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∴

In this course, we take interest in the matching of local feature between two images. After
the description of the major issues related to this task in the introduction, the first section
gives an overview of the generic a contrario methodology introduced by A. Desolneux, L.
Moisan and J.-M. Morel in [DMM00]. This method makes it possible to design robust decision
criteria that prevent false detections. In the next section is proposed a brief description of
the SIFT [Low99] method (Scale Invariant Feature Transform), which is nowadays at the
heart of many algorithms in the computer vision literature. In this approach, images are
coded from a few interest points (i.e. with loss), for which the neighborhood is described from
similarity-invariant feature. These interest points and local descriptors are obtained in practice
from a multitude of thresholds, the optimality of which is the key of the success of the SIFT
method. In the case of orientation assignment of interest points, an alternative based on the
a contrario histogram mode selection [DMM03] is proposed. The last section is devoted to
the “safe” matching of SIFT-like features between images, in which several matching criteria
from [Low04, MSC+06, RDG09] are discussed.
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1 Introduction

Compared to global approaches, local representation of images has proved to be more efficient in many
computer vision areas. Indeed, nowadays most algorithms are based on local features for various applica-
tions, such as image registration, image stitching, object detection, pose estimation, object recognition,
3-D reconstruction, image classification, etc. However, dealing with local features requires some specific
processing tasks which are discussed in the next paragraphs, particularly regarding the robust matching
of those features.

Processing with local representation of images Let consider the object recognition task illustrated in
Figure 1: given two images, it consists in deciding if a common object is present or not, and if so, in
estimating the pose of this object in each image. In the most general case (without any prior knowledge
on the object), the accomplishment of such task requires numerous invariance and robustness to various
phenomena, such as:

. partial occlusion;

. change of point of view (perspective effects, self occlusion, geometric distortions due to camera);

. change of illumination source (white balance, shadows, contrast change, specularity);

. elastic and articulated deformations;

. multiple occurrences;

. self-similarity;

. change of context (background/foreground).

Early approaches proposed in the literature were based on template matching (e.g. global fitting using
correlation), which does not fulfill many of those requirements. In contrast, local representation of images
has been shown to yield naturally more invariance and robustness (among the most famous approaches
see e.g. the Shape Context [BMP02], the MSER [MCUP02], the a contrario shape recognition framework
introduced in [MSC+06]) and the Scale Invariant Feature Transform [Low04]). In Section 3 is given an
overview of the SIFT method which is now extensively used in Computer Vision to extract invariant
features.

Nevertheless, dealing with local features also requires extra processing. In the following is a sketch of
the processing chain used for object recognition (see Figure 2 for an overview):

1. Interest point or region detection Goal: Find and select a small but sufficient number of salient
structures (e.g. edges, corners, T-junctions, blobs, contrasted level line, etc) in image. Examples:
Harris corner detector, Canny edge detector, normalized Laplacian, SIFT key-points (See Section
2), MSER, etc.
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(a) Where is this building . . . (b) . . . in this picture ?

(c) Is there any book in common . . . (d) . . . in these two book shelves ?

Figure 1: Illustration of the challenging object recognition task.

Figure 2: Processing with local representation of images.

2. Feature description Goal: Compact and Invariant (robust) representation of local information. Ex-
amples: Color histograms or histograms, Shape context, SIFT (See Section 3).

3. Feature comparison Goal: Define a similarity measure to reject spurious correspondences, invariant
(robust) to geometric distortions, noise, etc. Examples: Euclidean metric, χ2-distance, Mahalanobis
distance, Earth Mover’s Distance, etc.

4. Feature matching Goal: Select relevant correspondences between two images. Examples: Thresh-
olding techniques on similarity measures (See Section 3).

5. Grouping matches Goal: Group matches that are consistent under geometric constraints (hypotheses
merging). Examples: RANSAC algorithm, Hough transform.

