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Abstract

Image stereo-rectification is the process by which two images of the
same solid scene undergo homographic transforms, so that their corre-
sponding epipolar lines coincide and become parallel with the x-axis of
image. A pair of stereo-rectified images is helpful for dense stereo match-
ing algorithms. It restricts the search domain for each match to a line par-
allel to the x-axis. Due to the redundant degrees of freedom, the solution
to stereo-rectification is not unique and actually can lead to undesirable
distortions or be stuck in a local minimum of the distortion function. Dif-
ferent algorithms have been proposed to solve this problem. Since most
of the algorithms are based on multi-view geometry, it is necessary to re-
view the fundamental properties of multi-view geometry before entering
the details of rectification.

1 Pinhole camera

Establishing a camera model is the first step to treat the other multi-
view geometry problems. In this report, the camera is considered as a
pinhole model (In reality, the geometric distortion introduced by camera
lens should also be considered). Some basic concepts about the camera
are shown in Fig. 1:

• camera center (or optic center, or focal point): the point through
which all relevant light rays pass.

• image plane: the camera CCD plane where the image is formed.
This plane does not contain the camera center.

Here is some standard vocabulary concerning such a model:

• principal axis: the line from the camera center perpendicular to the
image plane.

• principal plane: the plane containing the camera center and parallel
to the image plane.

• focal length f : the distance from the camera center to the image
plane.

• camera frame: the coordinate frame based on camera which has
camera center as origin and principal axis as Z-axis.
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Figure 1: Pinhole camera model.

• world frame: a pre-fixed coordinate frame where any 3D point can
be represented.

Note that there is a rotation and translation between the world frame and
the camera frame.

1.1 Central projection

In the pinhole camera model, all the relevant light rays pass through the
camera center. So it is called central or conic projection. To project a 3D
point to camera plane, the first step is to represent it in the camera frame
by a translation and a rotation from the world frame:

X̂c = R(X̂−C) (1)

with X̂ = (X,Y, Z)T and X̂c = (Xc, Yc, Zc)
T the coordinate of a point in

the world frame and in the camera frame respectively; C = (Xo, Yo, Zo)
T

represents the camera center in the world frame.
The projection of X̂c on camera plane is:

xc = fXc/Zc (2)

yc = fYc/Zc (3)

Exercice 1. Prove these equations. Hint: simply apply Thales’s theorem!

This can also be represented more succinctly in matrix form by using
homogeneous coordinates:

xc =

f 0 0
0 f 0
0 0 1

 X̂c (4)

In homogeneous coordinates, xc = (fXc, fYc, Zc)
T is equivalent to the 2D

point (fXc/Zc, fYc/Zc)
T by dividing the first two coordinates by the third

coordinate. We will come back to homogeneous coordinates in Sect. 2.1.
By concatenating the frame change and the central projection, a 3D

2



point is projected to a 2D point:

xc =

f 0 0
0 f 0
0 0 1

 X̂c =

f 0 0
0 f 0
0 0 1

R
(
I | −C

)(X̂
1

)
(5)

=

f 0 0
0 f 0
0 0 1

R
(
I | −C

)
X

with X = (X,Y, Z, 1)T the homogeneous coordinates of 3D point X̂ =
(X,Y, Z)T .

1.2 Internal parameters

The above obtained 2D point xc has a meter or millimeter (or inch!)
unit. But any digital image is measured in the pixel unit. In addition,
the projected point xc has the principal point as the origin, while the
convention is to take the top-left corner of the image as origin. Due to
some manufacture imprecision, the pixel in a CCD array is not necessarily
square, but may be a rectangle or even a parallelogram. By considering
this deformation and the other mentioned factors, we have:

x =

mx 0 x0

0 my y0
0 0 1

1 −cotθ 0
0 1

sinθ
0

0 0 1

xc

=

mx 0 x0

0 my y0
0 0 1

1 −cotθ 0
0 1

sinθ
0

0 0 1

f 0 0
0 f 0
0 0 1

R
(
I | −C

)
X

=

mxf −mxfcotθ x0

0
myf

sinθ
y0

0 0 1

R
(
I | −C

)
X

=

αx s x0

0 αy y0
0 0 1

R[I | −C]X = KR[I | −C]X = PX (6)

with αx and βy the number of pixels per unit length in the skewed x-axis
direction and the skewed y-axis direction in the image plane respectively;
f the focal length of camera; x0 and y0 the coordinates of the principal
point, represented in the skewed image frame in pixels; s the skewness
factor which is 0 when the pixel is rectangle; θ the skewness angle between
two sides of image CCD plane. K is called the calibration matrix. It
depends only on the camera settings, not on its position:

K =

αx s x0

0 αy y0
0 0 1

 =

mxf −mxfcotθ x0

0
myf

sinθ
y0

0 0 1

 (7)

Observe that the entries in K are not all positive. θ is generally in the
range [0, π]. The entry −mxfcotθ will be positive if θ > 90◦, negative if

θ < 90◦ and 0 when θ = 90◦. The entry
myf

sin(θ)
will always be positive. So

the determinant of K will always be positive.
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1.3 Projection matrix

In conclusion, the central projection from 3D to 2D performed by a pin-
hole camera can be represented by a 3×4 matrix P = KR [I | −C], which
is called the camera projection matrix. This matrix contains all the pa-
rameters of the camera: the calibration matrix as internal parameters; the
camera orientation and camera center as external parameters.

Exercice 2. Prove that P has rank 3 and that a null vector of P is the
vector representing the camera center in homogeneous coordinates (see
below).

2 Projective geometry

It is necessary to introduce projective geometry to further investigate the
properties of the camera projection matrix. It is easier to understand
the 2D projective geometry, which is in fact the geometry of projective
transformations of the plane. These transformations model the geometric
distortion which arises when a plane is imaged by a pinhole camera. Un-
der perspective imaging certain geometric properties are preserved while
others are not. Projective geometry models this imaging and also provides
a mathematical representation appropriate for computations.

2.1 Homogeneous coordinates

Homogeneous coordinates are very useful in multi-view geometry, as they
represent many fundamental relationships in vector or matrix form and
reduce them to linear algebra. We first introduce the homogeneous nota-
tion for points and lines on a plane. Then the homogeneous notation for
3D space is just evident. A convention in multi-view geometry is that all
the geometric entities are represented by column vectors by default.

