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Abstract

This note is devoted to a mathematical exploration of whether Lowe’s Scale-Invariant Fea-
ture Transform (SIFT) [21], a very successful image matching method, is similarity invariant
as claimed. It is proved that the method is scale invariant only if the initial image blurs
is exactly guessed. Yet, even a large error on the initial blur is quickly attenuated by this
multiscale method, when the scale of analysis increases. In consequence, its scale invariance is
almost perfect. This result explains why SIFT outperforms all other image feature extraction
methods when it comes to scale invariance.

1 Introduction

Image comparison is a fundamental step in many computer vision and image processing appli-
cations. A typical image matching method first detects points of interest, then selects a region
around each point, and finally associates with each region a descriptor. Correspondences between
two images can then be established by matching the descriptors of both images. The images under
comparison may have been taken under arbitrary viewpoints. Therefore the invariance to the view-
point is crucial in image comparison. Many variations exist on the computation of invariant interest
points, following the pioneering work of Harris and Stephens [13]. The Harris-Laplace and Hessian-
Laplace region detectors [23, 26] are invariant to rotation and scale changes. Some moment-based
region detectors [20, 2] including the Harris-Affine and Hessian-Affine region detectors [24, 26], an
edge-based region detector [42], an intensity- based region detector [42], an entropy-based region
detector [14], and two independently developed level line-based region detectors MSER (“maxi-
mally stable extremal region”) [22] and LLD (“level line descriptor”) [33, 34] are designed to be
invariant to affine transformations. These two methods stem from the Monasse image registration
method [29] that used well contrasted extremal regions to register images. MSER is the most effi-
cient one and has shown better performance than other affine invariant detectors [28]. However, as
pointed out in [21], none of these detectors is actually fully affine invariant: All of them start with
initial feature scales and locations selected in a non-affine invariant manner. The difficulty comes
from the scale change from an image to another: This change of scale is in fact an under-sampling,
which means that the images differ by a blur.

In his milestone paper [21], Lowe has addressed this central problem and has proposed the so
called scale-invariant feature transform (SIFT) descriptor, that is claimed to be invariant to image
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translations and rotations, to scale changes (blur), and robust to illumination changes. It is also
surprisingly robust to large enough orientation changes of the viewpoint (up to 60 degrees when
one of the images is in frontal view). Based on the scale-space theory [19], the SIFT procedure
simulates all Gaussian blurs and normalizes local patches around scale covariant image key points
that are Laplacian extrema. A number of SIFT variants and extensions, including PCA-SIFT [15]
and gradient location-orientation histogram (GLOH) [27], that claim to have better robustness and
distinctiveness with scaled-down complexity have been developed ever since [8, 18]. Demonstrated
to be superior to other descriptors [25, 27], SIFT has been popularly applied for scene recogni-
tion [6, 30, 39, 44, 11, 40] and detection [9, 35], robot localization [3, 36, 32], image retrieval [12],
motion tracking [43, 16], 3D modeling and reconstruction [38, 45], building panoramas [1, 4], or
photo management [46, 17, 5]. Recently, a variant of SIFT named affine-SIFT (ASIFT) has been
mathematically proved to be fully affine invariant and has shown to give excellent performance
even under very large viewpoint changes [31].

The initial goal of the SIFT method is to compare two images (or two image parts) that can
be deduced from each other (or from a common one) by a rotation, a translation, and a zoom.
In this method, following a classical paradigm, stable points of interest are supposed to lie at
extrema of the Laplacian of the image in the image scale-space representation. The scale-space
representation introduces a smoothing parameter σ. Images u0 are smoothed at several scales to
obtain w(σ, x, y) := (Gσ ∗ u0)(x, y), where

Gσ(x, y) =
1

2πσ2
e−(x2+y2)/2σ2

is the 2D-Gaussian function with integral 1 and standard deviation σ. The notation ∗ stands for
the space 2-D convolution in (x, y). The description of the SIFT method involves sampling issues,
which we shall discuss later.

Taking apart all sampling issues and several thresholds whose aim it is to eliminate unreliable
features, the whole SIFT method can be summarized in one single sentence:

One sentence description The SIFT method computes scale-space extrema (σi, xi, yi) of the
Laplacian in (x, y) of w(σ, x, y), and then samples for each one of these extrema a square image
patch whose origin is (xi, yi), whose x-direction is one of the dominant gradients around (xi, yi),
and whose sampling rate is proportional to (and usually smaller than)

√
σ2
i + c2.

The constant c ≈ 0.5 is the tentative standard deviation of the initial image blur. The resulting
samples of the digital patch at scale σi are encoded by their gradient direction, which is invariant
under nondecreasing contrast changes. This accounts for the robustness of the method to illumi-
nation changes. In addition, only local histograms of the direction of the gradient are kept, which
accounts for the robustness of the final descriptor to changes of view angle (see Fig. 10).

