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Introduction

Attneave’s founding 1954 paper [3] on image perception anticipated the nu-
merical analysis of digital pictures. He stated that in images: “information is
concentrated along contours (i.e., regions where color changes abruptly), and is
further concentrated at those points on a contour at which its direction changes
most rapidly (i.e., at angles or peaks of curvature)”.

(a). Attneave’s cat (b). Curvature map.

Figure 1. Attneave’s figure illustrating the prominent role of curva-
ture peaks in image perception and its curvature map.

Shape analysis can be led to the study of Jordan curves which we shall call “el-
ementary shapes”. The many experiments where we display level lines of digital
images make clear enough why a smoothing is necessary to restore their struc-
ture. These experiments also show that we can in no way assimilate these level
lines with our common notion of shape as the silhouette of a physical object in
full view. Indeed, in images of a natural environment, most observed objects are
partially hidden (occluded) by other objects and often deformed by perspective.
When we observe a level line we cannot be sure that it belongs to a single object;
it may be composed of pieces of the boundaries of several objects that are oc-
cluding each other. Shape recognition technology has therefore focused on local
methods, that is, methods that work even if a shape is not in full view or if the
visible part is distorted. As a consequence, image analysis adopts the following
principle: Shape recognition must be based on local features of the shape’s bound-
ary, in this case local features of the Jordan curve, and not on its global features.
If the boundary has some degree of smoothness, then these local features are based
on the derivatives of the curve, namely the tangent vector, the curvature, and
so on. Many local recognition methods involve the “salient” points of a shape,
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4 INTRODUCTION

which are the points where the curvature is zero (inflection points) and points
where the curvature has a maximum or minimum (the “corners” of the shape).

Yet, because of noise and aliasing effects, the direct computation of curvatures
on a raw image is impossible and depends anyway on a smoothing scale. The
fragment of scanned map in Figure 2 is exemplary, in its amount of ringing,
aliasing, and JPEG artifacts. Such graphic images are satisfactorily restored
with short time smoothing.

Figure 2. Top: Piece of map with roads, its corresponding level lines
and curvatures. Bottom: smoothed image, smoothed level lines and
curvature map after filtering.

This explains why, in one of the first serious attempts to cope with this
numerical challenge, Asada and Brady [2] introduced the concept of multiscale
curvature. They suggested to approximate contours by splines and to smooth
them by a 1D heat equation. Their explicit goal was to implement Attneave’s
idea that shapes must be represented by curvature extrema. This paper led to
increasingly sophisticated attempts to analyze planar shapes by their curvatures.
A first difficulty is that, at fine scale, contours have high curvatures everywhere.
Another problematic issue is the extraction of the contours on which the curva-
ture could be computed. Contours obtained by “edge detection” are broken and
plagued with spurious branches, which hinder the computation of any reliable
curvature.

Clarifying the subject has required a fairly elaborate series of mathematical
contributions. Grayson [11] proved that the intrinsic heat equation smooths
Jordan curves and preserves their topology. The Osher-Sethian level set method
[19] implements the motion by mean curvature of an embedded manifold by
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applying the mean curvature PDE to its signed distance function. Evans-Spruck
[8] and Chen-Giga-Goto [7] elaborated a viscosity solution theory for the scalar
mean curvature motion. A mathematical link between the median filter and the
motion by mean curvature was conjectured by Merriman, Bence and Osher [16]
and later proved by several authors [4], [9], [12].

In parallel, Mackworth and Moktharian [15] proposed a fast numerical scheme
to smooth a curve by the intrinsic heat equation. But their shape extraction al-
gorithm was unconvincing. Caselles et al. realized the potential of using directly
the image level lines instead of its edges. They proposed to perform contrast
invariant image analysis directly on the set of level lines, or topographic map
[5]. A fast algorithm computing the topographic map was developed by Monasse
and Guichard in [18]. Sapiro and Tannenbaum [21] discovered the affine curve
shortening and Alvarez et al. [1] the affine invariant and contrast invariant image
smoothing. A remarkably fast and simple geometric algorithm for affine short-
ening was given by Moisan in [17].

The present work builds on the above mentioned contributions and it de-
scribes a complete image processing numerical chain. The chain starts from a
digital image, proceeds to the level lines extraction and to their independent
evolution by curve shortening or affine shortening. The chain ends up with an
accurate visualization tool of image curvatures computed on the smoothed level
lines. This, hopefully, advances Attneave’s program and yields what we shall
term a curvature image microscope. Indeed, the evolved level lines and image are
not defined on the initial grid. The level lines have floating coordinates and the
image can be reconstructed from them at any precision.

There is something slightly paradoxical in smoothing an image to see it bet-
ter. Nevertheless, noise, JPEG artifacts, and aliasing (pixelization effects) will
be shown to be nicely smoothed out by the subpixel curvature motion. As antic-
ipated by Attneave, the level line evolution eliminates the erratic curvatures and
yields a curvature more conform to our multiscale contour perception. Finally
the level line visualization (after smoothing) reveals many hidden image details
which can be zoomed in, thanks to the grid independent representation of the
image by its level lines. The resulting algorithm is fast and can be tested on line1.

1http://www.ipol.im/pub/algo/cmmm image curvature microscope/





CHAPTER 1

Curves and Curvature Flows

This chapter contains the fundamentals of differential geometry that are used
in the lecture notes. Our main aim is to define the curvature of a curve as the
main contrast invariant differential operator we shall deal with in image and curve
smoothing.

1. Tangent, normal, and curvature

We summarize in this section the concepts and results about smooth curves
that are needed in this chapter and elsewhere in the notes. The curves we con-
sidered will always be plane curves.

Definition 1.1. We call simple arc or Jordan arc the image Γ of a continuous
one-to-one function x : [0, 1] → R2, x(t) = (x(t), y(t)). We say that Γ is a simple
closed curve or Jordan curve if the mapping restricted to (0, 1) is one-to-one and
if x(0) = x(1). If x is continuously differentiable on [0, 1], we define the arc
length of the segment of the curve between x(t0) and x(t) by

L(x, t0, t) =
∫ t

t0

|x′(τ)|dτ =
∫ t

t0

√
x′(τ) · x′(τ) dτ. (1.1)

In particular, set

L(t) = L(x, 0, t) =
∫ t

0
|x′(τ)| dτ =

∫ t

0

√
x′(τ) · x′(τ) dτ.

The curves we deal with will always be smooth. Now, we want the definition
of “smoothness” to describe an intrinsic property of Γ rather than a property of
some parameterization x(s) of Γ. If a function x representing Γ is C1, then the
function L in equation (1.1) has a derivative with respect to s,

L′(t) = |x′(t)|
that is continuous. Nevertheless, the curve itself may not conform to our idea of
being smooth, which at a minimum requires a tangent at every point y ∈ Γ. For
example, the motion of a point on the boundary of a unit disk as it rolls along
the x-axis is described by x(t) = (t − sin t, 1 − cos t), which is a C∞ function.
Nevertheless, the curve has cusps at all multiples of 2π. The problem is that
x′(2kπ) = 0.

Definition 1.2. We say that a curve Γ admits an arc-length parameterization
s 7→ x(s) if the function x is C1 and L′(s) = |x′(s)| = 1 for all s. In case Γ is
closed, we identify [0, l(Γ)] algebraically with the circle group by adding elements
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of [0, l(Γ)] modulo l(Γ). We say that Γ is Cm, m ∈ N, m ≥ 1, if the arc-length
parameterization x is a Cm function.

Exercise 1.1. The aim of the exercise is to give a formula transforming a C1

parameterization t ∈ [0, 1] → x(t) such that |x′(t)| 6= 0 for all t into an arc-
length parameterization. Notice that L : [0, 1] → [0, L(1)] is increasing. Set, for
s ∈ [0, L(1)], x̃(s) = x(L−1(s)) and check that x̃ is an arc-length parameterization
of the curve defined by x.

An arc-length parameterization is also called a Euclidean parameterization.
If a Jordan curve has an arc-length parameterization x, then the domain of
definition of x on the real line must be an interval [a, b], where b−a is the length
of Γ, which we denote by l(Γ). In this case, we will always take [0, l(Γ)] as the
domain of definition of x.

One can easily describe all Euclidean parameterizations of a Jordan curve.

