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Pinhole camera model

An ideal model where the camera aperture is described as a
point and no lenses are used to focus light

No geometric distortions or blurring of unfocused objects
caused by lenses and finite sized apertures

The mathematical relationship between the coordinates of a
3D point and its projection onto the image plane
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Figure: Pinhole camera model.
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Terminology

camera center (optic center): the point by which all the rays
pass.
image plane: the camera CCD plane where the image is
formed.
principal axis: the line from the camera center perpendicular
to the image plane.
principal plane: the plane containing the camera center and
parallel to the image plane.
world frame: a pre-fixed frame where any 3D point can be
represented.
camera frame: the frame based on camera which has camera
center as origin and principal axis as Z -axis.
focal length f : the distance from the camera center to the
image plane.
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Central projection

Definition

A mapping of 3D space into a plane P that associates with any
point the intersection with P of the line passing through the point
and a fixed point.

The pinhole camera is a central projection.
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Frame change

Represent a 3D point in the camera frame by a translation and a
rotation from the world frame:

X̂c = R(X̂− C) (1)

with X̂ = (X ,Y ,Z )T and X̂c = (Xc ,Yc ,Zc)T the coordinate of a
point in the world frame and in the camera frame respectively;
C = (Xo ,Yo ,Zo)T the camera center in the world frame; R the
rotation from world frame to the camera frame.
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Central projection

X̂c is projected to the point xc = (xc , yc)T on the image plane
(Thales’s theorem):

xc = fXc/Zc (2)

yc = fYc/Zc (3)
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Matrix form

More succinct in matrix form by using homogeneous coordinate:

xc =

f 0 0
0 f 0
0 0 1

 X̂c (4)

In homogeneous coordinate, xc = (fXc , fYc ,Zc)T is equivalent to
the 2D point (fXc/Zc , fYc/Zc)T by dividing the first two
coordinates by the third coordinate.
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All in matrix form

By concatenating the frame change and the central projection, a
3D point is projected to a 2D point:

xc =

f 0 0
0 f 0
0 0 1

 X̂c =

f 0 0
0 f 0
0 0 1

R
[
I | − C

](X̂
1

)
(5)

=

f 0 0
0 f 0
0 0 1

R
[
I | − C

]
X

with X = (X ,Y ,Z , 1)T the homogeneous coordinates of 3D point
X̂ = (X ,Y ,Z )T .
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CCD plane in pixels

The above obtained 2D point xc has the unity in meter or
millimeter. But any digital image is measured in the unity of
pixels.

xc has the principal point as the origin, while the convention
is to take top-left corner of image as the origin.

Due to some manufacture imprecision, the CCD array is not
exactly a rectangular grid.
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skewness

x = x ′ − y ′cot(θ)

y =
y ′

sin(θ)
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From 3D to 2D in matrix form

x =

mx 0 x0

0 my y0

0 0 1

1 −cotθ 0
0 1

sinθ 0
0 0 1

 xc

=

mx 0 x0

0 my y0

0 0 1

1 −cotθ 0
0 1

sinθ 0
0 0 1

f 0 0
0 f 0
0 0 1

R
[
I | − C

]
X

=

mx f −mx f cotθ x0

0
my f
sinθ y0

0 0 1

R
[
I | − C

]
X

=

αx s x0

0 αy y0

0 0 1

R[I | − C]X = KR[I | − C]X = PX (6)
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Internal parameters

mx and my are the number of pixels per unit length in the
skewed x-axis direction and skewed y -axis direction in image
plane respectively

f the focal length of camera

x0 and y0 are the principal point coordinates in the skewed
image frame (pixels)

s the skewness factor which is 0 when the pixel is rectangle

θ the skewness angle between two sides of image CCD plane
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Calibration matrix K

K is called the internal calibration matrix. It is an intrinsic camera
property:

K =

αx s x0

0 αy y0

0 0 1

 =

mx f −mx f cotθ x0

0
my f
sinθ y0

0 0 1

 (7)

Observe that the entries in K are not all positive. θ is generally in
the range [0, π]. The entry −mx f cotθ will be positive if θ > 90◦,

negative if θ < 90◦ and 0 when θ = 90◦. The entry
my f

sin(θ) will
always be positive. So the determinant of K will be always be
positive.
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Projection matrix

The central projection from 3D to 2D can be represented by a 3× 4
matrix: P = KR [I | − C], which is called camera projection matrix.
This matrix contains all the parameters of camera: calibration
matrix as internal parameters; camera orientation and camera
center as external parameters.
The projection matrix has always rank 3.