A line in the plane can be represented by an equation ax+ by+ c = 0
with (x, y)T a point on the line. It is natural to represent the equation
in vector form: xT l = 0 with x = (x, y, 1)T and l = (a, b, c)T . But the
vector (x, y, 1)T and (a, b, c)T are not the only vectors which satisfy the
line equation. Any vector m(x, y, 1)T and n(a, b, c)T satisfy also the line
equation for any m 6= 0 and n 6= 0. So two vectors related by an overall
non-zero scaling are considered as being equivalent. An equivalence class
of vectors under this equivalence relationship is known as a homogeneous
vector. For a point in the plane, its homogeneous coordinates have the
form x = (x1, x2, x3)T , representing the point inhomogeneous coordinates
(x1/x3, x2/x3)T (x3 6= 0) in R2. Even if the homogeneous coordinates
of points and lines in the plane are 3-vectors, by homogeneity the real
degrees of freedom (DOF) are still 2.

Given two lines l = (a, b, c)T and l′ = (a′, b′, c′)T , the homogeneous
coordinates of the intersection point are x = l×l′ with× the cross product.
On the other hand, the line passing through two points x and x′ has the
form l = x × x′. Note that the simplicity of the expressions is a direct
consequence of the use of the homogeneous vector representation of lines
and points.
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Exercice 3. Prove these assertions.

Now consider two parallel lines ax+ by + c = 0 and ax+ by + c′ = 0.
They are represented by vectors l = (a, b, c)T and l′ = (a, b, c′)T . Note
that the first two coordinates are the same because they are parallel. The
intersection point of the two lines is l×l′ = (c′−c)(b,−a, 0)T . By ignoring
the scale c′ − c, the intersection point is (b,−a, 0). If we try to compute
the inhomogeneous coordinates of this point, we have (b/0,−a/0)T , which
makes no sense, except to suggest that this point has infinitely large co-
ordinates. In fact, a point with homogeneous coordinates in the form
(x, y, 0)T does not correspond to any finite point in R2. This agrees with
the usual idea that parallel lines meet at infinity.

Homogeneous vectors x = (x1, x2, x3)T such that x3 6= 0 correspond
to finite points in R2. By augmenting R2 with points having a last coor-
dinate x3 = 0, the resulting space is the set of all homogeneous 3-vectors,
namely the 2D projective space P2. The points with last coordinate
x3 = 0 are called ideal points or points at infinity. Each ideal point
represents a direction determined by the ratio x1 : x2 (x2 6= 0) or x2 : x1

(x1 6= 0). In addition, all the ideal points lie on a line at infinity, denoted
by l∞ = (0, 0, 1)T since (x1, x2, 0)(0, 0, 1)T = 0, ∀x1, x2. Each line l in-
tersects l∞ at an ideal point, which corresponds to the direction of l. So
the line at infinity l∞ can also be considered as the set of all directions of
lines in the plane.

2.2 Projective plane

The set of equivalence classes of vectors inR3−(0, 0, 0)T forms the projec-
tive space P2 (the vector (0, 0, 0)T makes no sense in projective space). We
can also think of P2 as a set of rays inR3. The set of vectors k(x1, x2, x3)T

as the scalar k varies forms a ray through the origin. Such a ray may be
thought of as representing a single point in P2. In this model, the lines
in P2 are planes passing through the origin. Two non-identical rays lie
on exactly one plane, and any two planes intersect in one ray. This is
the analogue of two distinct points uniquely defining a line, and two lines
always intersecting in a point. Points and lines may be obtained by in-
tersecting this set of rays and planes by the plane x3 = 1. In Fig. 2, the
rays representing ideal points and the plane representing l∞ are parallel
to the plane x3 = 1.

Notice that in the projective plane, two lines always intersect (at an
ideal point if they are parallel).

2.3 Transformations

The most important transformation in the projective plane is the pro-
jective transformation (or homography), which simply is a non-singular
3×3 matrix, denoted by H. The 2D planar projective transformation pre-
serves the collinearity: If x1, x2 and x3 are on the line l, then Hx1, Hx2

and Hx3 are also on the line H−T l. (This traduces the fact that if three
vectors are coplanar, so are their images by a 3D linear transformation).
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Figure 2: Projective plane model.

Note that all of the computation here is in homogeneous coordinates,x′1x′2
x′3

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

x1

x2

x3

 (8)

H in the above equation may be changed by multiplication by an arbi-
trary non-zero factor without changing the result. The inhomogeneous
coordinate of the point (x′1, x

′
2, x
′
3)T is:

x′
1
x′
3

=
h11x1 + h12x2 + h13x3

h31x1 + h32x2 + h33x3
(9)

x′
2
x′
3

=
h21x1 + h22x2 + h23x3

h31x1 + h32x2 + h33x3

Note that the multiplication of H itself by a scalar factor yields the same
transform. So H is also a homogeneous geometric entity and it has 8
degrees of freedom.

A point x is transformed to point Hx under the homography H, while
a line l is transformed to a line H−Tl. More details about projective
transformations can be found in [6].

Exercice 4. Prove that the image by H of the line passing through x1 and
x2 is represented by the homogeneous vector Hx1 ×Hx2, so that if x3 is
aligned with x1 and x2, then Hx3 is also on the image line. Hint: use the
algebraic property defining the vector product: (x1×x2)Ty =

∣∣x1 x2 y
∣∣

∀y.

Exercice 5. Consider the case h31 = h32 = 0 6= h33 (affine transform
of the plane). Prove that the image of l∞ is l∞. Conversely, prove that
a homography that keeps the l∞ line globally invariant is affine. What is
the effect of a plane translation on l∞? of a zoom? of a rotation in the
plane?

Exercice 6. Prove that a homography is uniquely determined by the data
of the images of 4 points in general position (no more than 2 of them on
any line). Hint: consider the case where the 4 points are {0, 1} × {0, 1}
and use composition of homographies to handle the general case.
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3 Camera rotation

A particular 2D projective transformation can be induced by a pure cam-
era rotation without changing its optical center (Fig. 3). Given a 3D point
X, its projected image by rotating the camera is:

x1 = K1R1[I | −C]X (10)

x2 = K2R2[I | −C]X

By simple computation, we find that x1 and x2 are related by a homog-
raphy:

x2 = K2R2R
−1
1 K−1

1 x1 = Hx1 (11)

Camera rotation is not the only situation which induces the homogra-
phy. When the 3D scene is a plane, the relationship between two images
taken by a camera is also a homography. The third situation inducing
homography is that the scene is very far away from the camera.

Figure 3: 2-D projective transformation (homography) induced by a pure cam-
era rotation without changing camera center.