Proposition 1.1. Suppose that Γ is a C1 Jordan curve with arc-length pa-
rameterization x : [0, l(Γ)] → Γ. Then any other arc-length parameterization
y : [0, l(Γ)] → Γ is of the form y(s) = x(s + σ) or y(s) = x(−s + σ) for some
σ ∈ [0, l(Γ)].

Proof. Denote by C the interval [0, l(Γ)], defined as an additive subgroup
of R modulo l(Γ). Let x, y : C 7→ Γ be two length preserving parameterizations
of Γ. Then f = x ◦ y−1 is a length preserving bijection of C. Using the parame-
terization of C, this implies f(s) = ±s + σ for some σ ∈ [0, l(Γ)] and the proof is
easily concluded. ¤

Definition 1.3. Assume that Γ is C2 and let s 7→ x(s) be an arc-length parame-
terization. The tangent vector τ is defined as τ (s) = x′(s). The curvature vector
of the curve Γ is defined by κ(s) = x′′(s). The normal vector n(s) is defined by
n(s) = τ⊥, where (x, y)⊥ = (−y, x).

Proposition 1.2. Let Γ be a C2 Jordan curve, and let x and y by any two
arc-length parameterizations of Γ.

(i) If x(s) = y(t), then x′(s) = ±y′(t).
(ii) The vector κ is independent of the choice of arc-length parameterizations

and it is orthogonal to τ = x′.

Proof. By Proposition 1.1, y(s) = x(±s + σ) and (i) follows by differentia-
tion. This is also geometrically obvious: x′(s) and y′(t) are unit vectors tangent
to Γ at the same point. Thus, they either point in the same direction or they
point in opposite directions.

Using any of the above representations and differentiating twice shows that
x′′ = y′′. Since x′ · x′ = 1, differentiating this expression shows that x′′ · x′ = 0.
Thus, x′′ and x′ are orthogonal and x′′ and x′⊥ are collinear. ¤

It will be convenient to have a flexible notation for the curvature in the
different contexts we will use it. This is the object of the next definition.
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Figure 1. Simultaneous curve evolution by the intrinsic heat
equation. The evolved curves are smooth for all times and oscilla-
tions reduce considerably. The level curves are included one into
the other and conserve this property when applying the smooth-
ing.

Definition 1.4 (and notation). Given a C2 curve Γ, which is parameterized by
length as s 7→ x(s) and x = x(s) a point of Γ, we denote in three equivalent ways
the curvature of Γ at x = x(s),

κ(x) = κ(x(s)) = κ(s) = x′′(s).

In the first notation, κ is the curvature of the curve Γ at a point x implicitly
supposed to belong Γ. In the second notation a particular parameterization of Γ,
x(s), is being used. In the third one, x is omitted.

The above notations create no ambiguity or contradiction, since by Proposi-
tion 1.2 the curvature is independent of the Euclidean parameterization.

2. Curve evolutions

Computational shape recognition methods often make the following two basic
assumptions, neither of which is true in practice for the rough shape data:

(1) the shape is a smooth Jordan curve.
(2) the boundary has a small number of inflexion points and curvature ex-

trema; this number can be made as small as desired by smoothing.

The fact that these conditions can be obtained by properly smoothing a C1

Jordan curve was proven in 1986-87 by Gage and Hamilton [10] and Grayson
[11]. They showed that it is possible to transform a C1 Jordan curve into a C∞

Jordan curve by using the so-called intrinsic heat equation.
For convenience, and unless it would cause ambiguity, we will not make a

distinction between a Jordan curve Γ as a subset of the plane and a function
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s 7→ x(s) such that Γ = {x(s)}. As we have already done, we will speak of the
Jordan curve x. Since we will be speaking of families of Jordan curves dependent
on a parameter t > 0, we will most often denote these families by x(t, s), where
the second variable is a parameterization of the Jordan curve. Thus, x(t, s) has
three meanings: a family of Jordan curves, a family of functions that represent
these curves, and a particular point on one of these curves. The notation s will
be usually reserved to an arc-length parameter.

Definition 2.1. Let x(t), t > 0, be a family of C2 Jordan curves. We say that
x(t) satisfies the intrinsic heat equation if

∂x
∂t

= κ(x(t)). (CS)

By this (nonlinear) evolution a curve instantly becomes smooth, shrinks
asymptotically to a circle and develops no singularities or self-crossings. The
proofs of these properties were given by Gage and Hamilton for convex Jordan
curves [10] and later extended to embedded curves by Grayson [11].

Theorem 2.1 (Grayson). Let x0 be a C1 Jordan curve. By using the intrinsic
heat equation, it is possible to evolve x0 into a family of Jordan curves x(t, s)
such that x(0, s) = x0(s) and such that for every t > 0, x(t, s) is C∞ (actually
analytical) and satisfies the equation (CS). Furthermore, for every t > 0, x(t, s)
has only a finite number of inflection points and curvature extrema, and the
number of these points does not increase with t. For every initial curve, there
is a scale t0 such that the curve x(t, s) is convex for t ≥ t0 and there is a scale t1
such that the curve x(t, s) is a single point for t ≥ t1.

A surprising variant of Curve Shortening is given by the Affine Shortening
equation

∂x
∂t

= |κ|− 2
3 κ(x(t)) (AS)

It was introduced by Sapiro and Tannenbaum in [21], [23]. Angenent, Sapiro and
Tannenbaum [24] gave the existence and uniqueness proofs for affine shortening
and showed a result similar to Grayson’s theorem:

Theorem 2.2 (Angenent, Sapiro, Tannenbaum). Let x0 be a C2 Jordan curve.
Then there is a unique classical solution x(t) of (AS). The curve eventually be-
comes convex and thereafter evolves towards an ellipse before collapsing.

In computer vision the above equations are referred to as curve scale spaces
or shape scale spaces. The term designates any process that smooths a Jordan
curve and depends on a real parameter t, the scale. A shape scale space associates
with an initial Jordan curve x(0, s) = x0(s) a family of smooth curves x(t, s).
Curve shortening and affine shortening eliminate spurious details of the initial
shape and retain simpler, more reliable versions of the shape. These smoothed
shapes have finite codes in the sense of Attneave, since they have finitely many
curvature extrema. A scale space is causal in the terminology of vision theory if
it does not introduce new features. (New feature here means: a new extremum
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Figure 2. Curve evolution by the intrinsic heat equation. The
evolved curve is smooth for all times, eventually becomes convex
and shrinks to a point.

for some image differential operator). Thus, curve shortening and affine curve
shortening define causal scale spaces. Indeed, the number of curvature extrema
and inflexion points decreases by their application.

3. Algorithms on curves

3.1. Dynamic curve evolution. Mackworth and Mokhtarian proposed an
algorithm consistent with curve shortening (CS). Instead of applying the linear
heat equation for relatively long times, it applies to a plane curve the non-linear
heat equation, by successively convolving the arc length parameterization x(·, t)
at time n with a Gaussian kernel Gh of standard deviation proportional to h

1
2 .

Algorithm 1: Discrete Curve Shortening (CS)
Input: Polygon Γ0, gaussian signal G
Output: Evolved polygon Γn, after n iterations
for all i = 0, n do1

sample uniformly curve Γi ;2

convolve curve Γi with G.3

The consistency of Algorithm 8 with (CS) is given by the (easy) Theorem
3.1.

Theorem 3.1. Let x be a C2 curve parameterized by its length parameter s ∈
[0, L]. Then

Gh ∗ x(s)− x(s) = chκ(x(s)) + o(h). (3.2)

where c is a positive constant.
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Proof. Using the definition of the convolution we write the left-hand side of
the equation as

Gh ∗ x(s)− x(s) =
∫

Gh(s− τ)x(τ)dτ −
∫

Gh(τ)x(s)dτ

=
∫

1
h1/2

G(
τ

h1/2
)[x(s− τ)− x(s)]dτ

=
∫

G(τ)[x(s− h1/2τ)− x(s)].

By Taylor’s formula with Peano remainder

x(s− h1/2τ)− x(s) = −h1/2τ
∂x
∂s

(s) +
h

2
τ2 ∂2x

∂s2
(s) +

h

2
α(s− h1/2τ),

with α a continuous function such that limh→0 α(s− h1/2τ) = 0. Thus, we have

Gh ∗ x(s)− x(s) = h
∂2x
∂s2

(s)
1
2

∫
G(τ)τ2 +

h

2

∫
α(s− h1/2τ)dτ

= chκ(x(s)) + o(h).

