
On the consistency of the SIFT
METHOD

(Scale Invariant Feature Transformation)

Jean-Michel Morel, Ives Rey Otero, Guoshen Yu



1

Gestalt psychophysical invariance laws proposed by Wertheimer,
Attneave and Kanizsa: a good image matching method should be:

1. invariant to illuminance changes;

2. independent of the viewpoint, and therefore covariant by a
subgroup of the projective group;

3. insensitive to the noise inherent to any image acquisition device;

4. robust to partial occlusions, and therefore local enough;

5. robust to scaling.
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Figure 1: Various snapshots of a “Mural”
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Detectors in competition and their invariance

• Harris point detector (1988) : rotation, translation

• Harris-Laplace and Hessian-Laplace region detectors (Mikola-
jczyk et al. 20001, 2004) invariant to rotation and scale changes,
extended to some affine invariance

• edge-based region detector Tuytelaars 1999, 2004, Entropy-
based region detector (Kadir 2004)

• level line-based region detectors: MSER (“maximally stable
extremal region”) (Matas 2002) special affine invariant

• LLD (“level line descriptor”) (Musé 2003) special affine invariant

• MSER, better performance than other affine invariant detectors

• Some are special affine invariant (MSER, LLD), some are scale
invariant but imperfectly affine invariant

• the surprise: although in principle only scale invariant, SIFT
has good affine invariance
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PLAN : A mathematical analysis of the most
popular shape descriptor: Lowe’s Scale-Invariant
Feature Transform (SIFT) method

• Many examples;

• Comprehensive description of the SIFT shape encoding method

• Proof that : SIFT method achieves perfect performance only
with, zoomed, rotated, translated versions of two images

• if not exactly, SIFT is factually more and more scale-invariant
when the scale grows in the image scale-space
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STRIKING EXAMPLES
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Figure 2: Coke cans: Multi scale matches (Rabin, Gousseau, Delon,
method which eliminates false alarms)
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Linear image filtering is mainly done by convolving an image u with
a positive integrable kernel g, which simulates a camera blur.
This means that the smoothed image is given by the function g ∗ u
defined as

g ∗ u(x) =
∫

RN
g(x− y)u(y) dy =

∫
RN

g(y)u(x− y) dy.
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Proposition 1 (The Gaussian and the heat equation) For
all t > 0, the function x 7→ Gt(x) = (1/(4πt)N/2)e−|x|

2/4t satisfies
the semigroup property Gt ∗Gs = Gt+s and the heat equation

∂Gt
∂t
−∆Gt = 0.
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Theorem 1 (The heat equation) Assume that u0 is a uniformly
continuous and bounded function and define for t > 0 and x ∈ RN ,
u(t,x) = (Gt ∗ u0)(x), and u(0,x) = u0(x). Then

(i) u is C∞, uniformly continuous and bounded on (0,+∞)× RN ;

(ii) u(t,x) tends uniformly to u0(x) as t→ 0;

(v) u(t,x) satisfies the heat equation with initial value u0;

∂u

∂t
= ∆u and u(0,x) = u0(x); (1)

(vi) supx∈RN , t≥0 |u(t,x)| ≤ supx ‖u0(x)‖.
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Figure 3: Level lines and the heat equation. Top: original; level
lines for levels multiple of 12. Bottom: image smoothed by the heat
equation (convolution with the Gaussian, standard deviation 4.)
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The Gaussian and the scale space

• Gσ(x1, x2) = 1
2π(cσ)2 e

− x
2
1+x22

2(cσ)2 , Gσ satisfies the heat equation

∂Gσ

∂σ
= cσ∆Gσ,

GδGβ = G√
δ2+β2 .

• G : convolution operator on R2,

Gu(x) =: (G ∗ u)(x) =
∫

R2
G(y)u(x− y)dy.
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Figure 4: Convolution with Gaussian kernels (heat equation).
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Distance means blur!



53



54

From continuous to digital and conversely

• u(x): a continuous and bounded image defined for every
x = (x, y) ∈ R2.

• u: a digital image, only defined for (n1, n2) ∈ Z2.

• Sδ: the sampling operator at rate δ > 0. Let u be a continuous
image on R2. The associated sampled digital image Sδu is
defined on Z2 by

Sδu(n1, n2) = u(n1δ, n2δ); (1)
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From a digital image back to a continuous image by
Shannon interpolation

• u(n) digital image,
∑
n∈Z2 |u(n)|2 <∞,

∑
n∈Z2 |u(n)| <∞.