4 Fundamental matrix

The epipolar geometry is the intrinsic projective geometry between two
views. It is independent of the observed scene structure and of the world
frame. It depends only on the camera internal parameters and relative
pose. The fundamental matrix F encapsulates this intrinsic geometry.
It is a 3 × 3 matrix of rank 2. If x and x′ is a pair of corresponding
points in two views, then they satisfy the scalar equation x′TFx = 0. The
fundamental matrix can be computed from correspondences of imaged
scene points alone, without requiring knowledge of the camera internal
parameters or relative pose.

4.1 Epipolar constraint

In Fig. 4, we can see that a 3D point X is projected to x and x′ in two
views. These three points X, x and x′ form the epipolar plane, which
intersects the two image planes by two epipolar lines respectively. The
line connecting two camera centers is called baseline and intersects the
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Figure 4: Left: The epipolar plane is formed by two camera centers and the 3-D
point X Right: The 3-D point X must be on the back-projected ray defined by
the left camera center and x. This ray is imaged as a line l′ called epipolar line
in the second view and the image of X must lie on l′.

two image planes at two epipoles respectively. The well-known equation
for epipolar geometry writes:

x′TFx = 0 (12)

with F the fundamental matrix which is the algebraic representation of
the epipolar geometry. We should remark that this equation is only a
necessary condition for two corresponding points since F projects a point
in one image to a corresponding epipolar line in the other image (Fig. 4).
In Fig. 4, it is clear that the epipolar line is obtained by projecting the
ray, which passes the optic center C and x, to the other image. Since the
position of the 3-D scene point X is not determined on the ray, the image
point x′ could be anywhere on the epipolar line l′. So the mapping from
a point to its epipolar line: x 7→ l′ is a projection represented by F, which
can be written as:

l′ = Fx (13)

In geometry, the points in the left image represent a 2-D projective
space, and the epipolar lines in the right image represent a 1-D projective
space since all the epipolar lines have a common intersection point, the
epipole e′. So F represents a projection from a 2-D projective space to a
1-D projective space. From this viewpoint, it is natural to derive that F
has rank equal to 2. For any point x′ on the epipolar line l′, we have the
equation x′T l′ = 0, which is exactly (12) by using (13).

When the position of the 3-D scene point X varies, the epipolar plane
rotates about the baseline (Fig. 4). The family of planes is known as an
epipolar pencil, which intersects the two images at two pencils of epipolar
lines. Each pencil of epipolar lines intersects at the corresponding epipole.

To get the explicit form of the F matrix, we can write the projections of
a 3D point X in the two cameras, expressed in the first camera coordinate
frame:

λx = K [I |0] X = λKX̂ (14)

λ′x′ = K′ [R |T] X (15)
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R is the rotation of the camera 2 frame relative to the camera 1 frame
and T is the coordinate of camera 1’s optical center in the camera 2
frame. These 6 scalar equations have 5 parameters depending on the
scene structure: X̂, λ and λ′. So it is expected that by eliminating these
from the system we shall get one scalar equation.

The first equation, X̂ = λK−1x substituted in the second equation,
yields:

λ′K′−1x′ = λRK−1x + T. (16)

The cross-product of each side with vector T gives:

λ′[T]×K′−1x′ = [T]×RK−1x (17)

and since the left hand side is orthogonal to K′−1x′:

(K′−1x′)T [T]×RK−1x = 0, (18)

which is (12) with
F = K′−T [T]×RK−1. (19)

Some properties of the fundamental matrix are summarized here (the
details could be found in chapter 9 of [6])

• F is a 3× 3 rank-2 homogeneous matrix with 7 freedom degrees

• x′TFx = 0 for a pair of corresponding image points x and x′

– Given a point x in the left image, the corresponding epipolar
line in the right image is l′ = Fx

– Given a point x′ in the right image, the corresponding epipolar
line in the left image is l = FTx′

• Fe = 0 and FT e′ = 0: the epipoles are the null vectors of F and FT

and all epipolar lines contain the epipoles.

• Correspondence between epipolar lines: l′ = F[e]×l and l = FT [e′]×l′

F only depends on projective properties of the cameras P, P′. The
camera projection matrices relate 3-space measurements to image mea-
surements and so depend on both the image coordinate frame and the
choice of the world coordinate frame. On the contrary F does not de-
pend on the choice of the world frame. More precisely, if H is a 4 × 4
matrix representing a projective transformation of the 3D-space, then the
fundamental matrix corresponding to the pairs of camera matrix (P,P′)
and (PH,P′H) are the same. This is because x = PX = (PH)

(
H−1X

)
and x′ = P′X = (P′H)

(
H−1X

)
. So the matched points x ↔ x′ are

not changed under the 3-D projective transformation H even if the pair
of camera matrix and the 3-D point are changed. Then the fundamental
matrix also remains unchanged.

When K and K′ are known (called the calibrated case), the constraint
(12) but involving K−1x and K′−1x′ can be rewritten:(

K′−1x′
)T

E
(
K−1x

)
= 0 (20)

with
E = [T]×R. (21)

E is called the essential matrix; its discovery was published in 1981 by
H.C. Longuet-Higgins in Nature. It predates by 10 years the discovery of
the fundamental matrix!
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4.2 Computation

Two algorithms are usually used to compute the F matrix: the 7-point
algorithm and the 8-point algorithm. The 7-point algorithm is used when
there are only 7 correspondences, which is the minimal number of cor-
respondences needed to determine a unique F. The 8-point algorithm
requires 8 or more correspondences. In the rectification we will mention
later, the 8-point algorithm is used because there are usually more than
8 correspondences.

4.2.1 The 7-point algorithm

The equation x′TFx = 0 gives us one linear equation in the unknown
entries of F. More explicitly, given x = (x, y, 1)T , x′ = (x′, y′, 1)T , write
f = (F11,F12,F13,F21,F22,F23,F31,F32,F33)T the vector made up of
entries of F in row-major order. Then the equation can be written as:(

x′x, x′y, x′, y′x, y′, x, y, 1
)
f = 0 (22)

If we have n image point correspondences, the n linear equations can be
stacked in a linear system:

Af = 0 (23)

with the A the n× 9 coefficient matrix.
Since F has 7 degrees of freedom, 7 correspondences are enough to

compute F. In this minimum case (7 correspondences), the solution space
has dimension 2 of the form λ1F1+λ2F2 with F1 and F2 corresponding to
two independent null vectors of A. Since F is a homogeneous entity, the
solution does not change by multiplying a non-zero scalar, for example,
1/(λ1 +λ2). So the solution becomes αF1 +(1−α)F2 (α = λ1/(λ1 +λ2)).

