Epipolar rectification

Pascal Monasse, Jean-Michel Morel, Zhongwei Tang

October 29, 2010

▲ 同 ▶ → ● 三

Overview.

- **Rectified images**
- Pinhole camera
 - Central projection
 - Internal parameters
- Operation Projective geometry
 - Homogeneous coordinates
 - Projective plane
 - Transformations
- 4 Camera rotation
 - Fundamental matrix
 - Epipolar constraint
- 6 Rectification
 - Rectification problem
 - Quasi-Euclidean rectification (Fusiello-Irsara)
 - Gallery of examples

Pascal Monasse, Jean-Michel Morel, Zhongwei Tang

Rectification example: original images

Rectification example: original images

Rectification example: rectified images

Rectification example: rectified images

Rectification example: original images

Pascal Monasse, Jean-Michel Morel, Zhongwei Tang

Rectification example: original images

Pascal Monasse, Jean-Michel Morel, Zhongwei Tang

Rectification example: rectified images

Pascal Monasse, Jean-Michel Morel, Zhongwei Tang

Rectification example: rectified images

Pascal Monasse, Jean-Michel Morel, Zhongwei Tang

Rectification example: original images

Pascal Monasse, Jean-Michel Morel, Zhongwei Tang

Rectification example: original images

Pascal Monasse, Jean-Michel Morel, Zhongwei Tang

Rectification example: rectified images (failed)

Pascal Monasse, Jean-Michel Morel, Zhongwei Tang

Rectification example: rectified images (failed)

Pascal Monasse, Jean-Michel Morel, Zhongwei Tang

Central projection Internal parameters

Pinhole camera model

- An ideal model where the camera aperture is described as a point and no lenses are used to focus light
- No geometric distortions or blurring of unfocused objects caused by lenses and finite sized apertures
- The mathematical relationship between the coordinates of a 3D point and its projection onto the image plane

Central projection Internal parameters

Figure: Pinhole camera model.

э

<ロト < 同ト < 三ト

Central projection Internal parameters

Terminology

- camera center (optic center): the point by which all the rays pass.
- image plane: the camera CCD plane where the image is formed.
- principal axis: the line from the camera center perpendicular to the image plane.
- principal plane: the plane containing the camera center and parallel to the image plane.
- world frame: a pre-fixed frame where any 3D point can be represented.
- camera frame: the frame based on camera which has camera center as origin and principal axis as Z-axis.
- focal length f: the distance from the camera center to the image plane.

Central projection Internal parameters

Central projection

Definition

A mapping of 3D space into a plane P that associates with any point the intersection with P of the line passing through the point and a fixed point.

The pinhole camera is a central projection.

Central projection Internal parameters

Frame change

Represent a 3D point in the camera frame by a translation and a rotation from the world frame:

$$\hat{\mathbf{X}}_{c} = \mathbf{R}(\hat{\mathbf{X}} - \mathbf{C}) \tag{1}$$

with $\hat{\mathbf{X}} = (X, Y, Z)^T$ and $\hat{\mathbf{X}}_c = (X_c, Y_c, Z_c)^T$ the coordinate of a point in the world frame and in the camera frame respectively; $\mathbf{C} = (X_o, Y_o, Z_o)^T$ the camera center in the world frame; \mathbf{R} the rotation from world frame to the camera frame.

Central projection Internal parameters

Central projection

 $\hat{\mathbf{X}}_c$ is projected to the point $\mathbf{x}_c = (x_c, y_c)^T$ on the image plane (Thales's theorem):

$$\begin{aligned} x_c &= f X_c / Z_c & (2) \\ y_c &= f Y_c / Z_c & (3) \end{aligned}$$

Central projection Internal parameters

Matrix form

More succinct in matrix form by using homogeneous coordinate:

$$\mathbf{x}_{c} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \hat{\mathbf{X}}_{c}$$
(4)

・ 同・ ・ ヨ・

In homogeneous coordinate, $\mathbf{x}_c = (fX_c, fY_c, Z_c)^T$ is equivalent to the 2D point $(fX_c/Z_c, fY_c/Z_c)^T$ by dividing the first two coordinates by the third coordinate.