The goal of this course is to give the mathematical formalism to examine whether the method
indeed is scale invariant, and to discuss whether its main assumption, that images are well-sampled
under Gaussian blur, does not entail significant errors. We shall not propose a new variant or an
extension of the SIFT method; on the contrary we intend to demonstrate that no other method
will ever improve more than marginally the SIFT scale invariance (see Figs. 5 and 12 for striking
examples). To the best of our knowledge, and in spite of the more than ten thousand papers
quoting and using SIFT, the analysis presented here does not seem to have been done previously.

The course is organized as follows. In Section 5, a simple formalism is introduced to obtain a
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Figure 1: A result of the SIFT method, using an outliers elimination method [37]. Pairs of matching
points are connected by segments.

condensed description of the SIFT shape encoding method. Using this formalism Section 6 proves
mathematically that the SIFT method indeed computes translation, rotation and scale invariants.

2 The heat equation

Linear image filtering is mainly done by convolving an image u with a positive integrable kernel g.
This means that the smoothed image is given by the function g ∗ u defined as

g ∗ u(x) =
∫

RN

g(x− y)u(y) dy =
∫

RN

g(y)u(x− y) dy.

Proposition 1 (The Gaussian and the heat equation). For all t > 0, the function x 7→ Gt(x) =
(1/(4πt)N/2)e−|x|

2/4t satisfies the semigroup property Gt ∗Gs = Gt+s and the heat equation

∂Gt
∂t
−∆Gt = 0.

Theorem 1 (Existence and uniqueness of solutions of the heat equation). Assume that u0 is a
uniformly continuous and bounded function and define for t > 0 and x ∈ RN , u(t,x) = (Gt∗u0)(x),
and u(0,x) = u0(x). Then

(i) u is C∞, uniformly continuous and bounded on (0,+∞)× RN ;

(ii) u(t,x) tends uniformly to u0(x) as t→ 0;

(v) u(t,x) satisfies the heat equation with initial value u0;

∂u

∂t
= ∆u and u(0,x) = u0(x); (1)
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Figure 2: Level lines and the heat equation. Top, left to right: original 410×270 grey level image;
level lines of original image for levels at multiples of 12. Bottom, left to right: original image
smoothed by the heat equation (convolution with the Gaussian). The standard deviation of the
Gaussian is 4, which means that its spatial range is comparable to a disk of radius 4. The image
gets blurred by the convolution, which averages grey level values and removes all sharp edges. This
can be appreciated on the right, where we have displayed all level lines for levels at multiples of 12.
Note how some level lines on the boundaries of the image have split into parallel level lines that
have drifted away from each other. The image has become smooth, but it is losing its structure.

Figure 3: The Gaussian in two dimensions.

(vi) More specifically,
sup

x∈RN , t≥0

|u(t,x)| ≤ sup
x
‖u0(x)‖. (2)
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Figure 4: Convolution with Gaussian kernels (heat equation). Displayed from top-left to bottom-
right are the original image and the results of convolutions with Gaussians of increasing variance.
A grey level representation of the convolution kernel is put on the right of each convolved image
to give an idea of the size of the involved neighborhood.

3 A Short Guide to SIFT Encoding

A typical image matching method first detects points of interest, then selects a region around each
point, and finally associates with each region a descriptor. Correspondences between two images
may then be established by matching the descriptors of both images.

In the SIFT method, stable points of interest are supposed to lie at extrema of the Laplacian
of the image in the image scale-space representation. The scale-space representation introduces a
smoothing parameter σ. Images u0 are smoothed at several scales to obtain w(σ, x, y) =: (Gσ ∗
u0)(x, y), where we use the parameterization of the gaussian by its standard deviation σ,

Gσ(x, y) = G(σ, x, y) =
1

2πσ2
e−(x2+y2)/2σ2

.

Taking apart all sampling issues and several thresholds whose aim it is to eliminate unreliable
features, the whole method can be summarized in one single sentence:

One sentence description The SIFT method computes scale-space extrema (σi, xi, yi) of the
space Laplacian of w(σ, x, y), and then samples for each one of these extrema a square image patch
whose origin is (xi, yi), whose x-direction is one of the dominant gradients around (xi, yi), and
whose sampling rate is

√
σ2
i + c2.

The constant c ' 0.5 is the tentative standard deviation of the image blur. The resulting
samples of the digital patch at scale σi are encoded by their gradient direction, which is invariant
under nondecreasing contrast changes. This accounts for the robustness of the method to illumi-
nation changes. In addition, only local histograms of the direction of the gradient are kept, which
accounts for the robustness of the final descriptor to changes of view angle (see Fig. 10).

Figs 5 and 12 show striking examples of the method scale invariance. Lowe claims that 1) his
descriptors are invariant with respect to translation, scale and rotation, and that 2) they provide a
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Figure 5: A result of the SIFT method, using an outliers elimination method [37]. Pairs of matching
points are connected by segments.

robust matching across a substantial range of affine distortions, change in 3D viewpoint, addition
of noise, and change in illumination. In addition, being local, they are robust to occlusion. Thus
they match all requirements for shape recognition algorithms except one: they are not really affine
invariant but only robust to moderate affine distortions.

The SIFT encoding algorithm consists of four steps: detection of scale-space extrema (Sect. 3.1),
accurate localization of key points (Sect. 3.2), and descriptor construction (Sect. 3.3).