Remember that det(F) = det (αF1 + (1− α)F2) = 0 since F has rank
2. This leads to a cubic polynomial equation in α. It has either 3 real
solutions or 1 real solution and 2 complex conjugate solutions. Only the
real solutions make sense for F. So F = αF1+(1−α)F2 has 1 or 3 possible
solutions. The geometric interpretation of 1 or 3 solutions is in chapter
22 of [6]. From the point of view of critical surfaces, the seven points
and two camera centers must lie on a quadric surface (since 9 points lie
on a quadric). If this quadric is ruled, then there will be three solutions.
On the other hand, if it is not ruled quadric (for instance an ellipsoid)
then there will be only one solution. The 7-point algorithm requires the
minimum number of correspondences to solve F and it is often integrated
in the outlier detection algorithm to extract the good F like [1, 10].

4.2.2 The 8-point algorithm

The 8-point algorithm is a simpler computation method of F. In this case,
the solution space has only dimension 1 and the F is uniquely determined
up to scale. But because of noise in point coordinates, det(F) is not equal
to 0. The convenient method to enforce the determinant constraint is
to use the SVD (Singular Value Decomposition, see Appendix B) and to
replace the smallest singular value by 0. The obtained F′ is optimal in
the sense of minimizing the Frobenius norm ‖F − F′‖. A key point of
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the 8-point algorithm is the normalization which makes the points more
concentrated around their centroid. In Hartley’s original paper [4], he
proposed to translate the points so that the origin is at the centroid of
the points, and to scale the points so that the average distance from
the points to their centroid is equal to

√
2. This normalization improves

dramatically the conditioning of the coefficient matrix A in (22) and make
all entries of F contribute approximately equally to the error term.

Algorithm 1 (8-point normalization algorithm).
Objective Given n > 8 image point correspondences {xi ↔ x′i}, determine

the fundamental matrix F such that x′Ti Fxi = 0

1. Normalization: Transform the image coordinates according to x̂i =
Txi and x̂′i = T′x′i, where T and T′ are normalization transforma-
tions consisting of a translation and scaling:

T =

1/α 0 −u/α
0 1/α −v/α
0 0 1

 , T′ =

1/α′ 0 −u′/α′
0 1/α′ −v′/α′
0 0 1


with (u, v)T and (u′, v′)T the centroid of the points in the first and
second image respectively; 1/α and 1/α′ the scale to make average
distance from the points to the centroid equal to

√
2.

2. Find the fundamental matrix F̂ corresponding to the matches {x̂i ↔ x̂′i}
by

(a) Linear solution: Determine F̂ from the singular vector cor-
responding to the smallest singular value of Â, where Â is the
coefficient matrix composed from the matches {x̂i ↔ x̂′i}.

(b) Constraint enforcement: Replace F̂ by F̂′ such that det(F̂′) =
0 by setting the smallest singular value to be 0.

3. Denormalization: Set F = T′T F̂′T. Matrix F is the fundamental
matrix corresponding to the original data {xi ↔ x′i}.

5 Rectification

This section is dedicated to image rectification, the process of re-sampling
pairs of stereo images in order to produce a pair of “matched epipolar”
projections. The rectification makes the corresponding epipolar lines co-
incide and be parallel to the x-axis. Consequently, the disparity between
two images is only in the x-direction. A pair of stereo-rectified images
is helpful for dense stereo matching algorithms. It restricts the search
domain for each match to a line parallel to the x-axis.

5.1 Special form of F

In geometric view, the rectification is achieved when both cameras have
their image planes coplanar and the x-axis of the image planes parallel to
the baseline. This means that the motion between both cameras is a pure
translation with no rotation. One can assume that the rectified camera
matrices are: P = K [I | 0] and P′ = K [I | − λi] with i =

(
1 0 0

)T
11



Figure 5: Rectification illustration. Left: original cameras configuration. Right:
Camera configuration after rectification. Image planes are coplanar and their
x-axis is parallel to the baseline CC′.

(λ is the distance between the camera centers, called the baseline). Using
(19) with R = I and T = −λi we get

F = −λK−T [i]×K−1 (24)

and after simplification (and ignoring the scale −λ)

F = [i]× (25)

Putting this special fundamental matrix in (12), we have y = y′, that is,
the epipolar lines are corresponding raster lines and the disparity is in the
x-direction.

Exercice 7. Verify that (25) is a consequence of (24) using the fact that
K−1 is upper-triangular. Hint: a smarter way than carrying out the mul-
tiplications is observing that a) Fi = 0 and b) F is anti-symmetric.

5.2 Invariance

Note that the solution to the rectification is not unique. Once the rectifi-
cation is achieved, we can rotate two cameras together around the baseline
and the resulting images remain rectified. But the introduced projective
distortion is not different. The ideal is to achieve the rectification by
introducing a projective distortion as small as possible.

Exercice 8. Prove this by computing (KRK−1)T [i]×(KRK−1) when

R =

(
1 0

0 R̂

)
with R̂ a 2× 2 rotation matrix.

6 Quasi-Euclidean rectification

Since the rectification can be achieved by rotating two cameras without
changing their camera center, it is equivalent to apply a pair of homogra-
phies on two images respectively. This is the idea used in many different
rectification algorithms. The problem is how to find this pair of homo-
graphies which introduce a small projective distortion. In [5], the authors
first rectify one image and find another “matched” homography to rectify
the other image. The distortion is reduced by imposing that one homog-
raphy is approximately rigid around one point and by minimizing the
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x-disparity between both rectified images. In [7], the distortion reduction
is improved by decomposing the homographies into three components:
homograhy, similarity and shear. A projective transformation is sought,
as affine as possible to reduce the projective distortion, but the affine dis-
tortion is not treated. In [3], the distortion is interpreted as local loss or
creation of pixels in the rectified images. Thus the local area change in
the rectified images is minimized. A similar idea is exposed in [9], whose
solution is a homography that can be locally well approximated by a rigid
transformation through the whole image domain. Quasi-Euclidean rec-
tification [2] proposed a new parametrization of the fundamental matrix
based on two rectification homographies to fit the feature correspondences.
The rectification problem is formulated as a 6-parameter non-linear mini-
mization problem. This method is very compact but no special attention
is paid to the distortion reduction.