Central projection Internal parameters

All in matrix form

By concatenating the frame change and the central projection, a 3D point is projected to a 2D point:

$$\mathbf{x}_{c} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \hat{\mathbf{X}}_{c} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{R} \begin{bmatrix} \mathbf{I} & | -\mathbf{C} \end{bmatrix} \begin{pmatrix} \hat{\mathbf{X}} \\ 1 \end{pmatrix} \quad (5)$$
$$= \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{R} \begin{bmatrix} \mathbf{I} & | -\mathbf{C} \end{bmatrix} \mathbf{X}$$

▲ 同 ▶ → 三 ▶

with $\mathbf{X} = (X, Y, Z, 1)^T$ the homogeneous coordinates of 3D point $\hat{\mathbf{X}} = (X, Y, Z)^T$.

Central projection Internal parameters

CCD plane in pixels

- The above obtained 2D point x_c has the unity in meter or millimeter. But any digital image is measured in the unity of pixels.
- **x**_c has the principal point as the origin, while the convention is to take top-left corner of image as the origin.
- Due to some manufacture imprecision, the CCD array is not exactly a rectangular grid.

Central projection Internal parameters

skewness

Pinhole camera

Internal parameters

From 3D to 2D in matrix form

$$\mathbf{x} = \begin{bmatrix} m_{x} & 0 & x_{0} \\ 0 & m_{y} & y_{0} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -\cot\theta & 0 \\ 0 & \frac{1}{\sin\theta} & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{x}_{c}$$

$$= \begin{bmatrix} m_{x} & 0 & x_{0} \\ 0 & m_{y} & y_{0} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -\cot\theta & 0 \\ 0 & \frac{1}{\sin\theta} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{R} \begin{bmatrix} \mathbf{I} & |-\mathbf{C}] \mathbf{X}$$

$$= \begin{bmatrix} m_{x}f & -m_{x}f\cot\theta & x_{0} \\ 0 & \frac{m_{y}f}{\sin\theta} & y_{0} \\ 0 & 0 & 1 \end{bmatrix} \mathbf{R} \begin{bmatrix} \mathbf{I} & |-\mathbf{C}] \mathbf{X}$$

$$= \begin{bmatrix} \alpha_{x} & s & x_{0} \\ 0 & \alpha_{y} & y_{0} \\ 0 & 0 & 1 \end{bmatrix} \mathbf{R} \begin{bmatrix} \mathbf{I} & |-\mathbf{C}] \mathbf{X} = \mathbf{KR} \begin{bmatrix} \mathbf{I} & |-\mathbf{C}] \mathbf{X} = \mathbf{PX} \quad (6)$$

Pascal Monasse, Jean-Michel Morel, Zhongwei Tang

Central projection Internal parameters

Internal parameters

- m_x and m_y are the number of pixels per unit length in the skewed x-axis direction and skewed y-axis direction in image plane respectively
- f the focal length of camera
- x₀ and y₀ are the principal point coordinates in the skewed image frame (pixels)
- s the skewness factor which is 0 when the pixel is rectangle
- $\bullet~\theta$ the skewness angle between two sides of image CCD plane

Central projection Internal parameters

Calibration matrix K

 ${\bf K}$ is called the internal calibration matrix. It is an intrinsic camera property:

$$\mathbf{K} = \begin{bmatrix} \alpha_x & \mathbf{s} & \mathbf{x}_0 \\ 0 & \alpha_y & \mathbf{y}_0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} m_x f & -m_x f \cot\theta & \mathbf{x}_0 \\ 0 & \frac{m_y f}{\sin\theta} & \mathbf{y}_0 \\ 0 & 0 & 1 \end{bmatrix}$$
(7)

Observe that the entries in **K** are not all positive. θ is generally in the range $[0, \pi]$. The entry $-m_x f \cot \theta$ will be positive if $\theta > 90^\circ$, negative if $\theta < 90^\circ$ and 0 when $\theta = 90^\circ$. The entry $\frac{m_y f}{\sin(\theta)}$ will always be positive. So the determinant of **K** will be always be positive.

Central projection Internal parameters

Projection matrix

The central projection from 3D to 2D can be represented by a 3×4 matrix: $\mathbf{P} = \mathbf{KR} [\mathbf{I} | - \mathbf{C}]$, which is called camera projection matrix. This matrix contains all the parameters of camera: calibration matrix as internal parameters; camera orientation and camera center as external parameters.