3.1 Scale-Space Extrema

Following a classical paradigm, stable points of interest are supposed to lie at extrema of the
Laplacian of the image in the image scale-space representation. We recall that the scale-space
representation introduces a smoothing parameter σ, the scale, and convolves the image with Gaus-
sian functions of increasing standard deviation σ. By a classical approximation inspired from
psychophysics, the Laplacian of the Gaussian is replaced by a Difference of Gaussians at differ-
ent scales (DOG). Extrema of the Laplacian are then replaced by extrema of DOG functions:
D(σ, x, y) = w(kσ, x, y)− w(σ, x, y), where k is a constant multiplicative factor. Indeed, it is easy
to show that D(σ, x, y) is an approximation of the Laplacian:

D(σ, x, y) ≈ (k − 1)σ2(∆Gσ ∗ u0)(x, y).

In the terms of David Lowe:

The factor (k− 1) in the equation is constant over all scales and therefore does not
influence extrema location. The approximation error will go to zero as k goes to 1, but
in practice we have found that the approximation has almost no impact on the stability
of extrema detection or localization for even significant differences in scale, such as
k =
√

2.
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Figure 6: Gaussian pyramid for key points extraction (from [21])

To be more specific, quoting Lowe again:

D(σ, x, y) =: (G(kσ, x, y)−G(σ, x, y)) ∗ u0(x, y) = w(kσ, x, y)− w(σ, x, y)

The relationship between D and σ2∆G can be understood from the heat diffusion
equation (parameterized in terms of σ rather than the more usual t = σ2):

∂G

∂σ
= σ∆G.

From this, we see that ∆G can be computed from the finite difference approximation
to ∂G/∂σ, using the difference of nearby scales at kσ and σ:

σ∆G =
∂G

∂σ
≈ G(kσ, x, y)−G(σ, x, y)

kσ − σ

and therefore,
G(kσ, x, y)−G(σ, x, y) ≈ (k − 1)σ2∆G.

This shows that when the difference-of-Gaussian function has scales differing by
a constant factor it already incorporates the σ2 scale normalization required for the
scale-invariant Laplacian.

This leads to an efficient computation of local extrema of D by exploring neighborhoods through
a Gaussian pyramid ; see Figs. 6 and 7. The gaussian Gσ parameterized by its standard deviation
σ satisfies as stated by Lowe the time-dependent heat equation ∂G

∂σ = σ∆G.
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Figure 7: Neighborhood for the location of key points (from [21]). Local extrema are detected by
comparing each sample point in D with its eight neighbors at scale σ and its nine neighbors in the
scales above and below.

3.2 Accurate Key Point Detection

In order to achieve sub-pixel accuracy, the interest point position is slightly corrected thanks to
a quadratic interpolation. Let us call x0 =: (σ0, x0, y0) the current detected point in scale space,
which is known up to the (rough) sampling accuracy in space and scale. Notice that all points
x = (σ, x, y) here are scale-space coordinates. Let us call x1 = x0 + y the real extremum of the
DOG function. The Taylor expansion of D yields

D(x0 + y) = D(x0) + (DD) (x0) · y +
1
2
(
D2D

)
(x0)(y,y) + o(‖y‖2),

where D and its derivatives are evaluated at an interest point and y denotes an offset from this
point. Since interest points are extrema of D in scale space, setting the derivative to zero gives:

y = −
(
D2D(x0)

)−1
(DD(x0)) , (3)

which is the sub-pixel correction for a more accurate position of the key point of interest.
Clearly, (3) is a point where the gradient of D vanishes.
Since points with low contrast are sensitive to noise, and since points that are poorly localized

along an edge are not reliable, a filtering step is called for. Low contrast points are handled through
a simple thresholding step. Edge points are swept out following the Harris and Stephen’s interest
points paradigm. Let H be the following Hessian matrix:

H =
(

Dxx Dxy
Dxy Dyy

)
.

The reliability test is simply to assess whether the ratio between the larger eigenvalue and the
smaller one is below a threshold r. This amounts to check:

Tr(H)2

Det(H)
<

(r + 1)2

r
. (4)

This rules out standard edge points and puts points of interest at locations which are strong
enough extrema, or saddle points. It is easily checked that (4) is equivalent imposing that the ratio
between the smaller eigenvalue and the larger eigenvalue of H is smaller than r. These eigenvalues
are assumed to have the same sign. Why?
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Figure 8: SIFT key points. The arrow starting point, length and the orientation signify respectively
the key point position, scale, and dominant orientation. These features are covariant to any image
similarity.

3.3 Construction of the SIFT descriptor

In order to extract rotation-invariant patches, an orientation must be assigned to each key point.
Lowe proposes to estimate a semi-local average orientation for each key point. From each sample
image Lσ, gradient magnitude and orientation is pre-computed using a 2×2 scheme. An orientation
histogram is assigned to each key point by accumulating gradient orientations weighted by 1) the
corresponding gradient magnitude and by 2) a Gaussian factor depending on the distance to the
considered key point and on the scale. The precision of this histogram is 10 degrees. Peaks simply
correspond to dominant directions of local gradients. Key points are created for each peak with
similar magnitude, and the assigned orientation is refined by local quadratic interpolation of the
histogram values.