6.1 Parameterization of the problem

Given pairs of correspondences (xl,xr), we have xTl Fxr = 0. Once the
rectification is achieved, we have:

x̂Tr F0x̂l = 0 (26)

with
F0 = [i]× , (27)

and x̂l and x̂r are obtained by applying a pair of rectification homography
(Hl,Hr) on (xl,xr) respectively:

x̂l = Hlxl (28)

x̂r = Hrxr (29)

So the original fundamental matrix can also be written as:

F = HT
l [i]×Hr (30)

According to (11), Hl and Hr can be parametrized as:

Hl = KnlRlK
−1
ol (31)

Hr = KnrRrK
−1
or (32)

with (Kol,Kor) the old calibration matrices, (Knl,Knr) the new cali-
bration matrices and (Rl,Rl) the rotations performed in the rectifica-
tion of left and right cameras respectively. The old calibration matrix
and the rotation are unknown, while the new calibration matrix can be
set arbitrarily, provided the second row of Knl is equal to the second
row of Knr. Indeed, under this condition, it can be easily checked that
KT
nl [i]×Knr = [i]×. Consequently the original fundamental matrix F can

be parameterized as:

F = K−Tol RT
l [i]×RrK

−1
or (33)

The unknown parameters include 3 rotation angles in Rl, 3 rotation an-
gles in Rr, 5 parameters in Kol and 5 parameters in Kor. Since the
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rectification is invariant to a common rotation of two cameras around the
baseline, one degree of freedom can be eliminated. In [2], the rotation
around the X-axis of the left camera is fixed to be zero. The unknown
parameters are further reduced by assuming that the calibration matrix
are the same for two cameras with zero skewness, aspect ratio equal to 1
and principal point at the center of image.

Kol = Kor =

α 0 w/2
0 α h/2
0 0 1

 (34)

where w and h are the image width and height respectively. So for the
calibration matrix, there is only the focal length α to be estimated. Since
5 parameters are left for the rotations, there are overall 6 parameters to
be estimated.

6.2 Solution

The decomposition of F in the form of (33) with constraint (34) may be
difficult. Instead of that, [2] does not explicitly compute F from point
correspondences but estimates the 6 parameters so as to minimize the
distance from points to their epipolar line:

min
∑
i

(
d2(KoRlK

−1
o xli, [i]×KoRrK

−1
o xri) +

d2(KoRrK
−1
o xri, [i]×KoRlK

−1
o xli)

) (35)

with d2 the square point-line distance and {(xli,xri)}i the set of point
correspondences. Instead of using these geometric distances, an algebraic
approximation is used, where the term i of the sum is replaced by:

E2
i =

(
(RlK

−1
0 xli)

T [i]×(RrK
−1
0 xri)

)2
(K−T0 RT

r [i]×RlK
−1
0 xli)(1 : 2)2 + (K−T0 RT

l [i]×RrK
−1
0 xri)(1 : 2)2

(36)
The numerator corresponds to the linear constraint and each term of the
denominator to the normalization factor of an epipolar line equation.

This problem is a non-linear minimization. An algorithm called Levenberg-
Marquardt (see Appendix C) is used to solve it. This requires computing
the partial derivatives of Ei with respect to the 6 parameters. Those are
expressed as:

∂Ei
∂p

=
xTilF

′xir
D

−N FTxil
T
F′Txil + Fxir

T
F′xir

D3
, (37)

with p any of the parameters,
(
a b c

)T
=
(
a b

)T
, and

F = (RlK
−1)T [i]×(RrK

−1) F′ =
∂F

∂p
, (38)

N = xTilFxir, D =

√
‖FTxil‖2 + ‖Fxir‖2. (39)
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A derivative of F with respect to one angle parameter is easy to compute,
as the angle appears only in one term of the decomposition (33). The
left and right rotation matrices are themselves decomposed into rotations
along the axes R = RzRyRx (without the rotation around x for Rl as
explained above) and we have for example:

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⇒ R′x(θ) =

0 0 0
0 − sin θ − cos θ
0 cos θ − sin θ

 .

(40)
Now the 5 angle parameters vary in the range [−π, π] whereas the

focal length α of (34) can take much larger values, typically in the range
[(w+h)/3, (w+h)×3]. Such a disparity in ranges generates a bad condition
for the Jacobian matrix J . To avoid that we take as unknown the variable
β = log3( α

w+h
) and then β is in the range [−1, 1]. Deriving with respect

to β yields:

∂F

∂β
= (RlK

−′

0 (α))T [i]×RrK
−1
0 (α) + (RlK

−1
0 (α))T [i]×RrK

−′

0 (α) (41)

with

K−1
0 (α) =

1/α 0 −w/(2α)
0 1/α −h/(2α)
0 0 1

 and (42)

K−
′

0 (α) = − log 3

1/α 0 −w/(2α)
0 1/α −h/(2α)
0 0 0

 . (43)

6.3 Examples

To perform a rectification, the only required input is more than 7 pairs
of correspondences. The SIFT method [8] is used to find the correspon-
dences. All bad correspondences should be filtered out before rectification.
This can be achieved by a RANSAC procedure, as for example in [1, 10],
searching for a fundamental matrix. A typical example of rectification
can be seen in Fig. 6.

7 IPOL projects

Three different algorithms are introduced in this section for IPOL projects.
Students can freely choose one or two of them to implement. Hartley’s
and Loop’s methods are two of the earliest rectification algorithms, while
Gluckman’s method has a different idea to treat the distortion introduced
by rectification. More details about the fundamental matrix, the multi-
view geometry and the rectification can be found in the book [6].

7.1 Hartley’s method

Hartley’s method [5] is one of the earliest methods of image rectification.
Unlike quasi-Euclidean rectification which finds two rectification homo-
graphies together, Hartley’s method first computes one homography to
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Figure 6: Rectification example. Top: a pair of original images. Bottom: the
rectified images, with some epipolar lines and matching points marked as crosses

rectify one image, then finds the other “matching” homography under
epipolar geometry constraints.

It is well-known that for a pair of rectified images, the epipoles are at
(1, 0, 0)T because the rectified fundamental matrix in (27) has (1, 0, 0)T

as its left and right null-vector. But this is only a necessary condition,
because one can always find a homography which sends the epipole in the
left image to (1, 0, 0)T , and independently the other homography which
sends the epipole in the right image to (1, 0, 0)T . Then the epipolar lines
in each image will be horizontal, but one epipolar line in one image will
not necessarily have the same ordinate as its corresponding epipolar line in
the other image. So the images are not rectified, due to the independence
between two homographies.

In [5], a pair of matching homographies (H,H′) is defined by

H∗l = H′∗l′ (44)

with (l, l′) a pair of corresponding epipolar lines before rectification; H∗

and H′∗ the line homographies corresponding to the point map H and H′

respectively (see section 2.3). The following theorem shows the explicit
relationship between H and H′.

Theorem 1. Let I and I′ be images with fundamental matrix F = [e′]×M
(M non-singular matrix), and let H′ be a projective transformation of I′.
A projective transformation H of I matches H′ if and only if H is of the
form

H =
(
I + H′e′aT

)
H′M (45)

for some non-zero vector a.