• Shannon interpolate of u: the L2(R2) function u = Iu having u
as samples and with spectrum supported in (−π, π)2.

• Shannon-Whittaker :

Iu(x, y) =:
∑

(n1,n2)∈Z2

u(n1, n2)
sinπ(x− n1)
π(x− n1)

sinπ(y − n2)
π(y − n2)

.

• S1Iu = u. Conversely, if u is L2 and band-limited in (−π, π)2,
then IS1u = u.

• If c ≥ 0.8, G1u0 is experimentally ”well-sampled” and therefore
IS1G1u0 = G1u0.
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Definition We model all digital images obtained from a given ideal
planar object whose frontal infinite resolution image is u0 by

u =: S1GδAu0

where A is any affine map (six parameters)!.

A = λRψTtan θRφ,

Rotation, tilt, rotation again, zoom. Model correct if λ is large.
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SIFT assumptions and condensed description of the method

1. the initial digital image is S1GcAu0, A is any affine map with
positive eigenvalues;

2. at all scales σ > 0, the SIFT method computes good samplings
of u(σ, ·) = GσGcAu0;

3. key points (σ,x) are extrema of ∆u(σ, ·) in the scale space;

4. the blurred u(σ, ·) image is sampled around each key point at a
pace proportional to

√
σ2 + c2;

5. directions of the sampling axes are fixed by a dominant direction
of ∇u(σ, ·) in a neighborhood of the key point proportional to√
σ2 + c2;

6. this yields rotation, translation and zoom invariant samples;

7. the final SIFT descriptor keeps only orientations of the gradient
to gain invariance w.r. light conditions.
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Figure 5: Gaussian pyramid for key points extraction (from Lowe)
DOG functions proportional to Laplacian
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Figure 6: Neighborhood for the location of key points (from Lowe).
Local extrema are detected by comparing each sample point in D
with its eight neighbors at scale σ and its nine neighbors in the
scales above and below
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Figure 7: Each key-point is associated a square image patch whose size is

proportional to the scale and whose side direction is given by the assigned

direction. Example of a 2 × 2 descriptor array of orientation histograms

(right) computed from an 8 × 8 set of samples (left). The orientation

histograms are quantized into 8 directions and the length of each arrow

corresponds to the magnitude of the histogram entry.
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Figure 8: SIFT key points (scale and orientation)
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1 Scale and SIFT: consistency of the

method

Let T , R, H and G be respectively an arbitrary image translation,
an arbitrary image rotation, an arbitrary image homothety, and
an arbitrary Gaussian convolution. We say that there is strong
commutation if we can exchange the order of application of two of
these operators. We say that there is weak commutation between
two of these operators if we have (e.g.) RT = T ′R, meaning that
given R and T there is T ′ such that the former relation occurs. The
next lemma is straightforward.

Lemma 1 All of the aforementioned operators weakly commute. In
addition, R and G commute strongly.
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In the SIFT model the digital image is a frontal view of an infinite
resolution ideal image u0. In that case, A = HT R is the composition
of a rotation R, a translation T and a homothety H. Thus the
digital image is u = S1GδHT Ru0, for some H, T , R.

Lemma 2 For any rotation R and any translation T , the SIFT
descriptors of S1GδHT Ru0 are identical to those of S1GδHu0.

PROOF: Using the weak commutation of translations and rotations
with all other operators : The SIFT descriptors of a rotated or
translated image are identical to those of the original. Indeed, the
set of scale space Laplacian extrema is covariant to translations and
rotations. Then the normalization process for each SIFT descriptor
situates the origin at each extremum in turn, thus canceling the
translation, and the local sampling grid defining the SIFT patch
has axes given by peaks in its gradient direction histogram. Such
peaks are translation invariant and rotation covariant. Thus, the
normalization of the direction also cancels the rotation.
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Figure 9: Rotation invariance of SIFT. Top left and right: u and
Rπ

2
u superposed with their 31 keypoints. Top middle: descriptors of

Rπ
2
u are projected on u and their orientations are inverted for better

observability. Bottom: 31 matches between u and Rπ
2
u (Rπ

2
u are

rotated by 90◦ for better preservability).
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Figure 10: Rotation invariance of SIFT. Top left: u superposed with
its 52 keypoints. Top right: R π

10
u (obtained with Shannon interpo-

lation) superposed with its 73 keypoints. Top middle: descriptors
of Rπ

2
u are projected on u and their orientations are inverted for

better observability. Bottom: 37 matches between u and Rπ
2
u.
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Lemma 3 Let u and v be two digital images that are frontal snap-
shots of the same continuous flat image u0, u = S1GβHλu0 and v :=
S1GδHµu0, taken at different distances, with different Gaussian blurs
and possibly different sampling rates. Let w(σ,x) := (Gσu0)(x) de-
note the scale space of u0. Then the scale spaces of u and v
are

u(σ,x) = w(λ
√
σ2 + β2, λx) and v(σ,x) = w(µ

√
σ2 + δ2, µx).

