reconstruction of the image from a family of level lines.



Introduction Curves and Curvature Flows Bilinear Level Lines Image Curvature Microscope

Inverse algorithm: image reconstruction

The algorithm described in this section performs an exact image
reconstruction from a topographic map, i.e. from an arbitrary
family of Jordan curves organized in a tree structure with respect
to geometrical inclusion.

Figure: The level line 2D inclusion topology is reflected in the 1D
ordering of their intersections with the dual edges.
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Inverse algorithm: image reconstruction

A closed curve Γ is stored as a set of ordered points
{Pk(xk , yk)}1≤k≤N with N depending on Γ. The real numbers xk

and yk are the floating point coordinates of the vertex number k of
the polygon Γ. We need to fill in all pixels with integral
coordinates (j , i) inside the polygon.
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Polygon intersections with the grid

The goal of this Algorithm, which is a preliminary to the filling
algorithm, is to find the intersections of the polygonal level line
with all horizontal lines y = i . For any given i the intersection is in
fact the intersection of a segment [PkPk+1] of the polygon with
the line y = i . These intersections are ordered by their abscissae so
that

x i
1 ≤ x i

2 ≤ · · · ≤ x i
p,

where p is even because Γ is a closed curve. This gives a simple
and fast decision rule: a pixel (j , i) is surrounded by the polygon if
and only if j is within an odd interval [x i

2k+1, x
i
2k+2].
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Polygon intersections with the grid

Algorithm

Input: Vertices Pk(xk , yk) of polygon Γ
Output: For each i , the ordered list Li of points of Γ on the line of

equation y = i
for all i do Li ← ∅ for all segments [PkPk+1] do16

for i ∈ [yk , yk+1] ∩ N do17

(x , i)← [PkPk+1] ∩ {y = i} Insert x in Li18

for all i do sort list Li19
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Filling the interior

Line by line all odd intervals on Li are enumerated and filled in
with level λ± 1/2 at all pixels with ordinate i whose abscissa is
inside such an interval:

Algorithm

Input: Sorted lists Li of intersections of Γ with lines {y = i}, level
λ

Output: Pixels inside polygon Γ are at level λ± 1/2, pixels outside
unchanged

for all i do20

for all x i
2k+1 ∈ Li do21

for j ∈ N ∩ [x i
2k+1, x

i
2k+2] do22

pixel (j , i)← λ± 1/223
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Curvatures computed directly on level lines

Figure: The curvature color display rule. Initial image, FDS and LLS.
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Discrete curvature for a polygonal line.

We recall that each level line is stored as a set of ordered points

Γ = {Pi (xi , yi )}i=0..n, with P0 = Pn.

The discrete scalar curvature ki computed at each vertex Pi is
obtained as the inverse of the circumscribed radius Ri of the
triangle Pi−1PiPi+1.

Lemma

The curvature at vertex Pi is given by

ki = 2
u1
i u2

i+1 − u2
i u1

i+1

uiui+1vi
. (4.4)
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Subpixel curvature algorithm

Algorithm (Ciomaga, Monasse, Morel, ’10)

Input: Original Image u0.
Output: Curvatures u0 at scale t: u(·, t).

Extract the tree of level lines {Γλ,i0 }i∈Fλ;λ;24

Sample uniformly each level line Γλ,i025

for Level line Γλ,i0 do26

Γλ,it = Curve Shortening Flow (Γλ,i0 );27

for Γλ,it = {Pi (xi , yi )}i=0..n do28

ki = 1/Ri ;29

for each dual pixel do30

k = mean(ki1 , ki2 , ..., kim).31
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Signed and topological curvatures

Figure: Original image, signed curvatures and topological curvatures
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Curvature Microscope

Figure: Original image, 2X zoom and 4X zoom of the up-right corner. A
zoom is necessary to observe the single curvatures.
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Curvature Microscope

Figure: Curvature map computed on the original level lines with a
quantization step s = 16.
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Curvature Microscope

Figure: Curvature map computed on shortened level lines at normalized
scales l = 1, l = 2, and l = 4.
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A closer look at Attneave’s cat

Figure: Zoom on the Attneave cat, its corresponding level lines and
curvatures.
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A closer look at Attneave’s cat

Figure: LLAS evolution, affine smoothed level lines and curvature map
after filtering.
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Graphics and aliasing

Figure: Original image, its corresponding level lines and curvatures.
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Graphics and aliasing

Figure: LLAS evolution, affine smoothed level lines and curvature map
after filtering.
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Bacteria morphologies

Figure: Original bacteria image and the corresponding curvature map.
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Digital elevation models

Figure: Digital elevation map and its corresponding level lines.



Introduction Curves and Curvature Flows Bilinear Level Lines Image Curvature Microscope

Digital elevation models

Figure: The affine smoothed level lines and their curvature map.
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JPEG artefact reduction

Figure: Piece of map with roads, its corresponding level lines and
curvatures.
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JPEG artefact reduction

Figure: LLAS evolution, affine smoothed level lines and curvature map
after filtering.
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Paitings sfumato technique

Figure: Extraction with zoom of Mona Lisa photograph, its
corresponding level lines and curvatures.
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Paitings sfumato technique

Figure: LLAS evolution, affine smoothed level lines and curvature map
after filtering.
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Text processing

Figure: Original handwriting, corresponding level lines and curvatures.
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Text processing

Figure: LLAS evolution, affine smoothed level lines and curvature map
after filtering.



Introduction Curves and Curvature Flows Bilinear Level Lines Image Curvature Microscope

Fingerprints restoration and discrimination

Figure: Original fingerprint, Level Lines Affine Shortening and its
Curvature map.



Introduction Curves and Curvature Flows Bilinear Level Lines Image Curvature Microscope

Conclusion

• The first outcome of the Level lines Shortening algorithm is
the evolved image, which presents some sort of denoising,
simplification, and desaliasing;

• The main outcome is an accurate curvature estimate on all
level lines;

• A powerful visualization tool, due to the fact that all level
lines are polygons with real coordinates allows to zoom in the
image at an arbitrary resolution;
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