H′ is first computed by sending the epipole e′ to (1, 0, 0)T . Suppose
x0 is the origin and the epipole e′ = (f, 0, 1)T lies on the x-axis. The
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following transform:

G =

 1 0 0
0 1 0
−1/f 0 1

 (46)

sends the epipole e′ to infinity (f, 0, 0)T as required. A point (x, y, 1)T is
mapped by G to the point (x̂, ŷ, 1)T = (x, y, 1−x/f)T = ( x

1−x/f ,
y

1−x/f , 1)T .
The Jacobian is

∂(x̂, ŷ)

∂(x, y)
=

(
(1− x/f)−2 0

−y(1− x/f)−2/f (1− x/f)−1

)
(47)

Now at the origin x = y = 0 this is the identity map. In other words, G is
approximated (to first order) at the origin by the identity mapping. For
an arbitrary placed point of interesting x0 and epipole e′, the required
mapping H′ is a product H′ = GRT where T is a translation taking
the point x0 to the origin, R is a rotation about the origin taking the
epipole e′ to a point (f, 0, 1)T on the x-axis, and G is the mapping just
considered taking (f, 0, 1)T to infinity (1, 0, 0)T . This composite mapping
G is to first order a rigid transformation in the neighborhood of x0.

According to (45), the homography H matched to H′ can be written
as:

H =
(
I + H′e′aT

)
H′M =

(
I + (1, 0, 0)TaT

)
H′M = AH′M = AH0

(48)
with any non-zero vector a = (a, b, c)T , H0 = H′M and

A =

a b c
0 1 0
0 0 1

 (49)

which represents an affine transformation. The unknown parameters a, b, c
can be determined by minimizing the disparity. Writing x̂′i = H′u′i and
x̂i = H0ui, the minimization problem is to find A such that∑

i

d(Ax̂i, x̂
′
i)

2 (50)

is minimized. Let x̂i = (x̂i, ŷi, 1)T and x̂′i = (x̂′i, ŷ
′
i, 1)T . Since H′ and

M are known, these vectors can be computed from the matched points
xi ↔ x′i. Then the minimization problem becomes:∑

i

(ax̂i + bŷi + c− x̂′i)2 + (ŷi − ŷ′i)2. (51)

Since (ŷi − ŷ′i)2 is a constant, this is equivalent to minimizing∑
i

(ax̂i + bŷi + c− x̂′i)2 (52)

This is linear least-square problem and can be easily solved. Once a, b, c
are computed, A and H can also be computed from (49) and (48).

Hartley’s method does not pay special attention to the projective dis-
tortion introduced by rectification because the first homography H′ is only
approximated by a rigid transform to first order around a chosen point.
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7.2 Gluckman’s method

Gluckman’s method [3] pays attention to the distortion. It interprets the
distortion as the resampling that can impede stereo matching. The effects
they seek to minimize are the loss of pixels due to under-sampling and the
creation of new pixels due to over-sampling. To minimize these effects,
they parameterize the family of rectification transformations and solve for
the one that minimizes the change in local area integrated over the area
of the images.

The change in local area is given by the determinant of the Jacobian
of the homography. If the determinant is smaller than one, the local area
decreases which corresponds to a local down-sampling; for values greater
than unity, the local area increases which corresponds to a local over-
sampling. Given a homography H:

H =

h1 h2 h3

h4 h5 h6

h7 h8 h9

 (53)

A point (x, y)T is mapped to the point (x̂, ŷ)T :

x̂ =
h1x+ h2y + h3

h7x+ h8y + h9
and ŷ =

h4x+ h5y + h6

h7x+ h8y + h9
(54)

The Jacobian J is obtained by taking the partial derivatives of the above
equations with respect to x and y:

J(x, y) =
∂(x̂, ŷ)

∂(x, y)
=

(
∂x̂
∂x

∂x̂
∂y

∂ŷ
∂x

∂ŷ
∂y

)
(55)

Then the determinant of the Jacobian of the homography det(J(x,y)) is:

h9(h5h1 − h4h2) + h8(h4h3 − h1h6) + h7(h2h6 − h5h3)

(h7x+ h8y + h9)3
(56)

Since the Jacobian J(x, y) is a function of x and y, the determinant can
be less than one in some places and greater than one in others. To find
the homography which perturbs the least the local area over the entire
image, they choose the metric as the square of the difference between the
determinant and one and integrate over the width w and the height h of
the image: ∫ h

2

−h
2

∫ w
2

−w
2

(det (J(x, y))− 1)2 dxdy (57)

Assume the origin of the coordinate system at the center of each image
with the x-axis running along the scan-lines. A rotation and translation
have been applied so that a pair of corresponding epipolar lines coincides
with the x-axis. Since both epipoles are on the x-axis, the fundamental
matrix must be of the form

F =

 0 f2 0
f4 f5 f6
0 f8 0

 (58)
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The epipoles can be computed as the left and right null-vectors of F:

e =
(

1, 0,− f4
f6

)T
and e′ =

(
1, 0,− f2

f8

)T
. To project e and e′ to infinity

i = (1, 0, 0)T , the homography H and H′ must be of the form

H =

h1 h2 0
0 h5 0
f4
f6

h8 1

 and H′ =

h′1 h′2 0
0 h′5 0
f2
f8

h′8 1

 (59)

The third column of H and H′ are both zero because the origin is assumed
to be unchanged under rectification.

Although these conditions ensure that the epipolar lines are parallel,
corresponding epipolar lines may lie on different scan-lines. Thus addi-
tional constraints should be derived from the equation F = H′T [i]×H,
which is the necessary and sufficient condition for rectification. Two in-
dependent constraints are obtained: −f8h′5 = f6p5 and h′8f8 + h8f6 = f5,
that will be satisfied when

H =

h1 h2 0
0 h5 0
f4 p8 f6

 and H′ =

h′1 h′2 0
0 −h5 0
f2 f5 − p8 f8

 . (60)

The unknown parameters are reduced by imposing that the skew of both
images is zero (h2 = h′2 = 0) and the aspect ratio does not change (h5 = h1

and h′1 = h′5). So finally there are two free parameters, h1 and h8:

H =

h1 0 0
0 h1 0
f4 h8 f6

 and H′ =

−h1 0 0
0 −h1 0
f2 f5 − h8 f8

 . (61)

¿From (57), the error metric when two homographies H and H′ are
applied to a pair of images I and I′ is

ε = ε1 + ε2 =

∫ h
2

−h
2

∫ w
2

−w
2

(
det

(
∂H(x, y)

∂(x, y)

)
− 1

)2

dxdy

+

∫ h
2

−h
2

∫ w
2

−w
2

(
det

(
∂H′(x, y)

∂(x, y)

)
− 1

)2

dxdy (62)

The integral is a 16th degree rational polynomial in h8 and is quadratic
in h1. Therefore, given a value of h8 the value of h1 that minimizes the
integral can be found by solving ∂ε

∂h1
= 0.