¤

3.2. Affine plane curve evolution. Several attempts to define an affine-
invariant analysis for polygons are described in [22]. The 1/3 power law of
planar motion perception and generation was related to affine invariance in [20].
Moisan [17] discovered an extremely fast and fully affine invariant geometric
curve evolution consistent with affine shortening, which we summarize below. In
the mathematical morphology terminology, this algorithm is an alternate filter,
alternating an affine erosion and an affine dilation. This scheme is able to smooth
all the level lines of an image (that is, several thousands of curves) in a couple of
seconds.

Algorithm 2: Discrete Affine Shortening (AS)
Input: Polygon Γ0,
Output: Evolved polygon Γσ, at scale σ2/3

break the curve into convex and concave parts ;1

for every convex/concave component do2

replace each component by the sequence of the middle points of each3

σ-chord such that one endpoint is a vertex of the polygonal curve;
concatenate the pieces of curves previously obtained.4

Definition 3.1. A σ-chord is a chord determined by two points of the curve
(x(s − δ),x(s + δ)), where δ > 0 is chosen in order that the area of the region
enclosed by this chord and the piece of curve x

∣∣
(s−δ,s+δ)

be equal to σ.

The consistency of Algorithm 2 with affine shortening (AS) is given in The-
orem 3.2.
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Theorem 3.2. Let x be a C2 curve parameterized by its length parameter s ∈
[0, L] and σ > 0. To each point of x(s), we associate xσ(s), defined as the middle
point of the σ-chord (x(s− δ),x(s + δ)), where δ > 0 is chosen in order that the
area of the region enclosed by this chord and the piece of curve x

∣∣
(s−δ,s+δ)

be equal
to σ. Then

xσ(s)− x(s) = cσ2/3|κ(x)|−2/3κ(x) + o(σ2/3) as σ → 0

where c is a positive constant.

Proof. We use the fact that if x(t, s) is a Jordan curve, then its (signed)
area is given by Green’s formula

1
2

∮
[x(τ),x′(τ)]dτ.

(we write [u, v] for the determinant of two vectors u, v). In the case we consider,
we have

σ =
1
2
A(s, δ(s, σ)),

where

A(s, δ) =
∫ s+δ

s−δ
[x(τ),x′(τ)]dτ + [x(s + δ),x(s− δ)− x(s + δ)].

Taking the derivative with respect to δ yields
∂A

∂δ
= [x(s + δ),x′(s + δ)]− [x(s− δ),x′(s + δ)] +

[x′(s + δ),x(s− δ)] + [x(s + t),x′(s− δ)]

= [x(s + δ)− x(s− δ),x′(s + δ)− x′(s− δ)].

Using a Taylor’s expansion on the right hand side we obtain that
∂A

∂δ
= [2δx′(s) + o(δ), 2δx′′(s) + o(δ)] = 4δ2|κ(s)|+ o(δ2).

Integrating with respect to δ we further get

2σ =
4
3
δ3|κ(s)|+ o(δ3).
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Therefore, whenever the curvature is not zero, we find

δ(s;σ) =
( 3σ

2|κ(s)|
)1/3 + o(σ1/3).

Finally we get

xσ(s) =
1
2
(x(s− δ) + x(s + δ)) = x(s) +

δ2

2
x′′(s) + o(δ2)

= x(s) +
1
2
(
3
2
)2/3σ2/3|κ|−2/3κ(s) + o(σ2/3).

¤



CHAPTER 2

Image Representation in terms of Bilinear Level Lines

The topographic map provides a complete representation of an image. This
representation is well suited for shape analysis and recognition, since it is based on
the geometrical information of images, and can be embedded in a tree structure.
However, since the level lines of digital images (zero order interpolates) suffer
from pixelization effect, shapes cannot be accurately described. Higher order
interpolates are then to be considered. In this chapter, the bilinear interpolation
of gray level images is described. Then, following [6] a fast numerical method for
extracting the topographic map is presented. We complete the work of Lissani et
al. with a fast inverse algorithm, of image reconstruction from a family of level
lines embedded in a tree structure.

1. The structure of the set of level lines

An image can be represented by its level sets. The next step, with a view
toward shape analysis, is the representation of an image in terms of its level lines.
We rely heavily on the implicit function theorem to develop this representation.
We begin with a two-dimensional version. The statement here is just a slight
variation on the implicit function theorem.

We denote by F the set of continuous functions defined on R2, tending to
some constant at infinity. For a continuously differentiable function u we note its
gradient Du = (ux, uy).

Theorem 1.1. Let u ∈ F be a C1 function such that Du(x0) 6= 0 at some
x0 = (x0, y0). Let i denote the unit vector in the direction (ux, uy), let j denote
the unit vector in the orthogonal direction (−uy, ux), and write x = x0 +xi+ yj.
Then there is a disk D(x0, r) and a unique C1 function ϕ, ϕ : [−r, r] → R, such
that if x ∈ D(x0, r), then

u(x, y) = u(x0) ⇐⇒ x = ϕ(y).

The following corollary is a global version of this local result.

Corollary 1.1. Assume that u ∈ F is C1 and let u−1(λ) = {x | u(x) = λ} for
λ ∈ R. If λ 6= u(∞) and Du(x) 6= 0 for all x ∈ u−1(λ), then u−1(λ) is a finite
union of disjoint Jordan curves.

Proof. From Theorem 1.1 we know that for each point x ∈ u−1(λ) there is
an open disk D(x, r(x)) such that D(x, r(x)) ∩ u−1(λ) is a C1 Jordan arc x(s)
and we can take the endpoints of the arc on ∂D(x, r(x)). Since λ 6= u(∞), u−1(λ)
is compact. Thus there is a finite number of points xi, i = 1, . . . , m, such that

15



16 2. IMAGE REPRESENTATION IN TERMS OF BILINEAR LEVEL LINES

u−1(λ) ⊂ ⋃m
i=1 D(xi, r(xi)). This implies that u−1(λ) is a finite union of Jordan

arcs which we can parameterize by length. The rest of the proof is very intuitive
and is left to the reader. It consists of iteratively gluing the Jordan arcs until
they close up into one or several Jordan curves. ¤

The next theorem is one of the few results that we are going to quote rather
than prove, as we have done with the implicit function theorem.

Theorem 1.2 (Sard’s theorem). Let u ∈ F ∩C1. Then for almost every λ in the
range of u, the set u−1(λ) is nonsingular, which means that for all x ∈ u−1(λ),
Du(x) 6= 0.

As a direct consequence of Sard’s Theorem and Corollary 1.1, we obtain:

Corollary 1.2. Let u ∈ F ∩ C1. Then for almost every λ in the range of u, the
set u−1(λ) is the union of a finite set of disjoint simple closed C1 curves.

The sole purpose of the next proposition is to convince the reader that the
level lines of a function provide a faithful representation of the function.

Proposition 1.1. Let u ∈ F∩C1. Then u can be reconstructed from the following
data: the family of all of its level lines at nonsingular levels, the level of each level
line being also kept.

Proof. Let G be the closure of the union of the ranges of all level lines of u

at nonsingular levels. If x ∈ G, then there are points xn belonging to level lines
of some levels λn such that xn → x. As a consequence, λn = u(xn) → u(x). So
we get back the value of u(x).
Let now x belong to the open set Gc. Let us first prove that Du(x) = 0. Assume
by contradiction that Du(x) 6= 0. By using the first order Taylor expansion of u

around x, one sees that for all r > 0 the connected range u(B(x, r)) must contain
some interval (u(x) − α(r), u(x) + α(r)) with α(r) → 0 as r → 0. By Sard’s
theorem some of the values in this interval are nonsingular. Thus we can find
nonsingular levels λn → u(x) and points xn → x such that u(xn) = λn. This
implies that x ∈ G and yields a contradiction.
Thus Du(x) = 0 on Gc and u is therefore constant on each connected component
A of Gc. The value of u is then uniquely determined by the value of u on the
boundary of A. This value is known, since ∂A is contained in G. ¤

2. Bilinear level lines

In practice, we do not deal with real valued images, but with digital images.
A digital image ud is a function defined in a rectangular grid, that takes values
in a finite set, typically integer values between 0 and 255. One can think of ud as
a regular sampling of an image u defined in a closed rectangle of R2, whose grey
levels were quantized, followed by a zero-order interpolation with a rectangular
element.
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Figure 1. Level lines from a digital image (zero-order interpola-
tion). Left: original image. Middle: all level lines for the small
image inside the rectangle. Right: level lines for a gray level quan-
tization step of 10. Level lines are restricted to lie in the original
grid, and the majority of them provides no useful information from
the perceptual viewpoint.