Each of these steps relies on decision criteria, which aim at reduce computations in further steps by
rejecting false hypotheses while preserving the likely ones. Some examples of this processing chain are
given in Figure 3. In this course, we will focus on the matching step.
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(a) Local correspondences after the matching step. (b) Pose estimation from correspondences.

(c) Local correspondences after the matching step.

(d) Pose estimation from correspondences.

Figure 3: Object recognition from matches between local features.
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Why the feature matching step is critical? Without entering into details about grouping methods (step
5 in the aforementioned processing chain), one should know that such algorithms explore hypothesis based
on interest point correspondences to merge consistent clues on the object pose (combinatorial problem).
Therefore, it is very sensitive to the number of selected correspondences between the two images but
also to the presence of irrelevant data (“outliers”), which corresponds to false matches between the two
images. Let now define more precisely what are those false matches that the matching step should be
able to discard.

When deciding if a match between two features should be validated or rejected, four scenarios can
happen depending on if the match is correct or not. This is a classical hypothesis testing classification
given by table 1.

Table 1: Taxonomy of hypothesis testing

Ground truth \ Test Positive Negative

Correct True-Positive (tp) False-Negative (fn) [Type II error]

Incorrect False-Positive (fp) [Type I error] True-Negative (tn)

We can see that two different types of matches are false: false positive and false negative (respectively
type I and type II error). Depending on the application, one may especially want to avoid the former or
the later (for instance, in vaccine testing, a good test should avoid False-Negative). In our case of study,
the only type of false match we have to take into account is the False-Positive. Our goal in this course is
to show how to select correct matches between two images (i.e. maximize the number of true-positive)
while discarding incorrect matches (i.e. minimize type I error). In the section 4, several matching criteria
devoted to this task are presented. However, two ingredients are first required: a robust and invariant
feature selection method to describe local neighborhood of interest points (Section 3) and a the a
contrario methodology (Section 2).

2 A short overview of the a contrario methodology

Most computer vision algorithms rely on decision criteria to decide if an hypothesis valid or not, which
often make use of the Bayesian inference or statistical tests. Such methods generally require some prior
knowledge on the specific object one want to detect.

In a study of perceptual grouping in the Gestalt theory, Desolneux, Moisan and Morel [DMM00,
DMM08] introduced a new and generic decision method which exclusively relies on the rejection of a
background model, i.e. without any prior on the object of interest itself. This “a contrario” framework –
already seen in IPOL#1 : “LSD: a Line Segment Detector”– is today at the heart of numerous algorithms
in the literature, and particularly in this course for local orientation selection and feature matching. In
what follows, we give a brief overview of this methodology which estimate automatically adaptive decision
thresholds by controlling the number of false alarms (type I error).

The Helmholtz principle The a contrario detection philosophy is based on the Helmholtz principle,
which can be stated as follows:

�no structure should be detected in a noise image.�

It comes from the assumption in Gestalt theory that we not perceive a structure when it is likely to
happen by chance.

To illustrate this principle, an example is displayed on figure 4, were two different configurations
of segments are shown. In the first one (figure 4(a)), the position and the orientation of segments are
randomly –say uniformly and independently– drawn, so that no structure is perceptible. On the contrary,
when considering the second configuration in figure 4(b), we can not help but group some segments which
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are aligned. Indeed, such structure is very unlikely to happen under the assumption that the segments
have been drawn independently.

The underlying idea behind the a contrario theory is to formalize this grouping principle to define
adaptive decision criterion.

(a) (b)

Figure 4: Illustration of perceptual grouping (Helmholtz principle).

Formalization The background model rejection in the a contrario approach rely on a null hypothesis
testing, denoted H0, that states that the observed features (the segments’ orientation and position in our
previous example) are mutually independent.

Now, given a group of features G, a similarity measure S has to be defined to evaluate the adequacy
of this group with the type of structure we want to detect (for instance, the consistency of orientation to
detect alignment).

