- Frame change: $\hat{\mathbf{X}}_{c}=\mathbf{R}(\hat{\mathbf{X}}-\mathbf{C})$ with \mathbf{X} the 3 D point in world frame; $\hat{\mathbf{X}}_{c}$ the 3 D point in camera frame, \mathbf{C} camera center in world frame, \mathbf{R} the rotation matrix between camera frame and world frame; $\mathbf{R}=\left[\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right]$ where $\mathbf{r}_{1}, \mathbf{r}_{2}$ and \mathbf{r}_{3} the X-axis, Y-axis and Z-axis of world frame represented in camera frame; $\mathbf{R}=\left[\begin{array}{c}\mathbf{r}_{1}^{\prime T} \\ \mathbf{r}_{2}^{\prime T} \\ \mathbf{r}_{3}^{\prime T}\end{array}\right]$ where $\mathbf{r}_{1}^{\prime}, \mathbf{r}_{2}^{\prime}, \mathbf{r}_{3}^{\prime}$ the X-axis, Y-axis and Z-axis of camera frame represented in world frame.
- Projection from 3D to 2D:

$$
\begin{align*}
\mathbf{x}_{c} & =\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right] \hat{\mathbf{X}}_{c}=\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right] \mathbf{R}[\mathbf{I} \mid-\mathbf{C}]\binom{\hat{\mathbf{X}}}{1} \tag{1}\\
& =\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right] \mathbf{R}[\mathbf{I} \mid-\mathbf{C}] \mathbf{X}
\end{align*}
$$

with $\mathbf{X}=(X, Y, Z, 1)^{T}$ the homogeneous coordinates of 3 D point $\hat{\mathbf{X}}=$ $(X, Y, Z)^{T}, \mathbf{x}_{c}$ the homogeneous coordinate of the projected 2D point.

- In pixel coordinate:

$$
\begin{align*}
\mathbf{x} & =\left[\begin{array}{ccc}
m_{x} & 0 & x_{0} \\
0 & m_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -\cot \theta & 0 \\
0 & \frac{1}{\sin \theta} & 0 \\
0 & 0 & 1
\end{array}\right] \mathbf{x}_{c} \\
& =\left[\begin{array}{ccc}
m_{x} & 0 & x_{0} \\
0 & m_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -\cot \theta & 0 \\
0 & \frac{1}{\sin \theta} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right] \mathbf{R}[\mathbf{I} \mid-\mathbf{C}] \mathbf{X} \\
& =\left[\begin{array}{ccc}
m_{x} f & -m_{x} f \cot \theta & x_{0} \\
0 & \frac{m_{y} f}{\sin \theta} & y_{0} \\
0 & 0 & 1
\end{array}\right] \mathbf{R}[\mathbf{I} \mid-\mathbf{C}] \mathbf{X} \\
& =\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
0 & \alpha_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right] \mathbf{R}[\mathbf{I} \mid-\mathbf{C}] \mathbf{X}=\mathbf{K R}[\mathbf{I} \mid-\mathbf{C}] \mathbf{X}=\mathbf{P X} \tag{2}
\end{align*}
$$

with m_{x} and m_{y} the number of pixels per unit length in the skewed x-axis direction and the skewed y-axis direction in the image plane respectively; f (in millimeter) the focal length of camera; x_{0} and y_{0} the coordinates of the principal point, represented in the skewed image frame in pixels; s the skewness factor which is 0 when the pixel is rectangle; θ the skewness angle between two sides of image CCD plane.

- Calibration matrix:

$$
\mathbf{K}=\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \tag{3}\\
0 & \alpha_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
m_{x} f & -m_{x} f \cot \theta & x_{0} \\
0 & \frac{m_{y} f}{\sin \theta} & y_{0} \\
0 & 0 & 1
\end{array}\right]
$$

- Projection matrix: $\mathbf{P}=\mathbf{K R}[\mathbf{I} \mid-\mathbf{C}]$
- Line equation: $a x+b y+c=0$ can be written as in homogeneous coordinate $\mathbf{x}^{T} \mathbf{l}=0$ with point as $\mathbf{x}=(x, y, 1)^{T}$ and line as $\mathbf{l}=(a, b, c)^{T}$.
- The intersection point of two lines $\mathbf{l}=(a, b, c)^{T}$ and $\mathbf{l}^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)^{T}$ is $\mathbf{x}=\mathbf{l} \times \mathbf{l}^{\prime}$ with \times the cross product.
- The line passing through two points \mathbf{x} and \mathbf{x}^{\prime} has the form $\mathbf{l}=\mathbf{x} \times \mathbf{x}^{\prime}$.
- Homogeneous points $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)^{T}$ is equivalent to inhomogeneous point $\left(x_{1} / x_{3}, x_{2} / x_{3}\right)^{T}\left(x_{3} \neq 0\right)$. Points $\mathbf{x}\left(x_{3}=0\right)$ are at infinity. All the points at infinity lie on the line at infinity $\mathbf{l}_{\infty}=(0,0,1)^{T}$.
- 2D projective transformation (homography) \mathbf{H}

$$
\left(\begin{array}{l}
x_{1}^{\prime} \tag{4}\\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

- Epipolar constraint: $\mathbf{x}^{T T} \mathbf{F} \mathbf{x}=0$ with \mathbf{F} the fundamental matrix
- Given a point \mathbf{x} in the left image, the corresponding epipolar line in the right image is $\mathbf{l}^{\prime}=\mathbf{F x}$. Given a point \mathbf{x}^{\prime} in the right image, the corresponding epipolar line in the left image is $\mathbf{l}=\mathbf{F}^{T} \mathbf{x}^{\prime}$
- Epipoles: $\mathbf{F e}=\mathbf{0}$ and $\mathbf{F}^{T} \mathbf{e}^{\prime}=0$.