Each element of the grid is called a pixel. Digital images are piecewise con-
stant functions, and as a consequence, level lines from digital images show pix-
elization effects, as shown in Figure 2.

Some consequences of this pixelization are:

• Useful invariant features such as inflexion points or curvature extrema,
that are extensively used in shape recognition, cannot be computed on
pixelized level lines,

• The accuracy of any measure based on the location of the level lines is
limited by the pixel size,

• Level lines corresponding to different gray levels may have pieces in
common (creating Tjunctions). This never happens when dealing with
level lines of a continuous image.

Pixelization effect can be avoided by considering higher order (than zero-
order) interpolations of digital images. Then, the level lines of the interpolated
images can be computed. These level lines have some interesting properties:

• Level lines will be smoother than in the previous case,
• Subpixel accuracy can be achieved when measuring level lines, since they

are not restricted to the grid of the digital image,
• Level lines from different gray levels never touch each other, since the

considered images are now continuous functions.

Among the possible interpolations, the bilinearly interpolation presents two
advantages: it is the most local of continuous interpolations, and it preserves the
order between the gray levels of the image.

2.1. Bilinear interpolation. The bilinear interpolate of a digital image
ud, denoted by ũ, can be obtained as the convolution of ud (considered as a
network of Dirac masses concentrated at the centers of pixels) with the function
φ(x; y) = ϕ(x)ϕ(y), where

ϕ(x) = max(1− |x|; 0)
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Figure 2. Left: level lines from a digital image (zero-order inter-
polation). The quantization step for the gray levels is 10, starting
from 10. The pixelization effect creates artificial T-junctions, and
do not allow to compute useful features such as inflexion points or
curvature extrema. Middle: level lines from the piecewise bilinear
interpolated image. The quantization step for the gray levels is
10, starting from 10. Pixelization effect has been reduced, but
some pixelized regions can still be seen. Right: level lines from
the piecewise bilinear interpolated image, with a gray level quan-
tization step of 10, starting at gray level 0:5. These level lines do
not suffer from pixelization effects.

As ϕ ≥ 0, bilinear interpolation is a convolution with a nonnegative kernel and
hence an increasing operator. Since ϕ(x) < ϕ(0) = 1, the extrema of ũ are all
located at points on the discrete grid. More precisely, all regional extrema of ũ

contain at least a local extremum in the original grid.
The general form of a bilinear function is

u(x, y) = axy + bx + cy + d.

For each set of four adjacent pixels (which will be called a Qpixel from now on),
a bilinear function can be determined: parameters a, b, c and d are fixed by the
gray levels of the four pixels (i, j); (i+1, j); (i, j +1); (i+1, j +1). More precisely

u(x, y) = (j + 1− y)
(
(i + 1− x)u(i, j) + (x− i)u(i, j + 1)

)
+

(y − j)
(
(i + 1− x)u(i + 1, j) + (x− i)u(i + 1, j + 1)

)
.

The bilinear interpolate of a Qpixel is defined only inside the rectangle de-
limited by the Qedgels, which are the segments between adjacent pixels centers
in the Qpixel. The bilinear interpolation of a digital image is the concatenation
of bilinear interpolates of its Qpixels. Continuity of the gray levels between con-
tiguous Qpixels is guaranteed by the properties of the bilinear interpolation, but
higher continuities (e.g., of the gradient) are not preserved at Qedgels.

2.2. Bilinear level lines. In this subsection, some basic results concerning
level lines of a bilinear interpolated image are presented. These results will be
used for the extraction algorithm. The equation for a level line at level λ of the
bilinear interpolated image inside a dual pixel can be written

a(x− xs)(y − ys) + (λs − λ) = 0
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Figure 3. Definition of Qpixel and Qedgels.

or
axy + bx + cy + (d− λ) = 0.

In the first case, level lines are pieces of hyperbola, of asymptotes x = xs, y = ys.
When λ = λs the level line consists of two orthogonal straight lines crossing
at the saddle point (xs, ys), provided this point is inside the dual pixel. In the
second case, level lines are straight lines. This may lead to visual pixelization
effects, for instance when level lines pass through the center of a pixel and follow a
dual-edge. This phenomenon will be attenuated by taking for λ only half-integer
values (given that the digital image has integer values).

In the following, some basic results concerning level lines of a bilinear in-
terpolated image are presented. These results will be used for the extraction
algorithm.

Proposition 2.1. (Properties of level lines of bilinear interpolates)
• Except a finite set λ1, . . . , λn of levels, the level set u(x, y) = λ is the

union of a finite number of Jordan curves;
• All level lines are continuous and piecewise C1.

The above structure is quite simple, but it does not describe what happens at
the critical levels λi, which can have a rather complicated form (see Figure 2.2).
For the sake of precision, we choose to avoid these levels, by setting for example
a quantization step at half integer coordinates.

2.3. The inclusion tree. One can decompose an interpolated image into
its level lines at predefined levels. A fast algorithm, the Fast Level Set Transform
(FLST) performing the decomposition into a tree of shapes, is described in [6]
and [18]. The image is parsed into a set of parametric Jordan curves. This set is
ordered in a tree structure, induced by the geometrical inclusion. We say that a
curve Γλ1 is a child of the curve Γλ2 and we denote

Γλ1 ≺ Γλ2

if its interior is included in the interior of the latter. In addition, each curve
has an assigned tag ±1 according to whether it is the boundary of a connected
component of a lower level set (sgn(Γλ) = −1) or upper level set (sgn(Γλ) = +1).
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Figure 4. Gray levels for a piecewise bilinearly interpolated im-
age. Three different sets of level lines were computed. Left: gray
levels from 10 to 100 with step 10. Observe how some of the level
lines (the ones at gray level 70) follow the Qedgels, producing an
effect similar to pixelization. Middle: level lines were computed
at gray levels different from those of the original image but we get
90o crossings between level lines due to the presence of a saddle
point. Nevertheless, these saddle points will always appear inside
the Qpixels and the curves never go along the grid of the digital
image. Right: gray level 11 to gray level 91 with quantization
step 10. Pixelization effect no longer arises since level lines are
computed at gray levels different from those of the original image.

Figure 5. Tree of bilinear level lines, including some saddle regions.

For each gray level λ ∈ N+1/2 there corresponds a finite set F λ of level lines
{Γλ,i

0 }i∈F λ . Each level line Γλ,i
0 is stored as a set of ordered points {Pk(xk, yk)}1≤k≤N

with N depending on Γ, leaving the level line interior on the left hand side. The
real numbers xk and yk are the floating point coordinates of the vertex number
k of the polygon Γ

Thus, the tree of level lines is given by a finite set of tagged polygonal lines,
indexed by half-integer gray values

T0 = {Γλ,i
0 ; i ∈ F λ, λ ∈ N+ 1/2}. (2.3)

An inclusion tree of bilinear level lines is displayed in Figure 5.
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Figure 6. Extraction of level lines from a bilinear interpolated
image, with quantization step 16. Singular levels are avoided.
Nevertheless, level lines are highly oscillatory, especially along
transversal lines. For this reason, before computing any features
on these level lines, a previous smoothing is necessary.

2.4. Direct Algorithm: extraction of level lines from a bilinear in-
terpolated image. We describe a simple algorithm for the extraction of level
lines of a bilinear interpolated image, but which requires a quantization avoiding
initial levels of the image. The algorithm is in two phases: first extract the bilin-
ear level lines then order them in a tree. The extraction of a level line relies on
these observations:

(1) the level line is not a regional extremum, so that an orientation can be
chosen, for example leaving the upper level at the left of the level line;

(2) the level line meets Qedgels at non endpoints, so that when we enter a
Qpixel by a Qedgel, we can compute from which other Qedgel to exit.