Once a scale and an orientation are assigned to each key point, each key-point is associated
a square image patch whose size is proportional to the scale and whose side direction is given by
the assigned direction. The next step is to extract from this patch robust information. Gradient
samples are accumulated into orientation histograms summarizing the contents over 4×4 subregions
surrounding the key point of interest. Each of the 16 subregions corresponds to a 8-orientations
bins histogram, leading to a 128 element feature for each key point (see Fig. 10). Two modifications
are made in order to reduce the effects of illumination changes: histogram values are thresholded
to reduce importance of large gradients (in order to deal with a strong illumination change such
as camera saturation), and feature vectors are normalized to unit length (making them invariant
to affine changes in illumination).
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Figure 9: Example of a 2 × 2 descriptor array of orientation histograms (right) computed from
an 8× 8 set of samples (left). The orientation histograms are quantized into 8 directions and the
length of each arrow corresponds to the magnitude of the histogram entry. (From [21])

3.4 Final matching

The outcome is for each image, a few hundreds or thousands SIFT descriptors associated with as
many key points. The descriptors of any image can be compared to the descriptors of any other
image, or belonging to a database of descriptors built up from many images. The only remaining
question is to decide when two descriptors match, or not. In the terms of Lowe again:

The best candidate match for each keypoint is found by identifying its nearest
neighbor in the database of keypoints from training images. The nearest neighbor is
defined as the keypoint with minimum Euclidean distance for the invariant descriptor
vector. However, many features from an image will not have any correct match in the
training database because they arise from background clutter or were not detected in
the training images. Therefore, it would be useful to have a way to discard features
that do not have any good match to the database. A global threshold on distance to the
closest feature does not perform well, as some descriptors are much more discriminative
than others. A more effective measure is obtained by comparing the distance of the
closest neighbor to that of the second-closest neighbor. (...) This measure performs
well because correct matches need to have the closest neighbor significantly closer than
the closest incorrect match to achieve reliable matching. For false matches, there will
likely be a number of other false matches within similar distances due to the high
dimensionality of the feature space. We can think of the second-closest match as
providing an estimate of the density of false matches within this portion of the feature
space and at the same time identifying specific instances of feature ambiguity. (...)
For our object recognition implementation, we reject all matches in which the distance
ratio is greater than 0.8, which eliminates 90% of the false matches while discarding
less than 5% of the correct matches.
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4 Image acquisition model underlying SIFT

4.1 The camera model

We always work on the camera CCD plane, whose mesh unit is taken to be 1. We shall always
assume that the camera pixels are indexed by Z2. The image sampling operator is therefore
always S1. Our second assumption is that the digital initial image is well-sampled and obtained
by a gaussian kernel. Thus, the digital image is u = S1GδAu0, where δ ≥ c, and A is a similarity
with positive determinant. (Lowe’s original paper assumes c ' 0.5, which amounts to assume a
slight under-sampling of the original image).

Definition 1. We model all digital frontal images obtained from a given ideal planar object whose
frontal infinite resolution image is u0 as

u0 =: S1GδAu0 (5)

where A is a A = RHλT is the composition of a translation and of a similarity.

Taking into account the way the digital image is blurred and sampled in the SIFT method,
we can now list the SIFT assumptions and formalize the method itself. The description is by far
simpler if we do it without mixing in sampling issues. We need not mix them in, since the fact
that images are well-sampled at all stages permits equivalently to describe all operations with the
continuous images directly, and to deduce afterwards the discrete operators on samples.

4.2 Condensed description of the SIFT method

1. There is an underlying infinite resolution bounded planar image u0;

2. The initial digital image is S1GδAu0 where δ ≥ 0.5, and A = RHλT is the composition of a
rotation, a zoom, and a translation;

3. the SIFT method computes a sufficient scale-space sampling of u(σ,x) = (GσGδAu0)(x),
and deduces by the Newton method the accurate location or key points defined as extrema
in scale-space of the spatial image Laplacian, ∆u(σ; x);

4. The blurred u(σ, ·) image is then re-sampled around each characteristic point with sampling
mesh

√
σ2 + c2;

5. the directions of the sampling axes are fixed by a dominant direction of the gradient of u(σ, ·)
in a neighborhood, with size proportional to

√
σ2 + c2 around the characteristic point;

6. the rest of the operations in the SIFT method is a contrast invariant encoding of the samples
around each characteristic point. It is not needed for the discussion to follow.

5 Image operators formalizing SIFT

The analysis of the scale invariance is much easier on the continuous images whose samples form
the digital image. The Shannon-Whittaker interpolation permits a perfect reconstruction of a
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continuous image from a discrete one, when the continuous image has been well-sampled [41].
Under the assumption that a Gaussian filtering can deliver well-sampled images up to a negligible
error, this section gives a formalized description of the SIFT procedure.