The projection matrix has always rank 3.

Homogeneous coordinates Projective plane Fransformations

・ 同・ ・ ヨ・

Projective geometry

- Projective geometry deals with the geometric properties that are invariant under projective transformations
- It is easier to understand projective geometry in 2D, which is in fact the geometry of projective transformations of the plane
- A 2D projective transformation arises when a plane is imaged by a pinhole camera
- Under perspective imaging certain geometric properties are preserved while others are not

Homogeneous coordinates Projective plane Transformations

Homogeneous coordinates

Homogeneous coordinates is very useful in multi-view geometry, which can easily represent many fundamental relationships in vector or matrix form.

A line in the plane can be represented by an equation ax + by + c = 0 with $(x, y)^T$ a point on the line. In vector form: $\mathbf{x}^T \mathbf{I} = 0$ with $\mathbf{x} = (x, y, 1)^T$ and $\mathbf{I} = (a, b, c)^T$.

Any vectors $m(x, y, 1)^T$ and $n(a, b, c)^T$ also satisfy the line equation for any $m \neq 0$ and $n \neq 0$.

So two vectors related by an overall non-zero scaling are considered as being equivalent.

An equivalence class of vectors under this equivalence relationship

Homogeneous coordinates Projective plane Transformations

Homogeneous coordinates

For a point in the plane, its homogeneous coordinates is of the form $\mathbf{x} = (x_1, x_2, x_3)^T$, representing the point inhomogeneous coordinates $(x_1/x_3, x_2/x_3)^T$ $(x_3 \neq 0)$ in \mathcal{R}^2 .

Even if the homogeneous coordinates of points and lines in the plane is a 3D vector, its degrees of freedom (DOF) are always 2.

Homogeneous coordinates Projective plane Transformations

< A > <

Other properties

Given two lines $\mathbf{I} = (a, b, c)^T$ and $\mathbf{I}' = (a', b', c')^T$, the homogeneous coordinates of the intersection point is $\mathbf{x} = \mathbf{I} \times \mathbf{I}'$ with \times the cross product:

$$\mathbf{I} \times \mathbf{I}' = \begin{pmatrix} bc' - b'c \\ ca' - c'a \\ ab' - a'b \end{pmatrix}$$

The line passing through two points **x** and **x'** has the form $\mathbf{I} = \mathbf{x} \times \mathbf{x}'$.

Homogeneous coordinates Projective plane Transformations

Points at infinity

Given two parallel lines $\mathbf{I} = (a, b, c)^T$ and $\mathbf{I}' = (a, b, c')^T$, the intersection point of the two lines is $\mathbf{I} \times \mathbf{I}' = (b, -a, 0)^T$, corresponding to inhomogeneous coordinates $(b/0, -a/0)^T$.

Any point with homogeneous coordinates $(x, y, 0)^T$ does not correspond to any finite point in \mathcal{R}^2 .

Parallel lines meet at infinity.

Homogeneous coordinates Projective plane Transformations

2D projective space

- Homogeneous vectors $\mathbf{x} = (x_1, x_2, x_3)^T$ such that $x_3 \neq 0$ correspond to finite points in \mathcal{R}^2 .
- By augmenting R² with points having last coordinates x₃ = 0, the resulting space is the set of all homogeneous 3-vectors, namely the 2D projective space P².
- The points with last coordinates x₃ = 0 are called ideal points or points at infinity. Each ideal point represents a direction determined by the ratio x₁ : x₂ (x₂ ≠ 0) or x₂ : x₁ (x₁ ≠ 0).
- All the ideal points lie on a line at infinity, denoted by
 I_∞ = (0,0,1)^T. It can be verified that
 (x₁, x₂, 0)(0,0,1)^T = 0. Each line I intersects I_∞ at an ideal
 point, which corresponds to the direction of I.

Homogeneous coordinates Projective plane Transformations

æ

э

▲ 同 ▶ ▲ 目

Projective plane

$$\mathcal{P}^2 = \mathcal{R}^3 - (0, 0, 0)^T$$

Homogeneous coordinates Projective plane Transformations

Transformations

The projective transformation (or homography), which is a non-singular 3×3 matrix, usually denoted by **H**.

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
(8)

H is also a homogeneous geometric entity and it has 8 degrees of freedom.