Considering we get into the Qpixel through some Qedgel, the exit Qedgel is
in front, on the left or on the right depending on the value of with respect to
levels at both other corners of the Qpixel. We may store for the line only its list
of intersections with Qedgels.

To avoid extracting several times the same level line, we put markers at all
intersection points of extracted level lines with Qedgels. The algorithm starts by
considering all Qedgels at the boundary of the image. If a level of interest is
between the levels at endpoints of the Qedgel, we follow the level line, marking
intersection points with Qedgels. We then close the level line by the shortest
path along the image boundary. Finally we do the same for interior Qedgels. For
them, we detect closure by checking the marker at exit Qedgels.

To build the tree structure of the extracted level lines, we consider all inter-
section points of level lines with vertical edgels and order them. While scanning a
column of Qedgels, we are in the interior domain of a level line if we have crossed
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it an odd number of times. If we meet a level line that has no parent yet, its
parent has to be the last level line we are in. For the root, we add the boundary
of the image as a level line to the list L at the beginning.

Let L be the list of level lines. To describe the intersection y of a level curve
Γid, having index id in the list L, with Qedgel at column i + 0.5, we use the
triplet (i, y, id). The main idea used in the ordering algorithm is to look for the
innermost shapes that we denote generically by Γ. The arrow Γ ← Γ̃shorlty says
that we set the curve Γ to be now Γ̃. And finally, we denote the parent of a level
line by Parent(Γ).

Algorithm 3: Ordering the level lines in a tree.
Input: List L of bilinear level lines Γ
Output: Fill tree structure
Collect all (i, y, id) in array V;1

Order V lexicographically by key (i, y);2

Γ ← ∅;3

for all (i, y, id) ∈ V do if Γ = Γid then4

Γ ← Parent(Γ);5

else if Γ 6= ∅ and Parent(Γid) = ∅ then6

set Γid as a child of Γ;7

Γ ← Γid.8

This algorithm relies on the fact that the quantization is chosen so that each
level line crosses Qedgels, but does not contain any. For this, it is sufficient that it
avoids the levels at the centers of pixels (the initial data). In particular, regional
extrema of the image cannot be extracted by the algorithm.

2.5. Inverse algorithm: image reconstruction from a set of level
lines. The algorithm described in this section performs an exact image recon-
struction from a topographic map, i.e. from an arbitrary family of Jordan curves
organized in a tree structure with respect to geometrical inclusion.

The reconstruction starts from a topographic map, namely a family of dis-
crete level lines (typically obtained after (affine) curve shortening) {Γλ,i}i∈F λ,λ∈Λ

organized in an inclusion tree structure. This tree is walked down (parent before
children) and the interior of the current level line is filled in with its level λ. Using
that order, each level line interior is painted before its descendants, ensuring that
its private pixels are at the correct level while non-private pixels get painted over
by the children. This yields an exact reconstruction for any digital image ud from
its level lines at half-integer levels:

Theorem 2.1. Let T = {Γλ,i; i ∈ F λ, λ ∈ N + 1/2} be the tree of bilinear level
lines associated to ud. For every x let λ be such that x ∈ Int(Γλ) and ∀Γλ̃ ≺ Γλ,
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Figure 7. Reconstruction of the image from a family of level
lines. Left: level lines are displayed with quantization step 16
and have been previously smoothed by the intrinsic heat equa-
tion. Right: image reconstructed from the family of all level lines,
except for the ones corresponding to singular gray levels.

Figure 8. The level line 2D inclusion topology is reflected in the 1D
ordering of their intersections with the dual edges.

x 6∈ Int(Γλ̃) and define

ũd(x) =
{

λ− 1/2, if sgn(Γλ) = −1
λ + 1/2, if sgn(Γλ) = +1

Then ud ≡ ũd.

A closed curve Γ is stored as a set of ordered points {Pk(xk, yk)}1≤k≤N with N

depending on Γ. The real numbers xk and yk are the floating point coordinates of
the vertex number k of the polygon Γ. We need to fill in all pixels with integral
coordinates (j, i) inside the polygon. To avoid any ambiguity, the algorithm
secures that yk is never an integer by translating when necessary Γ by a tiny
amount ε vertically or horizontally, at the price of a minor numerical uncertainty
in the reconstructed image. The filling in of each curve is performed by a fast
ray casting algorithm described below.
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2.5.1. Polygon intersections with the grid. The goal of Algorithm 4, which is
a preliminary to the filling algorithm, is to find the intersections of the polygonal
level line with all horizontal lines y = i. For any given i the intersection is in fact
the intersection of a segment [PkPk+1] of the polygon with the line y = i. These
intersections are ordered by their abscissae so that

xi
1 ≤ xi

2 ≤ · · · ≤ xi
p,

where p is even because Γ is a closed curve. This gives a simple and fast decision
rule: a pixel (j, i) is surrounded by the polygon if and only if j is within an odd
interval [xi

2k+1, x
i
2k+2].

Algorithm 4: Intersections of a polygon Γ with the grid
Input: Vertices Pk(xk, yk) of polygon Γ
Output: For each i, the ordered list Li of points of Γ on the line of

equation y = i

for all i do Li ← ∅;1

for all segments [PkPk+1] do2

for i ∈ [yk, yk+1] ∩ N do3

(x, i) ← [PkPk+1] ∩ {y = i};4

Insert x in Li;5

for all i do sort list Li6

2.5.2. Filling the interior. Line by line all odd intervals on Li are enumerated
and filled in with level λ±1/2 at all pixels with ordinate i whose abscissa is inside
such an interval, as shown in Algorithm 5.

Algorithm 5: Filling polygon Γ
Input: Sorted lists Li of intersections of Γ with lines {y = i}, level λ

Output: Pixels inside polygon Γ are at level λ± 1/2, pixels outside
unchanged

for all i do1

for all xi
2k+1 ∈ Li do2

for j ∈ N ∩ [xi
2k+1, x

i
2k+2] do3

pixel (j, i) ← λ± 1/24

Due to the inclusion principle it is possible to go from the 2D topology of the
level lines to the 1D topology on a dual edge and conversely. Suppose that two
or more level lines belonging to different gray levels intersect a dual edge, leaving
the same data points outside and inside: denote them Pin and Pout (Figure 8(a)).
Then the restored gray value at Pout is the gray value associated to the largest
shape ordered by inclusion which leaves the pixel outside, whereas Pin belongs
to the smallest shape that includes the pixel. If curves with different orientation
cross the same dual edge it is enough to update the gray value at Pin. This
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conforms to our choice of filling the interiors of the lines in the order given by
the level line inclusion tree.





CHAPTER 3

Junction: Image Curvature Microscope

Whenever we talk about curvatures in a digital image, we actually refer to
the curvatures of the level lines associated to the image. Yet, most curvature
computation algorithms are based on finite difference schemes (FDS). In this case,
the curvature depends on the gray values of the neighbor pixels and consequently,
high oscillations along transverse level lines appear.

We show in the following how curvatures can be accurately estimated by a di-
rect computation on level lines after their independent smoothing. The sub-pixel
algorithm yields a microscopic visualization of the curvature map revealing many
image details, and getting rid of aliasing effects. This “curvature microscope”
showing curvatures in false colors runs on line on any image proposed by users
at http://www.ipol.im/pub/algo/cmmm image curvature microscope/

1. The Curvature Microscope

For the sake of precision, we suggest that curvatures should be computed
directly on level lines and not on a discrete grid. A polygonal line approximation
followed by uniform and fine sampling allows one to compute reliable curvatures,
but only after level line smoothing. This smoothing is necessary because the
initial level lines present oscillations due to the initial aliasing and to the inter-
polation itself. Thus curvatures wouldn’t correspond to our visual perception.
But, more fundamentally, the perception of curvature is and must be multiscale.
The striking difference between an FDS result and an LLS result is displayed in
Figure 1. With LLS, the curvature is computed at each vertex of each level line.
A curvature image is then created by associating to each dual pixel an average
of all curvatures computed in it.

1.1. Discrete curvature for a polygonal line. We recall that each level
line is stored as a set of ordered points

Γ = {Pi(xi, yi)}i=0..n, with P0 = Pn.