Before solving for the optimal value of h1, an optimal value for h8 must
be obtained. By considering h1 a known parameter, the error metric is
a function of the location of the epipoles and h8. This function is in
fact convex in the range 0 to f5

2
. Therefore, an optimal solution can be

found using h8 = f5
2

as an initial estimate and applying a simple iterative
technique such as gradient descent. Once h8 is solved, h1 can be obtained
explicitly. Finally H and H′ are obtained from (61).
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7.3 Loop’s method

Another very popular method is proposed by Loop and Zhang [7]. This
method decomposes the homography into three parts: a projective trans-
form, a similarity transform and a shear transform. The distortion is
minimized at each step.

Assume a pair of rectifying homography H and H′:

H =

uT

vT

wT

 =

ua ub uc
va vb vc
wa wb 1

 and H′ =

u′T

v′T

w′
T

 =

u′a u′b u′c
v′a v′b v′c
w′a w′b 1


(63)

A necessary condition for rectification is that He = i and H′e′ = i. This
implies that vT e = 0 and wT e = 0, which means w and v are both
epipolar lines for image I. In fact, it can be proven that (v,v′) and
(w,w′) are corresponding epipolar lines.

H (similarly for H′) is decomposed into a projective transform Hp , a
similarity transform Hr and a shearing transform Hs.

Hp =

 1 0 0
0 1 0
wa wb 1

 (64)

Hr =

vb − vcwb vcwa − va 0
va − vcwa vb − vcwb vc

0 0 1

 (65)

Hs =

sa sb sc
0 1 0
0 0 1

 (66)

7.3.1 Projective transform

The projective transformation Hp (and H′p) will send the epipole e (or
e′) to infinity because wT e = 0 (or w′T e′ = 0). w and w′ are not
independent since they are corresponding epipolar lines. So they can be
parametrized by a direction vector z = (λ, µ, 0)T in image I:

w = [e]× z and w′ = Fz. (67)

And the aim is to find the vector z which introduces the least projective
distortion.

For a set of points in image pi = (pi,u, pi,v, 1)T , they will be trans-
formed by Hp to points (pi,u/wi, pi,v/wi, 1)T with weight wi = wTpi.
The projective transformation Hp is reduced to an affine transformation
if all the weights are identical. But in order to map the epipole e to infin-
ity, Hp cannot be affine, except if e is already at infinity. So what can be
done is to make Hp as affine as possible. Based on the idea, the variation
of the weights assigned to a collection of points over both images should
be minimized. Over one image, the variation of the assigned weights:

∑
i

(
wi − wc
wc

)2

(68)
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with wc = wTpc where pc = 1
n

∑n
i=1 pi is the average of the points. (68)

can also be written as:∑
i

(
wT (pi − pc)

wTpc

)2

=
wTPPTw

wTpcpTc w
(69)

with P the 3× n matrix:

P =

 p1,u − pc,u p2,u − pc,u . . . pn,u − pc,u
p1,v − pc,v p2,v − pc,v . . . pn,v − pc,v

0 0 . . . 0

 (70)

The variation of weights for the other images can be similarly defined
with p′c and P′. With w and w′ replaced by w = [e]×z and w′ = Fz, the
variation of weights of two images should be minimized together:

min
wTPPTw

wTpcpTc w
+

w′TP′P′Tw′

w′Tp′cp′Tc w′

⇐⇒ min
zT

A︷ ︸︸ ︷
[e]T×PPT [e]× z

zT [e]T×pcp
T
c [e]×︸ ︷︷ ︸

B

z
+

zT

A′︷ ︸︸ ︷
[F]T×P′P′T [F]× z

zT [F]T×p′cp
′T
c [F]×︸ ︷︷ ︸

B′

z
(71)

Since z is defined up to scale, we can set µ = 1. Then it can be shown
that the minimization problem is in fact to find the root of a 7-order
polynomial in λ.

7.3.2 Similarity transform

The first step of projective transformation sends the two epipoles to in-
finity. w and w′ are obtained by minimizing the variation of weights over
both images. Yet the epipoples are at infinity, but not in the direction
(1, 0, 0)T . In continuation, a pair of similarity transformations Hr and H′r
are found to rotate the images so that the epipoles are at the direction
(1, 0, 0)T . va and vb can be eliminated from (65) by making use of the
following:

F = H′
T

[i]×H

=

 vaw
′
a − v′awa vbw

′
a − v′awb vcw

′
a − va′

vaw
′
b − v′bwa vbw

′
b − v′bwb vcw

′
b − v′b

va − v′cwa vb − v′cwb vc − v′c

 (72)

¿From the last row of the matrix, va, vb and vc can be written as:

va = F31 + v′cwa (73)

vb = F32 + v′cwb (74)

vc = F33 + v′c (75)

(73-75) are substituted into (65) to get the Hr matrix:

Hr =

F32 − wbF33 waF33 − F31 0
F31 − waF33 F32 − wbF33 F33 + v′c

0 0 1

 (76)
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In similar manner and using the relation FT = HT [i]×H′, we can have
the H′r matrix:

H′r =

F23 − w′bF33 w′aF33 − F12 0
F13 − w′aF33 F23 − w′bF33 v′c

0 0 1

 (77)

There remains a translation term involving v′c in (76) and (77). This shows
that translation in y-direction is linked between two images and the offset
of F33 is needed to align horizontal scan-lines. v′c is determined so that
minimum y-coordinate in either image is zero. The similarity transform
will not introduce any projective distortion.

7.3.3 Shearing transform

HrHp and H′rH
′
p are already sufficient to do the rectification. The im-

ages remain rectified by a shearing transformation, which does change
x-coordinate, but not the y-coordinate. We can also verify that:

F = H′T [i]×H = H′Tp H′Tr H′Ts [i]×HsHrHp = H′Tp H′Tr [i]×HrHp (78)

The shearing transformation cannot completely undistort the effect of pro-
jective transformation. But an appropriate shearing transform can reduce
the distortion. The authors choose a shearing transformation which at-
tempts to preserve perpendicularity and aspect ratio of the middle lines.
In detail, a, b, c, d are four middle points of the edges of the image.
And â, b̂, ĉ and d̂ are the points after the transformation HrHp. With
x = b̂−d̂ and y = ĉ− â, the desired shearing transformation will preserve
the perpendicularity:

Hsx
THsy = 0 (79)

and the aspect ratio:
(Hsx)T (Hsx)

(Hsy)T (Hsy)
=
w2

h2
(80)

with w and h the image weight and height respectively and Hs =

a b 0
0 1 0
0 0 1.