Homogeneous coordinates Projective plane Transformations

・ 同・ ・ ヨ・

Collinearity

A point **x** is transformed to point **Hx** under homography *H*, while a line **I** is transformed to a line $\mathbf{H}^{-T}\mathbf{I}$.

Collinearity: if \mathbf{x}_1 , \mathbf{x}_2 and \mathbf{x}_3 are on a the line I, then $\mathbf{H}\mathbf{x}_1$, $\mathbf{H}\mathbf{x}_2$ and $\mathbf{H}\mathbf{x}_3$ are also on a the line $\mathbf{H}^{-T}\mathbf{I}$. More details about projective transformation can be found in

R.I. Hartley and A. Zisserman.

Multiple View Geometry in Computer Vision. Cambridge University Press, ISBN: 0521540518, second edition, 2004.

Camera rotation

A 2D projective transformation can be induced by a pure camera rotation without changing its optic center.

Given a 3D point \mathbf{X} , its projected image by rotating the camera is:

$$\begin{aligned} \mathbf{x}_1 &= \mathbf{K}_1 \mathbf{R}_1 [\mathbf{I} \mid -\mathbf{C}] \mathbf{X} \\ \mathbf{x}_2 &= \mathbf{K}_2 \mathbf{R}_2 [\mathbf{I} \mid -\mathbf{C}] \mathbf{X} \end{aligned} \tag{10}$$

 \mathbf{x}_1 and \mathbf{x}_2 are related by a homography:

$$\mathbf{x}_2 = \mathbf{K}_2 \mathbf{R}_2 \mathbf{R}_1^{-1} \mathbf{K}_1^{-1} \mathbf{x}_1 = \mathbf{H} \mathbf{x}_1 \tag{11}$$

Homography

A homography can be induced from:

- A camera rotation without changing its optic center
- The 3D scene is a plane
- The scene is very far away from the camera.

< 4 ₽ > < E

Epipolar constraint

▲ 同 ▶ → ● 三

Epipolar constraint

Terminology: epipolar plane, epipolar line, epipole

Epipolar constraint

æ

▲ 同 ▶ ▲ 三 ▶

Epipolar constraint

Epipolar constraint

Some properties of ${\bf F}$

- F is a 3×3 rank-2 homogeneous matrix with 7 freedom degrees
- $\mathbf{x}'^T \mathbf{F} \mathbf{x} = 0$ for a pair of corresponding image points \mathbf{x} and \mathbf{x}'
 - Given a point ${\bf x}$ in the left image, the corresponding epipolar line in the right image is ${\bf l}'={\bf F}{\bf x}$
 - Given a point x' in the right image, the corresponding epipolar line in the left image is I = F^Tx'
- $\mathbf{F}\mathbf{e} = \mathbf{0}$ and $\mathbf{F}^T \mathbf{e}' = \mathbf{0}$

Epipolar constraint

・ 同 ト ・ ヨ ト ・ ヨ ト

Some properties of ${\bf F}$

- Computation of F from camera projection matrix P and P' $F = [e']_{\times}P'P^+$ with P⁺ the pseudo-inverse of P and e' = P'C
- Correspondence between epipolar lines $I' = F[e]_{\times}I$ and $I = F^{T}[e']_{\times}I'$

$$\mathbf{a} \times \mathbf{b} = [\mathbf{a}]_{\times} \mathbf{b}$$
, with $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.
 $\mathbf{a}_{\times} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

The rectified configuration

Figure: Left: General case. Right: Rectified case.

In the rectified case, the translation of the camera is parallel to its x-axis and there is no rotation.

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

< 同 ▶

Special form of ${\bf F}$

• General formula for F:

$$\mathbf{F} = \mathbf{K}'^{-T} [\mathbf{T}]_{ imes} \mathbf{R} \mathbf{K}^{-1}.$$

• Here,
$$\mathbf{R} = \mathbf{I}$$
 and $\mathbf{T} = -\lambda \mathbf{i}$:

$$\mathbf{F} = -\lambda \mathbf{K}^{-T} [\mathbf{i}]_{\times} \mathbf{K}^{-1}$$

• As K is upper-triangular, we get:

$$\mathbf{F} = [\mathbf{i}]_{\times} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

• Epipolar constraint: y' = y.