The simplest discrete scalar curvature ki computed at each vertex Pi is ob-
tained by taking the triple (Pi−1, Pi, Pi+1) and computing ki as the inverse of
the circumscribed radius Ri of this triangle. Set −→ui =

−−−−→
Pi−1Pi and its length

ui = (u1
i , u

2
i ) = |−−−−→Pi−1Pi|, respectively −→vi =

−−−−−−→
Pi−1Pi+1, with the corresponding

length vi = (v1
i , v

2
i )| =

−−−−−−→
Pi−1Pi+1|. Then

27
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(a) (b) (c)

Figure 1. The curvature color display rule. Zero curvatures are dis-
played in yellow, positive curvatures are shown in a gradation from yel-
low to red, and negatives from yellow to green. The initial image (a)
had its curvatures computed in two different ways: by an FDS formula
(b), and directly on level lines, after their independent smoothing (c).
In the first case the curvature presents oscillations, whereas the second
result is coherent with our perception.

Lemma 1.1. The curvature at vertex Pi is given by

ki = 2
u1

i u
2
i+1 − u2

i u
1
i+1

uiui+1vi
. (1.4)

1.2. Curvature map. The algorithm computing the curvature map of any
digital image is based on level lines shortening. The image level lines at given
quantization levels are first extracted, then uniformly sampled with fine sub-pixel
step, and smoothed by affine or curve shortening. Curvatures are then computed
at each vertex of each level curve and associated to the dual pixels containing the
vertex. A curvature image is eventually created by attributing to each dual pixel
the average of all curvatures computed in it.

Algorithm 6: Curvature map
Input: Original Image u0.
Output: Curvatures u0 at scale t: u(·, t).
Extract the tree of level lines {Γλ,i

0 }i∈Fλ;λ;1

Sample uniformly each level line Γλ,i
02

for Level line Γλ,i
0 do3

Γλ,i
t = Curve Shortening Flow (Γλ,i

0 );4

for Γλ,i
t = {Pi(xi, yi)}i=0..n do5

ki = 1/Ri;6

for each dual pixel do7

k = mean(ki1 , ki2 , ..., kim).8

Topological curvatures and scalar curvatures can be computed as well. In-
deed, the information encoded in the tree enables the computation of signed
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(a) (b)

(c) (d)

Figure 2. The curvature map numerical chain: (a) original image, (b)
level lines, uniformly sampled, (c) evolved level lines, (d) curvature im-
age.

curvatures, where the sign is either given by the gradient ascent, or by the topo-
logical orientation of the curve. In the first case, the curvature changes sign
when the grey scale is reverted. Thus, a black disk and a white disk on grey
background have opposite curvatures. The topological curvature is instead in-
variant to contrast changes. But it is nonlocal, since its sign depends on the
global curve topology and not on the local curve shape. Figure 3 illustrates the
difference on a famous Julesz texture discrimination experiment. On the left
image, a pre-attentively undiscriminate texture pair. The “10” in random orien-
tations surround a square made of “S”. The signed curvature is identical for both
shapes. The topological curvature (right) changes because the “0” have an inte-
rior circle missing in the “S”. This proves that our perception does not compute
the topological curvature. If it did, we would discriminate the two textures.

1.3. Curvature Microscope. By performing a scaled zoom on the consid-
ered image one can expect to have one level line passing through each dual pixel,
and thus to observe more and more exactly the curvatures at microscopic scale.
The fact that all level lines are polygons with real coordinates allows one to zoom
in the image at an arbitrary resolution. This is necessary to explore visually the
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(a) (b) (c)

Figure 3. (a) Original image, Julesz pair of undiscriminate textures
(b). Signed curvatures, no discrimination (c). Topological curvatures:
probably not computed in our perception, it would discriminate the
texture pair.

intricacy of the local image structure. Hence the name of curvature microscope
given to the final visualization.

Since the curve shortening is only defined for closed curves, a rule is needed
for the level lines finishing on the image border. One could close these lines by
joining their endpoints by (e.g.) a geodesic on the image boundary. But such
junctions would create strong curvatures at the meeting points of the level lines
with the image frame. To avoid this phenomenon a standard extrapolation is
performed by flipping the image left and right, up and down and extending it in
that way by a wide band.

For better rendering, the curvature map is printed over the smoothed image
and the latter is attenuated (its gray values are concentrated around 128). Curva-
ture values shade from red to green as follows: positive curvatures scale from red
down to yellow; negative ones go down from yellow to green. Thus yellow means
a small curvature. The image curvature microscope is a complex visualization
tool dealing with three scale space parameters

(1) the zooming factor;
(2) the quantization step of the level lines;
(3) the renormalized smoothing scale (the scale l at which a circle of radius

r = l vanishes).

These parameters vary according to the total variation and the gradient ampli-
tude of the image and therefore cannot be a priori fixed for any type of image.
However, the zooming factor is proportional to the renormalized smoothing scale.
The quantization step can be fixed once for all.

2. The curvature Gallery

After processing the pixelized level lines become accurate curves with sub-
pixel control points, whose curvature can be faithfully computed. Thus the whole
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(a)

(b)

(c)

Figure 4. Image curvature microscope. (a) the original image, 2X
zoom and 4X zoom of the up-right corner; (b) curvature map computed
on the original level lines with a quantization step s = 36; (c) curvature
map computed on shortened level lines. The left column permits to
observe the curvature densities. A zoom is necessary to observe the
single curvatures. The middle column and right column focus more and
more on shape and texture details.

chain can be viewed as a numerical preprocessing before further numerical anal-
ysis and feature extraction. Indeed, after processing, the curvature extrema are
easily detected. But there is also a strong interest in the direct visualization of
the level lines and of the microscopic curvature map of an image. The following
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gallery on a variety of image details illustrates the recovery of shapes freed from
their aliasing, JPEG, and noise artifacts.

2.1. Attneave’s cat. Short time smoothing reveals useful invariant fea-
tures (curvature extrema, inflection points, angles and junctions). Therefore,
as pointed out by Attneave, objects are represented with great economy and
striking fidelity by marking the points at which their contours change direction
maximally. In Figure 5, the head of the Attneave cat is scanned and processed by
LLAS. Before filtering, the curvature values reflect essentially the pixel staircases:
Positive and negative curvatures in red and green alternate along contours. A
visual inspection shows that, after LLAS, the level curves can be easily segmented
into concave and convex parts, separated by flat parts (in yellow).

Figure 5. Zoom on the Attneave cat, its corresponding level lines and
curvatures. smoothed image, affine smoothed level lines and curvature
map after filtering.

2.2. Geometric shapes. The same improvements can be demonstrated on
the geometric drawings of Figures 6, 7 and 8. A straight oblique line appears
serrated because of its pixel representation. Thus the right angle that it forms
with another line is simply lost in clutter: there are locally right angles every-
where. When a curve stops onto another curve, T-junctions or Y-junctions are
created. In such cases, our perception tends to interpret the interrupted curve
as the boundary of some object undergoing occlusion. In the image on the left
of Figure 7, which is a typical Kanizsa experiment demonstrating our layered
perception, one tends to see a grey rectangle on top of a black polygon. The
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Figure 6. Top: original image, extracted level lines and corresponding
curvatures. Bottom: smoothed image and curvature map after filtering.

T-junctions creating this layered illusion can be detected by their adjacent pos-
itive and negative curvatures. Note that a short time smoothing is necessary to
extract these meaningful curvatures from the clutter of oscillating curvatures due
to the staircase effect. Another series of typical experiments was dedicated by
Kanizsa to the transparency illusion, by which, in presence of X-junctions, our
perceptions infers the presence of two objects on top of each other, the upper
one being transparent. For instance the left image of Figure 8 is spontaneously
described by viewers as a grey transparent disk in front of a black wedge. Kanizsa
[14] pointed out the paradox of such a description, which sees two objects where
there are in fact four regions with different grey levels. The local configuration
responsible for the transparency illusion is the X-junction, seen as the apparent
crossing of the boundaries of the disk and of the black wedge. As illustrated
after applying LLAS to the figure, X junctions can be detected as a particular
configuration of adjacent negative, positive, and zero curvatures.
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Figure 7. Original image, non-filtered curvatures, smoothed level
lines by LLAS and curvature map.