Using this similarity measure, we can estimate the “p-value” corresponding toH0, that is the probability
of observing a random group of features G following the null hypothesis with a better similarity measure
than G:

PH0
(S(G) ≥ S(G)) . (1)

Clearly, the higher this probability, the higher the chance that the observed structure G can happen by
chance; hence, that it should be rejected.

A classical approach to decide if the considered structure G should be validated is to threshold this
probability. Groups of features that are validated while following the null hypothesis are called “false
alarms” (i.e. false positive). The remaining question, which is at the heart of the a contrario methodology,
is now: How to threshold such a probability to avoid false alarms?

False alarm rejection It must be noticed at this point that such a decision criterion (“Does structure
G have to be validated ?”) is meant to be used several times (multiple testing) in practice since many
structures may be of interest in a single image (e.g. shape recognition). Let {Gi}i be the set of tested
structures and N = |{Gi}i| be the total number of tests. It is obvious that the number of false alarms
(type I error) depends on N

The a contrario methodology consists in taking into account this number of tests N to design adaptive
thresholds to the detection of structure of interest.

To do so, it is usual to define the a quantity called “NFA”, standing for Number of False Alarms, which
is defined as follows (general formalization):

NFA(Gi, S(Gi)) := N × PH0
(S(G) ≥ S(Gi)) . (2)
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Indeed, this quantity represents the expected number of false alarms (i.e. an “E-value”) for N tests when
validating every random groups of features following the background model with quality measure greater
than S(Gi).

The smaller the NFA quantity, the more significant is the tested group. A group for which the NFA is
smaller than ε is called ε-meaningful group. The fundamental interest of the a contrario approach lies in
the fact that it ensures the following property:

�The expected number of ε-meaningful groups following the null hypothesis is smaller than
ε.�

This means that by selecting only groups Gi that are ε-meaningful, we control the expected number
of false alarms. In practice, the “meaningfulness threshold” ε is generally set equal to one, meaning that
at least one false alarm should arise when testing all the structures in the image.

Automatic thresholds We have seen that only groups that are ε-meaningful are validated. This boils
down to threshold the probability under the null hypothesis with the constant ε

N . This could be seen
as a Bonferroni correction to control the type I error (i.e. the expected number of false alarms). The
thresholding of the probability term is in fact equivalent to define adaptive thresholds on the similarity
measure S:

ti(ε) = min{t,NFA(Gi, t) ≤ ε} (3)

Then, a group is ε-meaningful if S(Gi) > ti(ε).

3 SIFT method

The SIFT method has been already described in details in IPOL#4 : “Is the ’Scale Invariant Feature
Transform’ (SIFT) really Scale Invariant?”. In this section is given a short overview of this method, for
which some of its aspects are developed in more details.

Recall that the SIFT approach consists, in the first part, in detecting point in the scale space of the
image of interest (§ 3.1), and then filtering those interest points (§ 3.2), and assigning them an orientation
(§ 3.3). The second part is then devoted to the compact description of these points (§ 3.4), based on
local histograms of the gradient orientation.

3.1 Salient point detection in the scale-space

Scale-space analysis Let I : (x, y) ∈ Ω ⊂ R2 7→ I(x, y) ∈ R be a scalar image from which we want to
extract some interest points in location, scale and orientation. The (unique) linear scale-space represen-
tation of I at point (x, y, σ) ∈ R2 × R+ is given by the computation of the convolution with a centered
Gaussian kernel with variance σ2:

Iσ(x, y) := Gσ ∗ I(x, y) =
1

2πσ2

∫∫
(u,v)∈Ω

I(u, v) e−
(x−u)2+(y−v)2

2σ2 dudv . (4)

which corresponds to the solution to the heat diffusion PDE ∂tIt(x, y) = σ∆It(x, y) at time t = σ, where
at t = 0, It := I.

