e Frame change: X, = R(X — C) with X the 3D point in world frame; X,
the 3D point in camera frame, C camera center in world frame, R the
rotation matrix between camera frame and world frame; R = [rq,ro, r3]
where ry, ro and r3 the X-axis, Y-axis and Z-axis of world frame repre-

i’
sented in camera frame; R = |r4 | where r}, r), rj the X-axis, Y-axis
T
ry
and Z-axis of camera frame represented in world frame.

e Projection from 3D to 2D:
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with X = (X,Y,Z,1)T the homogeneous coordinates of 3D point X =
(X,Y,Z)T, x. the homogeneous coordinate of the projected 2D point.

e In pixel coordinate:
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with m, and m, the number of pixels per unit length in the skewed z-axis
direction and the skewed y-axis direction in the image plane respectively;
f (in millimeter) the focal length of camera; xo and yo the coordinates
of the principal point, represented in the skewed image frame in pixels; s
the skewness factor which is 0 when the pixel is rectangle; 6 the skewness
angle between two sides of image CCD plane.

e Calibration matrix:
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Projection matrix: P =KR|[I | — C]

Line equation: ax+by+c = 0 can be written as in homogeneous coordinate
xT1 = 0 with point as x = (z,y,1)” and line as 1 = (a, b,c)7.

The intersection point of two lines 1 = (a,b,c)” and I = (a/,b', )7 is
x =1x 1’ with x the cross product.

The line passing through two points x and x’ has the form 1 = x x x'.

Homogeneous points x = (z1, 29, 73)7 is equivalent to inhomogeneous
point (z1/z3,72/73)T (z3 # 0). Points x (z3 = 0) are at infinity. All the
points at infinity lie on the line at infinity 1., = (0,0,1)%.

2D projective transformation (homography) H
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Epipolar constraint: x’7Fx = 0 with F the fundamental matrix

Given a point x in the left image, the corresponding epipolar line in the
right image is ' = Fx. Given a point x’ in the right image, the corre-
sponding epipolar line in the left image is 1 = F7x’

Epipoles: Fe = 0 and FTe’ = 0.