We denote by u(x) a continuous image defined for every x = (x, y) ∈ R2. All continuous
image operators, including the sampling operator itself, will be written in capital letters A, B.
Their composition will be, for the sake of simplicity, written as a mere juxtaposition AB. For
any similarity transform A its application on u is defined as Au(x) := u(Ax). For instance
Hλu(x) := u(λx) denotes an expansion of u by a factor λ−1. In the same way if R is a rotation,
Ru := u(Rx) is the image rotation by R−1.

5.1 Sampling and interpolation

Digital (discrete) images are only defined for k = (k, l) ∈ Z2 and are denoted in bold by u(k). For
example the δ-sampled image u = Sδu is defined on Z2 by

(Sδu)(k, l) := u(kδ, lδ); (6)

Conversely, the Shannon interpolate of a digital image is defined as follows [10]. Let u be a digital
image, defined on Z2 and such that

∑
k∈Z2 |u(k)|2 <∞ and

∑
k∈Z2 |u(k)| <∞. These conditions

are for example satisfied if the digital image has a finite number of non-zero samples. We call
Shannon interpolate Iu of u the only L2(R2) function u which coincides with u on the samples k
and with spectrum support contained in (−π, π)2. Iu is defined by the Shannon-Whittaker formula

Iu(x, y) :=
∑

(k,l)∈Z2

u(k, l)sinc(x− k)sinc(y − l), (7)

where sinc x := sinπx
πx . The Shannon interpolation has the fundamental property S1Iu = u. Con-

versely, if u is L2 and band-limited in (−π, π)2, then

IS1u = u. (8)

In that ideal situation we say that u is band-limited. We shall also say that the digital image
u = S1u is well-sampled if it was obtained from a band-limited image u, and therefore permits to
go back to u.

5.2 The Gaussian filtering

The Gaussian convolution that implements the scale-space plays a key role in the SIFT proce-
dure. Gσ will denote the convolution operator on R2 with the Gaussian kernel Gσ(x1, x2) =

1
2πσ2 e

−(x2
1+x

2
2)/2σ

2
, and the Gaussian kernel itself. Thus we simply write Gσu(x, y) := (Gσ∗u)(x, y).

Gσ satisfies the semigroup property

GσGβ = G√
σ2+β2 . (9)

The proof of the next formula is a mere change of variables in the integral defining the convolution.

GσHγu = HγGσγu. (10)
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The discrete Gaussian convolution applied to a digital image is defined as a digital operator by

Gδu =: S1GδIu. (11)

This discrete convolution is nothing but the continuous Gaussian convolution applied to the un-
derlying continuous image. This definition maintains the Gaussian semi-group property used re-
peatedly in SIFT,

GδGβ = G√
δ2+β2 . (12)

Indeed, using twice (11) and once (9) and (8),

GδGβu = S1GδIS1GβIu = S1GδGβIu = S1G√δ2+β2Iu = G√
δ2+β2u.

(The same formulas are adapted without alteration when replacing I by Id.)
The SIFT method makes the following assumption, whose validity will be confirmed both

experimentally and mathematically in Section ??.

Assumption 1. For every σ larger than 0.8 and every Shannon interpolated digital image u0,
the Gaussian blurred image Gσu0 satisfies the Shannon inversion formula up to a negligible error,
namely IS1Gσu0 ' Gσu0.

5.3 Formalized Scale Invariant Features Transform

The Assumption 1 that the Gaussian pre-filtering leads to a nearly aliasing-free subsampling allows
a perfect reconstruction of continuous images from discrete ones with Shannon-Whittaker interpo-
lation. The main steps of the SIFT method can therefore be formalized in a continuous setting as
follows.

1. Geometry: there is an underlying infinite resolution planar image u0(x) that has undergone
a similarity Au0 (modeling the composition of a rotation, a translation, and a homothety)
before sampling.

2. Sampling and blur: the camera blur is assumed to be a Gaussian with standard deviation
c. The initial digital image is therefore u = S1GcAu0;

3. Sampled scale space: the SIFT method computes enough samples of the scale space
function u(σ, ·) = GσGcAu0 to detect accurately “key points” (σ,x), defined as scale and
space local extrema of ∆u(σ, ·).

4. Covariant resampling: a 32 × 32 grid centered at the key point is used to sample u(σ, ·)
around each key point (σ,x). The grid mesh is proportional to

√
σ2 + c2. The directions of

the sampling grid axes are fixed by a dominant direction of ∇u(σ, ·) in a neighborhood of the
key point, whose size is also proportional to the key point scale σ. This yields for each key
point a rotation, translation and scale invariant square sampled subimage samples in which
the four parameters of A have been eliminated (see Fig. 11);

5. Illumination invariance: the final SIFT descriptors keep mainly the orientation of the
samples gradient, to gain invariance with respect to light conditions.
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Figure 10: Each key-point is associated a square image patch whose size is proportional to the scale and
whose side direction is given by the assigned direction. Example of a 2× 2 descriptor array of orientation
histograms (right) computed from an 8× 8 set of samples (left). The orientation histograms are quantized
into 8 directions and the length of each arrow corresponds to the magnitude of the histogram entry.