Pascal Monasse, Jean-Michel Morel, Zhongwei Tang Epipolar rectification



Rectified images
Pinhole camera

Projective geometry
Camera rotation

Fundamental matrix
Rectification

Homogeneous coordinates
Projective plane
Transformations

Projective geometry

Projective geometry deals with the geometric properties that
are invariant under projective transformations

It is easier to understand projective geometry in 2D, which is
in fact the geometry of projective transformations of the plane

A 2D projective transformation arises when a plane is imaged
by a pinhole camera

Under perspective imaging certain geometric properties are
preserved while others are not

Pascal Monasse, Jean-Michel Morel, Zhongwei Tang Epipolar rectification



Rectified images
Pinhole camera

Projective geometry
Camera rotation

Fundamental matrix
Rectification

Homogeneous coordinates
Projective plane
Transformations

Homogeneous coordinates

Homogeneous coordinates is very useful in multi-view geometry,
which can easily represent many fundamental relationships in
vector or matrix form.

A line in the plane can be represented by an equation
ax + by + c = 0 with (x , y)T a point on the line.
In vector form: xT l = 0 with x = (x , y , 1)T and l = (a, b, c)T .

Any vectors m(x , y , 1)T and n(a, b, c)T also satisfy the line
equation for any m 6= 0 and n 6= 0.
So two vectors related by an overall non-zero scaling are considered
as being equivalent.

An equivalence class of vectors under this equivalence relationship
is known as homogeneous vector.Pascal Monasse, Jean-Michel Morel, Zhongwei Tang Epipolar rectification
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Homogeneous coordinates

For a point in the plane, its homogeneous coordinates is of the
form x = (x1, x2, x3)T , representing the point inhomogeneous
coordinates (x1/x3, x2/x3)T (x3 6= 0) in R2.

Even if the homogeneous coordinates of points and lines in the
plane is a 3D vector, its degrees of freedom (DOF) are always 2.
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Other properties

Given two lines l = (a, b, c)T and l′ = (a′, b′, c ′)T , the
homogeneous coordinates of the intersection point is x = l× l′

with × the cross product:

l× l′ =

bc ′ − b′c
ca′ − c ′a
ab′ − a′b


The line passing through two points x and x′ has the form
l = x× x′.
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Points at infinity

Given two parallel lines l = (a, b, c)T and l′ = (a, b, c ′)T , the
intersection point of the two lines is l× l′ = (b,−a, 0)T ,
corresponding to inhomogeneous coordinates (b/0,−a/0)T .

Any point with homogeneous coordinates (x , y , 0)T does not
correspond to any finite point in R2.

Parallel lines meet at infinity.
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2D projective space

Homogeneous vectors x = (x1, x2, x3)T such that x3 6= 0
correspond to finite points in R2.

By augmenting R2 with points having last coordinates x3 = 0,
the resulting space is the set of all homogeneous 3-vectors,
namely the 2D projective space P2.

The points with last coordinates x3 = 0 are called ideal points
or points at infinity. Each ideal point represents a direction
determined by the ratio x1 : x2 (x2 6= 0) or x2 : x1 (x1 6= 0).

All the ideal points lie on a line at infinity, denoted by
l∞ = (0, 0, 1)T . It can be verified that
(x1, x2, 0)(0, 0, 1)T = 0. Each line l intersects l∞ at an ideal
point, which corresponds to the direction of l.
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Projective plane

P2 = R3 − (0, 0, 0)T
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Transformations

The projective transformation (or homography), which is a
non-singular 3× 3 matrix, usually denoted by H.x ′1

x ′2
x ′3

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

x1

x2

x3

 (8)

x ′
1

x ′
3

=
h11x1 + h12x2 + h13x3

h31x1 + h32x2 + h33x3
(9)

x ′
2

x ′
3

=
h21x1 + h22x2 + h23x3

h31x1 + h32x2 + h33x3

H is also a homogeneous geometric entity and it has 8 degrees of
freedom.
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Collinearity

A point x is transformed to point Hx under homography H, while
a line l is transformed to a line H−Tl.