If (s0,x0) is a key point of w satisfying s0 ≥ max(λβ, µδ), then it
corresponds to a key point of u at the scale σ1 such that λ

√
σ2

1 + β2 =
s0, whose SIFT descriptor is sampled with mesh

√
σ2

1 + c2, where
c is the tentative standard deviation of the initial image blur as
described in Section 57. In the same way (s0,x0) corresponds to a
key point of v at scale σ2 such that s0 = µ

√
σ2

2 + δ2, whose SIFT
descriptor is sampled with mesh

√
σ2

2 + c2.
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PROOF: Computing the scale-space for images amounts to convolve
them for every σ > 0 with Gσ.

u(σ, ·) = GσGβHλu0 = G√
σ2+β2Hλu0 = HλGλ

√
σ2+β2u0;

v(σ, ·) = HµGµ
√
σ2+δ2u0.

Set w(s,x) := (Gsu0)(x). The scale spaces compared by SIFT are

u(σ,x) = w(λ
√
σ2 + β2, λx) and v(σ,x) = w(µ

√
σ2 + δ2, µx).

For any extremal point (s0,x0) of the Laplacian of w, if s0 ≥
max(λβ, µδ), an extremal point occurs at scales σ1 for u(σ,x) and
σ2 for v(σ,x) satisfying

s0 = λ
√
σ2

1 + β2 = µ
√
σ2

2 + δ2. (1)

Each SIFT descriptor at a key point (σ1,x1) is computed from
space samples of x → u(σ,x). The origin of the local grid is x1,
the intrinsic axes are fixed by one of the dominant directions of the
gradient of u(σ1, ·) around x1, in a circular neighborhood whose size
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is proportional to σ1. The SIFT descriptor sampling rate around the
key point is proportional to

√
σ2

1 + c2 for u(σ1,x), and to
√
σ2

2 + c2

for u(σ2,x).
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Theorem 2 Let u and v be two frontal snapshots of the same
continuous flat image u0, u = S1GβHλT Ru0 and v := S1GδHµu0,

taken at different distances, with different Gaussian blurs and
possibly different sampling rates, and up to a camera translation and
rotation around its optical axis. Without loss of generality, assume
λ ≤ µ. Then if the initial blurs are identical for both images (if
β = δ = c), then each SIFT descriptor of u is identical to a SIFT
descriptor of v. If β 6= δ (or β = δ 6= c), the SIFT descriptors of
u and v become (quickly) similar when their scales grow, namely
as soon as σ1

max(c,β) � 1 and σ2
max(c,δ) � 1, where σ1 and σ2 are

respectively the scales of the key points in the two images.
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PROOF: We can neglect the effect of translations and rotations.
Consider a key point (s0,x0) of w with scale s0 ≥ max(λβ, µδ).
There is a corresponding key point (σ1,

x0
λ ) for u whose sampling

rate is fixed by the method to
√
σ2

1 + c2 and a corresponding
key point (σ2,

x0
µ ) whose sampling rate is fixed by the method to√

σ2
2 + c2 for v. The corresponding sampling rates for w(s0,x), are

λ
√
σ2

1 + c2 for the SIFT descriptors of u at scale σ1, and µ
√
σ2

2 + c2

for the descriptors of v at scale σ2. The SIFT descriptors of u and
v for x0 will be identical if and only if λ

√
σ2

1 + c2 = µ
√
σ2

2 + c2.
Since we have λ

√
σ2

1 + β2 = µ
√
σ2

2 + δ2, the SIFT descriptors of u
and v are identical if and only if

λ
√
σ2

1 + β2 = µ
√
σ2

2 + δ2 ⇒ λ
√
σ2

1 + c2 = µ
√
σ2

2 + c2. (1)
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In other terms λ
√
σ2

1 + c2 = µ
√
σ2

2 + c2 if and only if

λ2β2 − µ2δ2 = (λ2 − µ2)c2. (1)

Since λ and µ correspond to camera distances to the observed object
u0, their values are arbitrary. Thus in general the only way to get
(1) is to have β = δ = c, which means that the blurs of both images
have been guessed correctly.