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

< 🗇 🕨

Decomposition of ${\bf F}$

• Suppose we can decompose **F** as:

$$\mathsf{F} = \mathsf{H}'^{\mathcal{T}}[\mathsf{i}]_{ imes}\mathsf{H}$$

• The images $u_g \circ \mathbf{H}'^{-1}$ and $u_d \circ \mathbf{H}^{-1}$ are rectified since:

$$\mathbf{y'}^{\mathcal{T}}[\mathbf{i}]_{\times}\mathbf{y} = (\mathbf{H'x})^{\mathcal{T}}[\mathbf{i}]_{\times}(\mathbf{Hx}) = \mathbf{x'}^{\mathcal{T}}\mathbf{Fx}.$$

• Invariance through rotation around the baseline:

$$\mathbf{R}_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c \end{pmatrix} \Rightarrow \mathbf{R}_{x}^{T}[\mathbf{i}]_{\times}\mathbf{R}_{x} = [\mathbf{i}]_{\times}$$

• 3×3 equations, 8 + 8 degrees of freedom: multiple solutions

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

Simulating rotations

• Assumption: $\mathbf{K}=\mathbf{K}'$ (same camera settings in both images)

$$\mathbf{K} = \begin{pmatrix} \alpha & \mathbf{0} & \mathbf{w}/2 \\ \mathbf{0} & \alpha & h/2 \\ \mathbf{0} & \mathbf{0} & 1 \end{pmatrix}$$

• We look for rotation matrices \mathbf{R}_{l} and \mathbf{R}_{r} such that

$$\mathbf{F} = (\mathbf{K}\mathbf{R}_{\prime}\mathbf{K}^{-1})^{T}[\mathbf{i}]_{ imes}(\mathbf{K}\mathbf{R}_{r}\mathbf{K}^{-1})$$

• This simplifies as:

$$\mathbf{F} = \mathbf{K}^{-T} \mathbf{R}_{I}^{T} [\mathbf{i}]_{\times} \mathbf{R}_{r} \mathbf{K}^{-1}$$

Due to invariance through x-axis rotation, we can assume no x-rotation in R₁.

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

- 4 同 6 4 日 6 4 日 6

The unknowns

• 5 angles:

$$\mathbf{R}_{l} = \mathbf{R}_{z}(\theta_{lz})\mathbf{R}_{y}(\theta_{ly}) \quad \mathbf{R}_{r} = \mathbf{R}_{z}(\theta_{rz})\mathbf{R}_{y}(\theta_{ry})\mathbf{R}_{x}(\theta_{rx})$$

- 1 scalar: α , the focal length.
- Actually, very different ranges: angles $\theta \in [-\pi, \pi]$ and $\alpha \in [(w + h)/3, (w + h) \times 3]$

• We take instead as unknown $eta = \log_3(lpha/(w+h)) \in [-1,1]$

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

Measuring the errors

- We do not know how to decompose **F** as above
- Instead, we want to minimize the distance of each point to its epipolar line:

$$\sum_{i} (d^{2}(\mathbf{H}_{i} \mathbf{x}_{li}, [\mathbf{i}]_{\times} \mathbf{H}_{r} \mathbf{x}_{ri}) + d^{2}(\mathbf{H}_{r} \mathbf{x}_{ri}, [\mathbf{i}]_{\times} \mathbf{H}_{l} \mathbf{x}_{li}))$$

with d^2 the square point-line distance

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

・ 一 ・ ・ ・ ・ ・ ・

Algebraic expression of error

• Instead, a simpler algebraic error is considered:

$$E_i^2 = \frac{(\mathbf{x}_{li}^T \mathbf{F} \mathbf{x}_{ri})^2}{\|\overline{\mathbf{F} \mathbf{x}_{ri}}\|^2 + \|\overline{\mathbf{F}^T \mathbf{x}_{li}}\|^2}$$

with $\overline{(a \ b \ c)^T} = (a \ b)^T$

• We minimize the sum of these terms with our expression of **F** depending on the 6 unknowns.