Figure 11: SIFT key points. The arrow starting point, length and the orientation signify respec-
tively the key point position, scale, and dominant orientation. These features are claimed to be
covariant to any image similarity.
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Steps 1 to 5 are the main steps of the method. We have omitted all details that are not relevant
in the discussion to follow. Let them be mentioned briefly. The Laplacian extrema are kept only
if they are larger than a fixed threshold that eliminates small features mainly due to noise. This
threshold is not scale invariant. The ratio of the eigenvalues of the Hessian of the Laplacian must
be close enough to 1 to ensure a good key point localization. (Typically, straight edge points have
only one large Hessian eigenvalue, are poorly localized, and are therefore ruled out by this second
threshold, which is scale invariant.)

The SIFT method assumes that the initial image satisfies c = 0.5 (meaning that it is the
result of a convolution with a Gaussian with standard deviation c). This implies a slight under-
sampling which is compensated by a complementary Gaussian blur applied to the image. Following
Assumption 1 it increases the initial blur to 0.8. In accordance with this choice, a 2×2 subsampling
in the SIFT scale-space computations can be made only when a 2 × 0.8 = 1.6 Gaussian blur has
been reached.

Postponing the verification of the SIFT main Assumption 1 to Section ??, the next Section
proves that SIFT has an almost perfect scale invariance, which is the main result of the present
paper.

6 Scale and SIFT: consistency of the method

Let T , R, H and G be respectively an arbitrary image translation, an arbitrary image rotation,
an arbitrary image homothety, and an arbitrary Gaussian convolution, all applied to continuous
images. We say that there is strong commutation if we can exchange the order of application of
two of these operators. We say that there is weak commutation between two of these operators if
we have (e.g.) RT = T ′R, meaning that given R and T there is T ′ such that the former relation
occurs. The next lemma is straightforward.

Lemma 1. All of the aforementioned operators weakly commute. In addition, R and G commute
strongly.

In this Section, in conformity with the SIFT model of Section 5, the digital image is a frontal
view of an infinite resolution ideal image u0. In that case, A = HT R is the composition of a
rotation R, a translation T and a homothety H. Thus the digital image is u = S1GδHT Ru0, for
some H, T , R. The next Lemma shows that SIFT is rotation- and translation-invariant.

Lemma 2. For any rotation R and any translation T , the SIFT descriptors of S1GδHT Ru0 are
identical to those of S1GδHu0.

Proof. Using the weak commutation of translations and rotations with all other operators (Lemma
1), it is easily checked that the SIFT method is rotation and translation invariant: The SIFT
descriptors of a rotated or translated image are identical to those of the original. Indeed, the set of
scale space Laplacian extrema is covariant to translations and rotations. Then the normalization
process for each SIFT descriptor situates the origin at each extremum in turn, thus canceling the
translation, and the local sampling grid defining the SIFT patch has axes given by peaks in its
gradient direction histogram. Such peaks are translation invariant and rotation covariant. Thus,
the normalization of the direction also cancels the rotation.
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Lemma 3. Let u and v be two digital images that are frontal snapshots of the same continuous
flat image u0, u = S1GβHλu0 and v := S1GδHµu0, taken at different distances, with different
Gaussian blurs and possibly different sampling rates. Let w(σ,x) := (Gσu0)(x) denote the scale
space of u0. Then the scale spaces of u and v are

u(σ,x) = w(λ
√
σ2 + β2, λx) and v(σ,x) = w(µ

√
σ2 + δ2, µx).

If (s0,x0) is a key point of w satisfying s0 ≥ max(λβ, µδ), then it corresponds to a key point of u
at the scale σ1 such that λ

√
σ2

1 + β2 = s0, whose SIFT descriptor is sampled with mesh
√
σ2

1 + c2,
where c is the tentative standard deviation of the initial image blur as described in Section 5.3. In
the same way (s0,x0) corresponds to a key point of v at scale σ2 such that s0 = µ

√
σ2

2 + δ2, whose
SIFT descriptor is sampled with mesh

√
σ2

2 + c2.

Proof. The interpolated initial images are by (8)

u := IS1GβHλu0 = GβHλu0 and v := IS1GδHµu0 = GδHµu0.

Computing the scale-space of these images amounts to convolve them for every σ > 0 with Gσ,
which yields, using the Gaussian semigroup property (9) and the commutation relation (10):

u(σ, ·) = GσGβHλu0 = G√
σ2+β2Hλu0 = HλGλ

√
σ2+β2u0.

By the same calculation, this function is compared by SIFT with

v(σ, ·) = HµGµ
√
σ2+δ2u0

. Let us set w(s,x) := (Gsu0)(x). Then the scale spaces compared by SIFT are

u(σ,x) = w(λ
√
σ2 + β2, λx) and v(σ,x) = w(µ

√
σ2 + δ2, µx).