Hs does not contain a translation component because it does not reduce
the distortion. H′s can be computed in a similar manner independently.

The combined transform HsHrHp, and similarly H′sH
′
rH
′
p rectify im-

ages I and I′ with minimal distortion.

A Cross products

The 3 × 3 skew-symmetric (anti-symmetric) matrix are very useful in
multi-view geometry. If a = (a1, a2, a3)T is a 3-vector, then the corre-
sponding skew-symmetric matrix is defined as follows:

[a]× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (81)
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The matrix [a]× is singular, and a is its null-vector(right and left). The
cross product is related to skew-symmetric matrix by:

a× b = [a]× b =
(
aT [b]×

)T
. (82)

If M is any 3 × 3 matrix (invertible or not), and x and y are column
vectors, then

(Mx)× (My) = M∗ (x× y) (83)

with M∗ the matrix of cofactors of M, satisfying M∗M = det (M). This
equation car be written as:

[Mx]×M = M∗ [x]× . (84)

Furthermore, for any vector t and non-singular matrix M, one has:

[t]×M = M∗ [M−1t
]
× = M−T [M−1t

]
× . (85)

The cross product has the important property:

(a× b)T c = |a b c|, (86)

(determinant of the matrix composed of the vectors as columns). This is
actually the definition of the cross product as the function

c→ ϕ(c) = |a b c| (87)

is a linear form, which can be expressed as a scalar product with a fixed
vector, namely a× b.

B Singular Value Decomposition (SVD)

The SVD is a very useful decomposition of a matrix generalizing the
diagonalization of a symmetric matrix in an orthonormal frame, but valid
for any matrix, even rectangular ones.

First, consider a symmetric matrix A. The quadratic form

x→ 1

2
xTAx (88)

is continuous and reaches its maximum when restricted on the sphere
xTx = 1. The Lagrangian of this optimization problem can be written:

L(x, λ) =
1

2
xTAx− λ(xTx− 1) (89)

and has all partial derivatives 0 when reaching the maximum at unit vector
x1. Thus we get

Ax1 = λx1 (90)

meaning x1 is an eigenvector of A.
Now if xT1 y = 0, we have

xT1 (Ay) = (Ax1)Ty = λxT1 y = 0, (91)
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the first equality using the symmetry of A. This shows that the sub-
space orthogonal to x1 is globally preserved by A and an easy recursion
argument shows that we can get an orthonormal basis of eigenvectors of
A.

If B is an m× n matrix with m ≥ n, A = BTB is symmetric and can
be written

A = V

s1 . . .

sn

VT (92)

with V an n× n orthonormal matrix and all diagonal terms are positive
since A is positive. Define Ui = BVi/‖BVi‖ for all i such that BVi 6= 0.
For two indices i, j, we have

(BVi)
T (BVj) = VT

i AVj = sjV
T
i Vj = sjδij . (93)

So the Ui form an orthonormal family, which can be completed to get n
orthonormal vectors of Rm if necessary, as m ≥ n. Then we have

B = U


√
s1

. . . √
sn

VT (94)

since the two sides have the same images when applied to the basis Vi.
Indeed, calling C the right hand side of (94), on the one hand we have

CVi =
√
siUi. (95)

On the other hand,
‖BVi‖2 = VT

i AVi = si. (96)

Therefore, if si = 0, we have CVi = 0 = BVi. If si 6= 0, we have

CVi =
√
si

BVi

‖BVi‖
= BVi. (97)

This proves that B = C.
Equation (94) is called the SVD of B. U is an m × n matrix with

orthonormal columns, V is an n × n rotation matrix and the
√
si are

called the singular values of B.

Exercice 9. Show that the dimension of the kernel of B is the number of
si that are 0 and that a basis of the kernel is formed by the corresponding
Vi.

C Levenberg-Marquardt algorithm

Suppose a function X = f(P) where X is a measurement vector and P
is a parameter vector in RN and RM respectively. We want to find the
vector P̂ satisfying X = f(P̂)− ε for which ε is minimized. If f is a linear
function, this problem is a linear least-square problem. If f is not linear,
we can start with an initial estimated value P0 and proceed to refine
the estimate under the assumption that the function f is locally linear.
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Let ε0 = f(P0) −X. We assume that the function f is approximated by
the Jacobian matrix J = ∂f

∂P
. We want to find an update step ∆ to P0

such that with the updated parameter vector P1 = P0 + ∆, f(P1)−X =
f(P0)+J∆−X = ε0 +J∆. This problem is in fact to minimize ‖ε0 +J∆‖
over ∆, which is a linear minimization problem. The vector ∆ is solution
to the normal equation:

JTJ∆ = −JT ε0 (98)

This normal equation is in fact used in the Gauss-Newton algorithm. In
the Levenberg-Marquardt algorithm, this normal equation is replaced by
the augmented normal equations:(

JTJ + λdiag(JTJ)
)

∆ = −JT ε (99)

for some value of λ that varies from iteration to iteration and diag is an
operator replacing non-diagonal elements of its argument by 0. A typical
initial value of λ is 10−3.

If the values of ∆ obtained by solving the augmented normal equations
leads to a reduction in the error, then the increment is accepted and λ is
divided by a factor (typically 10) before the next iteration. On the other
hand if the value leads to an increased error, then λ is multiplied by the
same factor and the augmented normal equations are solved again, this
process continuing until a value of ∆ is found that gives rise to a decreased
error. This process of repeatedly solving the augmented normal equations
for different values of λ until an acceptable ∆ is found constitutes one
iteration of the LM algorithm. When λ is small, the method is essentially
the same as a Gauss-Newton iteration; on the other hand when λ is large,
∆ approaches the value given by the gradient descent. Thus the LM al-
gorithm moves seamlessly between a Gauss-Newton iteration, which will
cause rapid convergence in the neighborhood of the solution, and a gradi-
ent descent approach, which will guarantee a decrease in the cost function
when the progress is difficult. Indeed, when λ becomes larger and larger,
the length of the increment step ∆ decreases and eventually leads to a
decrease of the cost function.

In practice, the LM algorithm is completely specified by setting the
initial value of λ to 10−3 and by setting the division or multiplication
factor of λ in each iteration to be 10.
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