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

< A ▶

Derivatives with respect to parameters

Let us write

$$E_i = \frac{\mathbf{x}_{li}^{\mathsf{T}} \mathbf{F} \mathbf{x}_{ri}}{(\|\overline{\mathbf{F} \mathbf{x}_{ri}}\|^2 + \|\overline{\mathbf{F}^{\mathsf{T}} \mathbf{x}_{li}}\|^2)^{1/2}} = \frac{N}{D}$$

• Then given a parameter p,

$$\frac{1}{2}\frac{\partial E_i}{\partial p} = \frac{\mathbf{x}_{il}^T \mathbf{F}' \mathbf{x}_{ir}}{D} - N \frac{\overline{\mathbf{F}^T \mathbf{x}_{il}}^T \overline{\mathbf{F}'^T \mathbf{x}_{il}} + \overline{\mathbf{F} \mathbf{x}_{ir}}^T \overline{\mathbf{F}' \mathbf{x}_{ir}}}{D^3}$$

with $\mathbf{F}' = \frac{\partial \mathbf{F}}{\partial p}$

 \bullet We have to compute ${\bm F}'$ for each parameter.

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

э

Partial derivatives of F

For a rotation:

$$\mathbf{R}_{x}(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} \Rightarrow \mathbf{R}_{x}'(\theta) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -\sin\theta & -\cos\theta \\ 0 & \cos\theta & -\sin\theta \end{pmatrix}$$

 $\bullet~\mbox{For}~\mbox{\bf K},$ we have

$$\mathbf{K}^{-1}(lpha) = egin{pmatrix} 1/lpha & 0 & -w/(2lpha) \ 0 & 1/lpha & -h/(2lpha) \ 0 & 0 & 1 \end{pmatrix}$$

so its derivative with respect to β :

$$\frac{\partial \mathbf{K}^{-1}}{\partial \beta} = \frac{\partial \mathbf{K}^{-1}}{\partial \alpha} \frac{\partial \alpha}{\partial \beta} = -\log 3 \begin{pmatrix} 1/\alpha & 0 & -w/(2\alpha) \\ 0 & 1/\alpha & -h/(2\alpha) \\ 0 & 0 & 0 \end{pmatrix}$$

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

Levenberg-Marquardt minimization

- We have $\mathbf{E}: \mathbb{R}^6 \to \mathbb{R}^n$ (*n* correspondences)
- Objective: find x that minimizes $\|\mathbf{E}(\mathbf{x})\|^2$
- If we write $\mathbf{E}(\mathbf{x}_0 + \Delta) = \mathbf{E}(\mathbf{x}_0) + \mathbf{J}\Delta$, minimize over Δ :

$$\|\mathbf{E}(\mathbf{x}_0) + \mathbf{J}\Delta\|^2 = \|\mathbf{E}(\mathbf{x}_0)\|^2 + 2(\mathbf{J}^{\mathsf{T}}\mathbf{E}(\mathbf{x}_0))^{\mathsf{T}}\Delta + \|\mathbf{J}\Delta\|^2$$

- Solution must satisfy the linear system: $(\mathbf{J}^T \mathbf{J}) \Delta = -\mathbf{J}^T \mathbf{E}(\mathbf{x}_0)$.
- Augmented equation: $(\mathbf{J}^T \mathbf{J} + \lambda \text{diag}(\mathbf{J}^T \mathbf{J})) \Delta = -\mathbf{J}^T \mathbf{E}(\mathbf{x}_0)$
- If $\|\mathbf{E}(\mathbf{x}_0 + \Delta)\|^2 < \|\mathbf{E}(\mathbf{x}_0)\|^2$: iterate with $\mathbf{x}_0 += \Delta$, $\lambda \neq = 10$
- If $\|\mathbf{E}(\mathbf{x}_0 + \Delta)\|^2 \ge \|\mathbf{E}(\mathbf{x}_0)\|^2$: iterate with same \mathbf{x}_0 , λ *= 10

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

▲ □ ▶ ▲ □ ▶ ▲

Null columns of the Jacobian

- In equation (J^TJ)Δ = -J^TE(x₀) we must have J of rank 6 so that J^TJ be invertible
- In particular, if some column of ${\bf J}$ is ${\bf 0},$ we get a scalar equation ${\bf 0}^{\mathcal{T}} \Delta = 0$
- Solution: remove such equations from the system before solving.
- This happens for $\frac{\partial E}{\partial \beta}$ at initial position $\mathbf{R}_{l} = \mathbf{R}_{r} = \mathbf{I}$ (column 6 of \mathbf{J})

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

・ 同・ ・ ヨ・

Summary of the rectification pipeline

- Find correspondences between image pairs (SIFT)
- Eliminate false correspondences by rigidity constraint (RANSAC searching for epipolar matrix)
- Sevenberg-Marquardt minimization of the error function
- Apply homographies to images (pull values from initial images rather than push pixels to final image)
- Then what? search for corresponding points reduced to horizontal direction

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara Gallery of examples IPOL projects

Ruins

$$||E_0|| = 3.21$$
 pixels.