Let us consider an extremal point (s0,x0) of the Laplacian of the scale space function w. If
s0 ≥ max(λβ, µδ), an extremal point occurs at scales σ1 for (the Laplacian of) u(σ,x) and σ2 for
(the Laplacian of) v(σ,x) satisfying

s0 = λ
√
σ2

1 + β2 = µ
√
σ2

2 + δ2. (13)

We recall that each SIFT descriptor at a key point (σ1,x1) is computed from space samples of
x→ u(σ,x). The origin of the local grid is x1, the intrinsic axes are fixed by one of the dominant
directions of the gradient of u(σ1, ·) around x1, in a circular neighborhood whose size is proportional
to σ1. The SIFT descriptor sampling rate around the key point is proportional to

√
σ2

1 + c2 for
u(σ1,x), and to

√
σ2

2 + c2 for u(σ2,x), as described in Section 5.3.

Theorem 2. Let u and v be two digital images that are frontal snapshots of the same continuous
flat image u0, u = S1GβHλT Ru0 and v := S1GδHµu0, taken at different distances, with different
Gaussian blurs and possibly different sampling rates, and up to a camera translation and rotation
around its optical axis. Without loss of generality, assume λ ≤ µ. Then if the initial blurs are
identical for both images (if β = δ = c), then each SIFT descriptor of u is identical to a SIFT
descriptor of v. If β 6= δ (or β = δ 6= c), the SIFT descriptors of u and v become (quickly) similar
when their scales grow, namely as soon as σ1

max(c,β) � 1 and σ2
max(c,δ) � 1, where σ1 and σ2 are

respectively the scales of the key points in the two images.
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Proof. By the result of Lemma 2, we can neglect the effect of translations and rotations. Therefore
assume without loss of generality that the images under comparison are as in Lemma 3. Consider a
key point (s0,x0) of w with scale s0 ≥ max(λβ, µδ). Following Lemma 3, there is a corresponding
key point (σ1,

x0
λ ) for u whose sampling rate is fixed by the method to

√
σ2

1 + c2 and a corre-
sponding key point (σ2,

x0
µ ) whose sampling rate is fixed by the method to

√
σ2

2 + c2 for v. To
have a common reference for these sampling rates, it is convenient to refer to the corresponding
sampling rates for w(s0,x), which are λ

√
σ2

1 + c2 for the SIFT descriptors of u at scale σ1, and
µ
√
σ2

2 + c2 for the descriptors of v at scale σ2. Thus the SIFT descriptors of u and v for x0 will
be identical if and only if λ

√
σ2

1 + c2 = µ
√
σ2

2 + c2. Since we have λ
√
σ2

1 + β2 = µ
√
σ2

2 + δ2, the
SIFT descriptors of u and v are identical if and only if

λ
√
σ2

1 + β2 = µ
√
σ2

2 + δ2 ⇒ λ
√
σ2

1 + c2 = µ
√
σ2

2 + c2. (14)

In other terms λ
√
σ2

1 + c2 = µ
√
σ2

2 + c2 if and only if

λ2β2 − µ2δ2 = (λ2 − µ2)c2. (15)

Since λ and µ correspond to camera distances to the observed object u0, their values are arbitrary.
Thus in general the only way to get (15) is to have β = δ = c, which means that the blurs of both
images have been guessed correctly.

The second statement is straightforward: if σ1 and σ2 are large enough with respect to β, δ
and c, the relation λ

√
σ2

1 + β2 = µ
√
σ2

2 + δ2, implies λ
√
σ2

1 + c2 ≈ µ
√
σ2

2 + c2.

The almost perfect scale invariance of SIFT stated in Theorem 2 is illustrated by the striking
example of Fig. 12. The 25 SIFT key points of a very small image u are compared to the 60 key
points obtained by zooming in u by a 32 factor: The resulting digital image is v := S 1

32
Idu, again

obtained by zero-padding. For better observability, both images are displayed with the same size
by enlarging the pixels of u. Almost each key point (18 out of 25) of u finds its counterpart in
v. 18 matches are detected between the descriptors as shown on the right. Let us check how this
extreme example is covered by Theorem 2. We compare an initial image u = S1GδIdu0 (with
δ = c) with its zoomed in version v = S 1

32
GδIdu0. But we have by (10)

v = S 1
32
GδIdu0 = S1H 1

32
GδIdu0 = S1G32δH 1

32
Idu0.

Here the numerical application of the relations in the above proof give: We want (14) to hold
approximately, where µ = 1, λ = 1

32 , β = 32δ. Thus we want 1
32

√
σ2

1 + (32δ)2 =
√
σ2

2 + δ2 to
imply 1

32

√
σ2

1 + c2 ≈
√
σ2

2 + c2 which means
√

(σ1
32 )2 + c2 =

√
σ2

2 + c2 to imply
√

(σ1
32 )2 + ( c

32 )2 ≈√
σ2

2 + c2. This is true only if σ1 is significantly larger than 32, which is true, since σ1 is the scale
of the SIFT descriptors in the image v, which has been zoomed in by a 32 factor.