Collinearity: if x1, x2 and x3 are on a the line l, then Hx1, Hx2 and
Hx3 are also on a the line H−T l. More details about projective
transformation can be found in

R.I. Hartley and A. Zisserman.
Multiple View Geometry in Computer Vision. Cambridge
University Press, ISBN: 0521540518, second edition, 2004.
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Camera rotation

A 2D projective transformation can be induced by a pure camera
rotation without changing its optic center.
Given a 3D point X, its projected image by rotating the camera is:

x1 = K1R1[I | − C]X (10)

x2 = K2R2[I | − C]X

x1 and x2 are related by a homography:

x2 = K2R2R
−1
1 K−1

1 x1 = Hx1 (11)
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Homography

A homography can be induced from:

A camera rotation without changing its optic center

The 3D scene is a plane

The scene is very far away from the camera.
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Epipolar constraint

Terminology: epipolar plane, epipolar line, epipole
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Epipolar constraint

x′TFx = 0

l′ = Fx
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Some properties of F

F is a 3× 3 rank-2 homogeneous matrix with 7 freedom
degrees

x′TFx = 0 for a pair of corresponding image points x and x′

Given a point x in the left image, the corresponding epipolar
line in the right image is l′ = Fx
Given a point x′ in the right image, the corresponding epipolar
line in the left image is l = FTx′

Fe = 0 and FTe′ = 0
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Some properties of F

Computation of F from camera projection matrix P and P′

F = [e′]×P′P+ with P+ the pseudo-inverse of P and e′ = P′C

Correspondence between epipolar lines
l′ = F[e]×l and l = FT [e′]×l′

a× b = [a]× b, with a =

a1

a2

a3

, b =

b1

b2

b3

.

a× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0
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The rectified configuration

Figure: Left: General case. Right: Rectified case.

In the rectified case, the translation of the camera is parallel to its
x-axis and there is no rotation.

Pascal Monasse, Jean-Michel Morel, Zhongwei Tang Epipolar rectification



Rectified images
Pinhole camera

Projective geometry
Camera rotation

Fundamental matrix
Rectification

Rectification problem
Quasi-Euclidean rectification (Fusiello-Irsara)
Gallery of examples
IPOL projects

Special form of F

General formula for F:

F = K′−T [T]×RK−1.

Here, R = I and T = −λi:

F = −λK−T [i]×K
−1

As K is upper-triangular, we get:

F = [i]× =

0 0 0
0 0 −1
0 1 0


Epipolar constraint: y ′ = y .
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Decomposition of F

Suppose we can decompose F as:

F = H′T [i]×H

The images ug ◦H′−1 and ud ◦H−1 are rectified since:

y′T [i]×y = (H′x)T [i]×(Hx) = x′TFx.

Invariance through rotation around the baseline:

Rx =

1 0 0
0 c −s
0 s c

⇒ RT
x [i]×Rx = [i]×

3× 3 equations, 8 + 8 degrees of freedom: multiple solutions
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Simulating rotations

Assumption: K = K′ (same camera settings in both images)

K =

α 0 w/2
0 α h/2
0 0 1


We look for rotation matrices Rl and Rr such that

F = (KRlK
−1)T [i]×(KRrK

−1)

This simplifies as:

F = K−TRT
l [i]×RrK

−1

Due to invariance through x-axis rotation, we can assume no
x-rotation in Rl .
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The unknowns

5 angles:

Rl = Rz(θlz)Ry (θly ) Rr = Rz(θrz)Ry (θry )Rx(θrx)

1 scalar: α, the focal length.

Actually, very different ranges: angles θ ∈ [−π, π] and
α ∈ [(w + h)/3, (w + h)× 3]

We take instead as unknown β = log3(α/(w + h)) ∈ [−1, 1]
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Measuring the errors

We do not know how to decompose F as above

Instead, we want to minimize the distance of each point to its
epipolar line:∑

i

(d2(Hlxli , [i]×Hrxri ) + d2(Hrxri , [i]×Hlxli ))

with d2 the square point-line distance
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Algebraic expression of error

Instead, a simpler algebraic error is considered:

E 2
i =

(xT
li Fxri )

2

‖Fxri‖2 + ‖FTxli‖2

with
(
a b c

)T
=
(
a b

)T
We minimize the sum of these terms with our expression of F
depending on the 6 unknowns.
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Derivatives with respect to parameters

Let us write

Ei =
xT
li Fxri

(‖Fxri‖2 + ‖FTxli‖2)1/2
=

N

D

Then given a parameter p,

1

2

∂Ei

∂p
=

xT
il F
′xir

D
− N

FTxil
T
F′Txil + Fxir

T
F′xir

D3

with F′ = ∂F
∂p

We have to compute F′ for each parameter.
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Partial derivatives of F

For a rotation:

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⇒ R′x(θ) =

0 0 0
0 − sin θ − cos θ
0 cos θ − sin θ


For K, we have

K−1(α) =

1/α 0 −w/(2α)
0 1/α −h/(2α)
0 0 1


so its derivative with respect to β:

∂K−1

∂β
=
∂K−1

∂α

∂α

∂β
= − log 3

1/α 0 −w/(2α)
0 1/α −h/(2α)
0 0 0
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Levenberg-Marquardt minimization

We have E : R6 → Rn (n correspondences)

Objective: find x that minimizes ‖E(x)‖2

If we write E(x0 + ∆) = E(x0) + J∆, minimize over ∆:

‖E(x0) + J∆‖2 = ‖E(x0)‖2 + 2(JTE(x0))T ∆ + ‖J∆‖2

Solution must satisfy the linear system: (JTJ)∆ = −JTE(x0).