 $||E_6|| = 0.12$ pixels.

э

・ロッ ・ 一 ・ ・ ・ ・

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara Gallery of examples IPOL projects

Ruins

$$||E_0|| = 3.21$$
 pixels.

 $||E_6|| = 0.12$ pixels.

э

・ロッ ・ 一 ・ ・ ・ ・

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

Beijing lion

 $||E_0|| = 4.32$ pixels.

 $||E_7|| = 0.36$ pixels.

・ロッ ・ 一 ・ ・ ・ ・

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

Beijing lion

 $||E_0|| = 4.32$ pixels.

 $||E_7|| = 0.36$ pixels.

< ロ > < 同 > < 回 > < 回 >

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

Cake

$||E_0|| = 17.9$ pixels.

 $||E_{13}|| = 0.65$ pixels.

<ロ> (日) (日) (日) (日) (日)

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

Cake

$||E_0|| = 17.9$ pixels.

 $||E_{13}|| = 0.65$ pixels.

<ロ> (日) (日) (日) (日) (日)

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

Cluny

$$||E_0|| = 4.87$$
 pixels.

$$||E_{14}|| = 0.26$$
 pixels.

< 4 ₽ > < E

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

Cluny

$$||E_0|| = 4.87$$
 pixels.

$$||E_{14}|| = 0.26$$
 pixels.

Image: A mathematical states and a mathem

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

Carcassonne

$||E_0|| = 15.6$ pixels.

 $||E_4|| = 0.24$ pixels.

< ロ > < 同 > < 回 > < 回 >

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

Carcassonne

 $||E_0|| = 15.6$ pixels.

 $||E_4|| = 0.24$ pixels.

・ロッ ・ 一 ・ ・ ・ ・

Books

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

 $||E_0|| = 3.22$ pixels.

 $||E_{14}|| = 0.27$ pixels.

э

< ロ > < 同 > < 回 > < 回 >

Books

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

 $||E_0|| = 3.22$ pixels.

 $||E_{14}|| = 0.27$ pixels.

э

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

・ 同・ ・ ヨ・

Project: Hartley's method (1999)

R.I. Hartley.

Theory and practice of projective rectification. *International Journal of Computer Vision*, 35(2):115–127, 1999.

- Compute **F** from point correspondences
- Rotate image and send epipole to infinity in x direction
- Apply affine transform x' = ax + by + c so as to minimize disparities

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

Project: Gluckman-Nayar (2001)

- J. Gluckman and S.K. Nayar. Rectifying transformations that minimize resampling effects. *IEEE Conf. Computer Vision and Pattern*, 1:111, 2001.
 - Local area change causes loss or creation of pixels
 - Area change measured by det(J), J being the Jacobian matrix of H.
 - Minimize w.r.t. 2 variables the distortion $E(\mathbf{H}) + E(\mathbf{H}')$ with

$$E(\mathbf{H}) = \iint \left(\det \left(\frac{\partial \mathbf{H}(x, y)}{\partial (x, y)} \right) - 1 \right)^2 dx \, dy$$

• Rational polynomial of degree 16 for one variable, quadratic for the other

Rectification problem Quasi-Euclidean rectification (Fusiello-Irsara) Gallery of examples IPOL projects

- 4 同 ト 4 ヨ ト 4 ヨ ト

Loop-Zhang (1999)

C. Loop and Z. Zhang.

Computing rectifying homographies for stereo vision. Computer Vision and Pattern Recognition, 1:125–131, 1999.

- 3 parts: projective, similarity, shear, each minimizing the distortion
- Projective: find a transform that sends e to infinity and keeps a point $z \in I_\infty$ fixed. 7-order polynomial root extraction to find z.
- Similarity: send epipole to $\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}^T$
- Shear: already rectified case, but tries to keep orthogonality of middle lines.