2.3. Graphics and aliasing. Aliasing due to pixelization is common in
scanned documents. As illustrated by all experiments, LLAS can be used for a
graphic quality improvement smoothing contours. This is actually done at the
cost of smoothing out corners and junctions, but this smoothing is necessary to
single them out as the stable peaks of curvature. All in all, in most zoomed-in
figures the improvement is manifest, starting with the laughing mouse of Figure
9. A decent recovery is possible even with badly pixelized shapes such as the one
reproduced in Figure 10. This drawing is not perfectly restored because of the
fattening effect at junctions, but it definitely improves on the original, and opens
the way to a geometric analysis that would be impossible on the original. But the
example in Figure 11 demands the impossible. Although some undulating curves
still may be figured out by an intelligent viewer, the figure locally is nothing but a
checkerboard at pixel size. Thus the curvature motion removes all squares, black
and white, and creates a huge fattening effect.

2.4. Pre-attentively undiscriminable textons. Julesz conjectured in his
second texture perception theory [13] that two different textures cannot be pre-
attentively discriminated if they have the same texton density. For instance the
Julesz patterns in Figure 12 are different, but have the same “texton densities”,
namely the same number of bars, corners, and terminators. After filtering, the
microscopic curvature map will permit to compute a density of positive, negative
and zero curvatures.
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Figure 8. Left: original image, bilinear level lines and the curvature
map before filtering. Right: smothed image, affine smoothed level lines
and curvature map after filtering.

2.5. Bacteria morphologies. Bacteria shapes are determined by the bac-
terial cell wall and cytoskeleton. The curvature is an intrinsic geometrical descrip-
tor, useful for shape discrimination. In Figure 13 we display bacterial morpholo-
gies and the corresponding curvature map. Bacteria porosities are characterized
by strong curvature oscillations, whereas the borders of bacterial shapes present
smooth curvature variations. In microbiology, many tasks involve the counting
of geometrically simple objets. An accurate curvature filter permits to make
curvature statistics.
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Figure 9. Top: original image, its corresponding level lines and cur-
vatures. Bottom: smoothed image, affine smoothed level lines and cur-
vature map after filtering.

Figure 10. Top: original image, its corresponding level lines and cur-
vatures. Bottom: smoothed image, affine smoothed level lines and cur-
vature map after filtering.
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Figure 11. Top: original image, its corresponding level lines and cur-
vatures. Bottom: smoothed image, affine smoothed level lines and cur-
vature map after filtering.

Figure 12. Top: original image, its corresponding level lines and cur-
vatures. Bottom: smoothed image, affine smoothed level lines and cur-
vature map after filtering.

2.6. Topography. Digital elevation models represent ground surface topog-
raphy. Gray levels indicate ground elevation (lightest shades for highest eleva-
tions) and therefore the image level lines are true level lines. As can be seen in
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Figure 13. (a). Original image (b). Curvature Map

Figure 14, the set of level lines of a digital image is a natural representation of the
shape contents, because it provides topological information invariant to contrast
changes. The bilinear interpolation is the most local of continuous interpolations
preserving the order between the gray levels of the image. Because the interpo-
lation is continuous, level lines with different gray levels never touch. However,
they are concatenations of pieces of hyperbolae and straight segments and hence
present oscillations along transverse contours. A short time smoothing reduces
the oscillations and straightens up the edges. The remaining curvature extrema
after filtering become relevant as geometric shape descriptors.

2.7. Textures. The experiments of Figures 15 and 16 illustrate the potential
use of LLAS to restore the image micro-geometry and to facilitate the identifica-
tion of smoothly varying shapes in a texture.

2.8. Paintings. Even on details of paintings, this geometric analysis can be
relevant. As already mentioned, the smoothed can be used for noise reduction
and picture restoration. In Figure 17 the desaliasing successfully restores the
paint strokes and improves for example the perception of the pearls and of their
shadows. Leonardo’s portrait of Mona Lisa is remarkable for its sfumato tech-
nique of soft shaded modeling. The stylistic motifs are reflected in the fact that
level lines fall widely apart like if it were a very blurry image. The experiment of
Figure 18 demonstrates the amazing sparsity of visual information in the Mona
Lisa. It is only by a few level lines, falling widely apart, and with very smooth
corners, that all nuances of the Mona Lisa face are suggested.

2.9. Text processing. The same good effects are observable with pixelized
written text. After the application of LLAS the image in Figure 19 retrieve a
curvature signature that is obviously usable for handwriting recognition. To that
aim the causality of the process is essential: no creation of new levels and no
creation of new curvatures.

2.10. Fingerprints restoration and discrimination. Minutiae such as
cores, bifurcations and ridge endings characterize uniquely fingerprints. Their
detection requires a careful smoothing, particularly to avoid a spurious diffusion
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Figure 14. Digital elevation map, its corresponding level lines (for
once a real topographic map), the affine smoothed level lines and their
curvature map.

mixing the ridges. The main objective of smoothing is to sieve the curvature ex-
trema. Indeed, many are present everywhere on the ridge borders before smooth-
ing. LLAS removes these ridge border oscillations and provides a smooth version
of the fingerprint on which the curvature map locates its characteristic points.
Figure 20 shows the results and compares LLAS to finite difference scheme and to
the level set method. Observe that by performing pixel evolutions, the ridge end-
ings shrink fast, and the islands and crossovers diffuse. The subpixel smoothing
instead tears apart ridges and emphasizes crossovers.

3. Conclusion

The first outcome of the Level lines Shortening algorithm is the evolved im-
age, which presents some sort of denoising, simplification, and desaliasing. But
the main outcome is an accurate curvature estimate on all level lines. As a visual-
ization tool, the fact that all level lines are polygons with real coordinates allows
to zoom in the image at an arbitrary resolution. This is necessary to explore
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Figure 15. Original image, extracted level lines, affine smoothed level
lines and curvature map.

Figure 16. Original image, extracted level lines, affine smoothed level
lines and curvature map

visually the intricacy of the local image structure. Hence the name of curvature
microscope given to the final visualization.
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Figure 17. Original photo-painting, smoothed image and curvature
map after filtering.

Figure 18. Extraction with zoom of Mona Lisa photograph, its cor-
responding level lines and curvatures. LLQS evolution, affine smoothed
level lines and curvature map after filtering.
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Figure 19. Left: original image, bilinear level lines and the curvature
map before filtering. Right: smothed image, affine smoothed level lines
and curvature map after filtering.
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Figure 20. Original fingerprint, smoothed fingerprint and its curva-
ture map after filtering.





CHAPTER 4

IPOL internships

1. Bilinear Tree of Level Lines. Direct Extraction Algorithm

Shape analysis can be led to the study of Jordan curves which we shall call
“elementary shapes”. The many experiments where we display level lines of dig-
ital images make clear enough why a smoothing is necessary to restore their
structure. These experiments also show that we can in no way assimilate these
level lines with our common notion of shape as the silhouette of a physical object
in full view. Indeed, in images of a natural environment, most observed objects
are partially hidden (occluded) by other objects and often deformed by perspec-
tive. When we observe a level line we cannot be sure that it belongs to a single
object; it may be composed of pieces of the boundaries of several objects that
are occluding each other. Shape recognition technology has therefore focused on
local methods, that is, methods that work even if a shape is not in full view or if
the visible part is distorted.

The topographic map provides a complete representation of an image. This
representation is well suited for shape analysis and recognition, since it is based on
the geometrical information of images, and can be embedded in a tree structure.

Figure 1. Extraction of level lines from a bilinear interpolated
image, with quantization step 16. Singular levels are avoided.
Nevertheless, level lines are highly oscillatory, especially along
transversal lines. For this reason, before computing any features
on these level lines, a previous smoothing is necessary.

45
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Following [6] we propose the implementation of a fast numerical method
for extracting the topographic map and the vizualization of level lines.
The algorithm should be based on the Direct Decomposition Algorithm, described
in Chaper 2.

To build the tree structure of the extracted level lines, we consider all inter-
section points of level lines with vertical edgels and order them. While scanning a
column of Qedgels, we are in the interior domain of a level line if we have crossed
it an odd number of times. If we meet a level line that has no parent yet, its
parent has to be the last level line we are in. For the root, we add the boundary
of the image as a level line to the list L at the beginning.