By the second part of Theorem 2 the reliability of the SIFT matching increases with scale.
This fact is illustrated in Fig. 13. Starting from a high resolution image u0, two images u and v
are obtained by simulated zoom out, u = S1GβHλIdu0 = SλGλβIdu0 and v = SµGµδIdu0, with
λ = 2, µ = 4, β = δ = 0.8. Pairs of SIFT descriptors of u and v in correspondence, established by
a SIFT matching, are compared using an Euclidean distance d. The scale rate σ1/σ2 as well as
the distance d between the matched key points are plotted against σ2 in Fig. 13. That σ1/σ2 ≈ 2
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Figure 12: Scale invariance of SIFT, an illustration of Theorem 2. Left: a very small digital
image u with its 25 key points. For the conventions to represent key points and matches, see the
comments in Fig. 11. Middle: this image is over sampled by a 32 factor to S 1

32
Idu. It has 60 key

points. Right: 18 matches found between u and S 1
32

Idu. A zoom of the small image u on the
up-left corner is shown in the bottom left. It can be observed that all the matches are correct.

for all key points confirms that the SIFT matching process is reliable. As stated by the theorem,
the rate σ1/σ2 goes to µ/λ = 2 when σ2 increases, and the distance d goes down. However, as also
apparent in the numerical result, when the scale is small (σ2 < 1), σ1/σ2 is very different from 2
and d is large.

7 Conclusion

Our overall conclusion is that no substantial improvement of the SIFT method can be ever hoped,
as far as translation, rotation and scale invariance are concerned. As pointed out by several
benchmarks, the robustness and repeatability of the SIFT descriptors outperforms other methods.
However, such benchmarks mix three very different criteria that, in our opinion, should have been
discussed separately. The first one is the formal invariance of each method when all thresholds
have been eliminated. This formal invariance has been proved here for SIFT when the initial blurs
of both images are equal to a known value c, and it has been proved to be approximately true even
with images having undergone very different blurs, like in the surprising experiment of fig. 13.
The second main criterion is the clever fixing of several thresholds in the SIFT method ensuring
robustness, repeatability, and a low false alarm rate. This one has been extensively tested and
confirmed in previous benchmark papers (see also the recent and complete report [7]). We think,
however, that the success of SIFT in these benchmarks is primarily due to its full scale invariance.
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Figure 13: Top (from left to right): u0, u, v. Middle: Rate of scales σ1/σ2 of matched key points
in u and v against σ2. Bottom: Distance between matched descriptors of u and v against σ2.
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8 Projects

8.1 A famous competitor: the SURF method

Surf means: “Speeded up robust features.” It is basically a SIFT method where everything has
been indeed sped up and kept to the essentials. It is very used and quoted 1199 times in four years,
according to Google scholar. In the terms of the authors:

(...) we present a novel scale- and rotation-invariant interest point detector and descrip-
tor, coined SURF (Speeded Up Robust Features). It approximates or even outperforms
previously proposed schemes with respect to repeatability, distinctiveness, and robust-
ness, yet can be computed and compared much faster. This is achieved by relying
on integral images for image convolutions; by building on the strengths of the leading
existing detectors and descriptors (in casu, using a Hessian matrix-based measure for
the detector, and a distribution-based descriptor); and by simplifying these methods to
the essential. This leads to a combination of novel detection, description, and matching
steps. The paper presents experimental results on a standard evaluation set, as well as
on imagery obtained in the context of a real-life object recognition application. Both
show SURFs strong performance.

The goal of the project is first detail completely SURF, to discuss on the mathematical side
its invariance properties, compared to SIFT, and possibly to explore and discuss available imple-
mentation source codes to compare them to the original paper. This kind of comparison is usually
very enlightening.

8.2 A second famous competitor: the MSER method

The famous “Maximally stable extremal region” method extracts from images all contrasted shapes.
These shapes receive affine invariant descriptors and are used to compare several snapshots of a
scene from different viewpoints. This method is again acclaimed (for example quoted 1028 times
in six years, according to Google Scholar). Very fast algorithms have been proposed since then to
implement it.

In the terms of the authors:

A new set of image elements that are put into correspondence, the so called extremal
regions, is introduced. Extremal regions possess highly desirable properties: the set
is closed under (1) continuous (and thus projective) transformation of image coordi-
nates and (2) monotonic transformation of image intensities. An efficient (near linear
complexity) and practically fast detection algorithm (near frame rate) is presented for
an affinely invariant stable subset of extremal regions, the maximally stable extremal
regions (MSER).

A new robust similarity measure for establishing tentative correspondences is proposed.
The robustness ensures that invariants from multiple measurement regions (regions
obtained by invariant constructions from extremal regions), some that are significantly
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larger (and hence discriminative) than the MSERs, may be used to establish tentative
correspondences.

The high utility of MSERs, multiple measurement regions and the robust metric is
demonstrated in wide-baseline experiments on image pairs from both indoor and out-
door scenes. Significant change of scale (3.5), illumination conditions, out-of-plane ro-
tation, occlusion, locally anisotropic scale change and 3D translation of the viewpoint
are all present in the test problems. Good estimates of epipolar geometry (average
distance from corresponding points to the epipolar line below 0.09 of the inter-pixel
distance) are obtained.

The goal of the project will be:

• Mathematics: discuss the affine invariance of the method, and its scale invariance (compared
to SIFT)

• algorithm: study the implementation and the fast implementations, the source code available,
propose a simple and robust version for IPOL.
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