The second statement is straightforward: if σ1 and σ2 are large
enough with respect to β, δ and c, the relation λ

√
σ2

1 + β2 =
µ
√
σ2

2 + δ2, implies λ
√
σ2

1 + c2 ≈ µ
√
σ2

2 + c2.
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Figure 11: Scale invariance of SIFT, an illustration of Theorem 2.
Left: a very small digital image u with its 25 key points. Middle:
this image is over sampled by a 32 factor to S 1

32
Idu. It has 60 key

points. Right: 18 matches found between u and S 1
32

Idu. A zoom of
the small image u on the up-left corner is shown in the bottom left.
It can be observed that all the matches are correct.
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Let us check how this extreme example is covered by Theorem 2.
We compare an initial image u = S1GδIdu0 (with δ = c) with its
zoomed in version v = S 1

32
GδIdu0. But we have by commutation

v = S 1
32
GδIdu0 = S1H 1

32
GδIdu0 = S1G32δH 1

32
Idu0.

Here the numerical application of the relations in the above proof
give: We want (1) to hold approximately, where µ = 1, λ = 1

32 ,
β = 32δ. Thus we want 1

32

√
σ2

1 + (32δ)2 =
√
σ2

2 + δ2 to imply
1
32

√
σ2

1 + c2 ≈
√
σ2

2 + c2 which means
√

(σ1
32 )2 + c2 =

√
σ2

2 + c2

to imply
√

(σ1
32 )2 + ( c

32 )2 ≈
√
σ2

2 + c2. This is true only if σ1 is
significantly larger than 32, which is true, since σ1 is the scale of the
SIFT descriptors in the image v, which has been zoomed in by a 32
factor.
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Figure 12: Top (from left to right): u0, u, v. Middle: Rate of
scales σ1/σ2 of matched key points in u and v against σ2. Bottom:
Distance between matched descriptors of u and v against σ2.
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A famous competitor: the MSER method
The famous “Maximally stable extremal region” method extracts
from images all contrasted shapes. These shapes receive affine
invariant descriptors and are used to compare several snapshots of
a scene from different viewpoints. This method is again acclaimed
(for example quoted 1028 times in six years, according to Google
Scholar). Very fast algorithms have been proposed since then to
implement it.

A new set of image elements that are put into corre-
spondence, the so called extremal regions, is introduced.
Extremal regions possess highly desirable properties: the
set is closed under (1) continuous (and thus projective)
transformation of image coordinates and (2) monotonic
transformation of image intensities. An efficient (near linear
complexity) and practically fast detection algorithm (near
frame rate) is presented for an affinely invariant stable
subset of extremal regions, the maximally stable extremal
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regions (MSER).
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If the tilt is moderate : u =: G1Au0 ' AGdetAu0. If detA is not
far from 1, normalization methods can work: Proposed by (Monasse,
Guichard 1997), but more recently known as MSER method (Matas
et al.) and LLD : extract connected components of level sets and
apply to them an affine normalization. This eliminates the effect
of all 6 parameters. But not scale invariant!
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The goal of the project will be:

• Mathematics: discuss the affine invariance of the method, and
its scale invariance (compared to SIFT)

• algorithm: study the implementation and the fast implementa-
tions, the source code available, propose a simple and robust
version for IPOL.
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Figure 13: SIFT 3 matches, MSER 87 matches
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A second famous competitor: the SURF method Surf means:
“Speeded up robust features.” It is basically a SIFT method where
everything has been indeed sped up and kept to the essentials. It is
very used and quoted 1199 times in four years, according to Google
scholar. In the terms of the authors:

(...) we present a novel scale- and rotation-invariant interest
point detector and descriptor, coined SURF (Speeded Up
Robust Features). It approximates or even outperforms
previously proposed schemes with respect to repeatability,
distinctiveness, and robustness, yet can be computed and
compared much faster. This is achieved by relying on
integral images for image convolutions; by building on the
strengths of the leading existing detectors and descriptors
(in casu, using a Hessian matrix-based measure for the
detector, and a distribution-based descriptor); and by
simplifying these methods to the essential. This leads
to a combination of novel detection, description, and
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matching steps. The paper presents experimental results on
a standard evaluation set, as well as on imagery obtained
in the context of a real-life object recognition application.
Both show SURF’s strong performance.
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The goal of the project is first detail completely SURF, to discuss
on the mathematical side its invariance properties, compared to
SIFT, and possibly to explore and discuss available implementation
source codes to compare them to the original paper. This kind of
comparison is usually very enlightening.
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