Let L be the list of level lines. To describe the intersection y of a level curve
Γid, having index id in the list L, with Qedgel at column i + 0.5, we use the
triplet (i, y, id). The main idea used in the ordering algorithm is to look for the
innermost shapes that we denote generically by Γ. The arrow Γ ← Γ̃shorlty says
that we set the curve Γ to be now Γ̃. And finally, we denote the parent of a level
line by Parent(Γ).

Algorithm 7: Ordering the level lines in a tree.
Input: List L of bilinear level lines Γ
Output: Fill tree structure
Collect all (i, y, id) in array V;1

Order V lexicographically by key (i, y);2

Γ ← ∅;3

for all (i, y, id) ∈ V do if Γ = Γid then4

Γ ← Parent(Γ);5

else if Γ 6= ∅ and Parent(Γid) = ∅ then6

set Γid as a child of Γ;7

Γ ← Γid.8

This algorithm relies on the fact that the quantization is chosen so that each
level line crosses Qedgels, but does not contain any. For this, it is sufficient that it
avoids the levels at the centers of pixels (the initial data). In particular, regional
extrema of the image cannot be extracted by the algorithm.
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2. Curve evolution by a power of curvature.
Simultaneous erosion and dilation

Shape recognition technology has therefore focused on local methods, that
is, methods that work even if a shape is not in full view or if the visible part
is distorted. As a consequence, image analysis adopts the following principle:
Shape recognition must be based on local features of the shape’s boundary, in this
case local features of the Jordan curve, and not on its global features. If the
boundary has some degree of smoothness, then these local features are based on
the derivatives of the curve, namely the tangent vector, the curvature, and so on.
Many local recognition methods involve the “salient” points of a shape, which
are the points where the curvature is zero (inflection points) and points where
the curvature has a maximum or minimum (the “corners” of the shape). But
any feature computation requires a careful smoothing, in order to get rid of, or
reduce at least, any undesired artifacts.

Figure 2. Simultaneous curve evolution by the intrinsic heat
equation. The evolved curves are smooth for all times and oscilla-
tions reduce considerably. The level curves are included one into
the other and conserve this property when applying the smooth-
ing.

We propose as an internship an analysis of the famous Mackworth
and Mokhtarian algorithm consistent with curve shortening (CS) and
variants of it for a power of curvature.

We remind that this algorithm applies to a plane curve the non-linear heat
equation, by successively convolving the arc length parameterization x(·, t) at
time n with a Gaussian kernel Gh of standard deviation proportional to h

1
2 .

In practice, a level line is perceived as a signal. The short time convolution
with a gaussian reduces to a discrete convolution given by

(f ∗ g)[n] =
∞∑

m=−∞
f [m]g[n−m].
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Algorithm 8: Discrete Curve Shortening (CS)
Input: Polygon Γ0, gaussian signal G
Output: Evolved polygon Γn, after n iterations
for all i = 0, n do1

sample uniformly curve Γi ;2

convolve curve Γi with G.3

In many situations, discrete convolutions can be converted to circular convolu-
tions so that fast transforms with a convolution property can be used to imple-
ment the computation.

(f ∗ gN )[n] ≡
N−1∑

m=0

( ∞∑

k=−∞
f [m + kN ]

)
gN [n−m].

In particular, when applying the convolution the number of samples of the
original signal (level line) doesn’t change. One can then find out that f [n] evolves
into (f ∗ g)[n] and therefore have (the approximation) of the normal direction
n = (f ∗ g)[n]− f [n], as well as the amplitude of the curvature.

Taking advantage of this property, it can be easily obtained an evolution by
a power of curvature (in general, sufficiently small), just by re-projecting the
evolved point (f ∗ g)[n] in the normal direction, at the corresponding distance.

When the power of the curvature goes to zero, we obtain the so called erosion-
dialation filter, which is described by the following equation

∂x
∂t

= |κ|−1κ(x(t)). (GCS)

This equation solves the famous problem never fixed in Mathematical Mor-
phology: the basic equations are erosions and dilations. Erosions correspond to
the minus sign (the case where κ points towards the interior of the curve) in the
above equation, and dilation to the plus sign in the above equation. Therefore
the above equation is new and solves the long dilemma unsatisfactorily solved by
the so called alternate filters: should we make a tiny erosion first, then a tiny
dilation, and go on doing this with bigger and bigger erosions-dilations, to attain
a final joint “erosion-dilation”? No, this is only a trick which somehow describes
the algorithm which will be much better implemented with the above equation.
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3. Semi-Implicit Level Set Methods for Curve and Surface Motions

The level set method, developed by Osher and Sethian in [3] has had large
impact on computational methods for interface motion and is now being used by
engineers, physicists and mathematicians for a wide variety of problems in image
processing or surfaces reconstruction.

We suggest as an IPOL project an analysis of the semi-implicit method
proposed by P. Semereka in [1] for simulating surface and curve dif-
fusion by mean curvature motion (even for a larger class of curvature
flows).

Figure 3. Motion by mean curvature in 3D.
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In the level set method, the interface Γ is represented implicitly as the zero
level set of a continuous function which we will denote as u; therefore we write

Γ(t) = {x; u(x, t) = 0}.
We wish to consider the motion of interface whose normal speed is equal to the
mean curvature, that is the PDE formulation for the intrinsic heat equation

ut = curv(u)|Du| (3.5)

The semi-implicit algorithm for curvature flow is based the formula,

curv(u)|Du| = ∆u−N(u)

where

∆u = uxx + uyy and N(u) =
u2

xuxx + 2uxuyuxy + u2
yuyy

u2
x + u2

y

.

Based on this observation we discretize equation (3.5) in time as follows:

un+1 = un + dt∆un+1 − dtN(un) (3.6)

where dt is the time step.
This discretization is first order operator splitting where one first takes one

step of forward Euler on the nonlinear term followed by one step of backward
Euler on the linear term. The equation is spatially discretized by expressing ∆u

and N(u) explicitly in terms of first and second order partial derivatives and then
discretizing using center differences.

ux =
u(i + 1, j)− u(i− 1, j)

2dx

uxx =
u(i− 1, j)− 2u(i, j) + u(i + 1, j)

dx2

uxy =
u(i− 1, j − 1) + u(i + 1, j + 1)− u(i− 1, j + 1) +−u(i + 1, j − 1)

dxdy

In order to implement the scheme given by 3.6 we must invert the operator
I − dt∆h. This is done using a FFT (Fast Fourier Trasnform), where ∆h is the
standard discrete form of the Laplacean based on center differencing.
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[13] B. Julesz. Textons, the elements of texture perception, and their interactions. Nature,

290(5802):91–97, 1981.

[14] G. Kanizsa. Organization in Vision: Essays on Gestalt Perception. Praeger, 1979.

[15] A. Mackworth and Mockhtarian F. Scale-based description and recognition of planar curves

and two-dimensional shapes. IEEE Trans. Pattern Analysis and Machine Intell., 8(1):34–

43, 1986.

[16] B; Merriman, J. Bence, and S. Osher. Diffusion generated motion by mean curvature. J.

E. Taylor, Editor, Computational Crystal Growers Workshop, pages 73–83, 1992.

[17] Lionel Moisan. Affine plane curve evolution: a fully consistent scheme. IEEE Trans. Image

Process., 7(3):411–420, 1998.

[18] P. Monasse and F. Guichard. Fast computation of a contrast invariant image representation.

IEEE Trans. on Image Proc, 9:860–872, 1998.

[19] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: algorithms

based on Hamilton-Jacobi formulations. J. Comput. Phys., 79(1):12–49, 1988.

[20] F. Pollick and G. Sapiro. Constant affine velocity predicts the 1/3 power law of planar

motion perception and generation. Vision Research, 37(3):347–353, 1997.

51



52 BIBLIOGRAPHY

[21] G. Sapiro and Tannenbaum A. Affine invariant scale space. IJCV, 11(1):25–44, 1993.

[22] Guillermo Sapiro, Albert Cohen, and Alfred M. Bruckstein. A subdivision scheme for

continuous-scale B-splines and affine-invariant progressive smoothing. J. Math. Imaging

Vision, 7(1):23–40, 1997.

[23] Guillermo Sapiro and Allen Tannenbaum. On invariant curve evolution and image analysis.

Indiana Univ. Math. J., 42(3):985–1009, 1993.

[24] Guillermo Sapiro and Allen Tannenbaum. On affine plane curve evolution. J. Funct. Anal.,

119(1):79–120, 1994.