Augmented equation: (JTJ + λdiag(JTJ))∆ = −JTE(x0)

If ‖E(x0 + ∆)‖2 < ‖E(x0)‖2: iterate with x0 += ∆, λ /= 10

If ‖E(x0 + ∆)‖2 ≥ ‖E(x0)‖2: iterate with same x0, λ *= 10
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Null columns of the Jacobian

In equation (JTJ)∆ = −JTE(x0) we must have J of rank 6
so that JTJ be invertible

In particular, if some column of J is 0, we get a scalar
equation 0T ∆ = 0

Solution: remove such equations from the system before
solving.

This happens for ∂E
∂β at initial position Rl = Rr = I (column 6

of J)
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Summary of the rectification pipeline

1 Find correspondences between image pairs (SIFT)

2 Eliminate false correspondences by rigidity constraint
(RANSAC searching for epipolar matrix)

3 Levenberg-Marquardt minimization of the error function

4 Apply homographies to images (pull values from initial images
rather than push pixels to final image)

5 Then what? search for corresponding points reduced to
horizontal direction
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Ruins

‖E0‖ = 3.21 pixels. ‖E6‖ = 0.12 pixels.
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Beijing lion

‖E0‖ = 4.32 pixels. ‖E7‖ = 0.36 pixels.
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Cake

‖E0‖ = 17.9 pixels. ‖E13‖ = 0.65 pixels.
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Cluny

‖E0‖ = 4.87 pixels. ‖E14‖ = 0.26 pixels.
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Carcassonne

‖E0‖ = 15.6 pixels. ‖E4‖ = 0.24 pixels.

Pascal Monasse, Jean-Michel Morel, Zhongwei Tang Epipolar rectification



Rectified images
Pinhole camera

Projective geometry
Camera rotation

Fundamental matrix
Rectification

Rectification problem
Quasi-Euclidean rectification (Fusiello-Irsara)
Gallery of examples
IPOL projects

Carcassonne

‖E0‖ = 15.6 pixels. ‖E4‖ = 0.24 pixels.

Pascal Monasse, Jean-Michel Morel, Zhongwei Tang Epipolar rectification



Rectified images
Pinhole camera

Projective geometry
Camera rotation

Fundamental matrix
Rectification

Rectification problem
Quasi-Euclidean rectification (Fusiello-Irsara)
Gallery of examples
IPOL projects

Books

‖E0‖ = 3.22 pixels. ‖E14‖ = 0.27 pixels.
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Project: Hartley’s method (1999)

R.I. Hartley.
Theory and practice of projective rectification. International
Journal of Computer Vision, 35(2):115–127, 1999.

Compute F from point correspondences

Rotate image and send epipole to infinity in x direction

Apply affine transform x ′ = ax + by + c so as to minimize
disparities
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Project: Gluckman-Nayar (2001)

J. Gluckman and S.K. Nayar.
Rectifying transformations that minimize resampling effects.
IEEE Conf. Computer Vision and Pattern, 1:111, 2001.

Local area change causes loss or creation of pixels

Area change measured by det(J), J being the Jacobian matrix
of H.

Minimize w.r.t. 2 variables the distortion E (H) + E (H′) with

E (H) =

∫∫ (
det

(
∂H(x , y)

∂(x , y)

)
− 1

)2

dx dy

Rational polynomial of degree 16 for one variable, quadratic
for the other
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Loop-Zhang (1999)

C. Loop and Z. Zhang.
Computing rectifying homographies for stereo vision.
Computer Vision and Pattern Recognition, 1:125–131, 1999.

3 parts: projective, similarity, shear, each minimizing the
distortion

Projective: find a transform that sends e to infinity and keeps
a point z ∈ l∞ fixed. 7-order polynomial root extraction to
find z.

Similarity: send epipole to
(
0 0 1

)T
Shear: already rectified case, but tries to keep orthogonality of
middle lines.
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