Normalized Laplacian In order to detect from this tri-dimensional representation of I some salient fea-
tures in a robust and repeatable fashion, T. Lindeberg [Lin94] proposed to use the normalized Laplacian:

∆σI(x, y) = σ2 ·∆Iσ(x, y) :=

{(
x2 + y2

σ2
− 2

)
Gσ(x, y)

}
∗ I(x, y) . (5)

The local extrema of such an operator corresponds to edges, junctions or “blobs”. For instance,
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• for a disk D(C, ρ), the extremum is located in the center C of the disk, at scale σ = ρ/
√

2;

• for a Gaussian kernel calN(µ, s), the extremum is located in µ, at scale σ = s;

• for a corner (intersection of two edges), the extrema of the normalized Laplacian operator (in
space, but not in scale) lay on the bisector. Theoretically, there is no extremum in scale because
the Laplacian response is decreasing in scale. Nevertheless, because of the noise or the discretization
in scale, several local extrema may be found in practice.

SIFT approximations The computation of the local extrema of the Laplacian on the scale space rep-
resentation of the image is time consuming. In SIFT [Low99, Low04], D. Lowe proposed numerous
approximations to speed-up the process. Some other have been later proposed (see e.g. [BTG06]).

First of all, the scale space representation is discretized in scale with very few samples {Iσk}k to
avoid spurious computation of convolutions. In [Low99], the scale of index k is defined geometrically:
σk = σ0 · rk, where σ0 = 0.8 is the initial scale and r = 21

3 (three samples for an octave). Each time a
new octave is obtained, the image Iσk is down-sampled by a factor of two (to obtain a so-called pyramid).

The normalized Laplacian operator is then approximated by difference of Gaussian (DoG). Indeed, at
scale of index k, we can write the difference of two successive images as:

Iσk+1
(x, y)− Iσk(x, y) = {Gσk+1

−Gσk} ∗ I(x, y) ≈ σk(r − 1)
∂Gσ(x, y)

∂σ

∣∣∣∣
σk

∗ I(x, y) . (6)

Now, from the heat diffusion equation ∂Gσ(x,y)
∂σ = σ∆Gσ(x, y), so we get:

Iσk+1
(x, y)− Iσk(x, y) ≈ (r − 1)∆σkIσk(x, y) . (7)

Local extrema of the DoG operator are then found by checking for every pixel the values of its 26
neighbors in the scale space.

Observe that, in order to compensate those approximations, a second-order interpolation of the ex-
tremum coordinate mi : (xi, yi, σi)

T is then performed in [Low04]:

m̂i = (xi, yi, σi)
T + (∇2Iσi(xi, yi))

−1∇Iσi(xi, yi) , (8)

where ∇ and ∇2 respectively stands for first and second order derivative operator in R3.

3.2 Interest-point filtering

Detection of local extrema is very sensitive to noise, yielding some irrelevant detections on edges. To avoid
the detection of such uninformative structure (location of point along edges is not reliable), a decision
criterion based on geometrical purpose is driven.

In [Low04], this criterion is based on the comparison of the eigenvalues of the 2-D Hessian matrix
(related to the curvature of the surface) computed at the scale of the point of interest. This Hessian
matrix writes as follows:

Hσ(x, y) = ∇2Iσ(x, y) =

∂2Iσ(x,y)
∂x2

∂2Iσ(x,y)
∂y∂x

∂2Iσ(x,y)
∂x∂y

∂2Iσ(x,y)
∂y2

 .

To avoid eigenvalues computation, Lowe propose the following test inspired from the Harris corner de-
tector [HS88]:

Tr(Hσ(x, y))2 > t ·Det(Hσ(x, y)) , (9)

where Det and Tr respectively stands for the determinant and the trace of the matrix Hσ. The threshold
t (fixed to 12.1) ensures that the ratio between the eigenvalues do not exceed 10.
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Note that a similar technique has been proposed previously by Mikolajczyk and Schmid in [MS01],
generalizing the Harris corner detector [HS88] for scale-space representation. The Harris detector, based
on previous work of Moravec [Mor80], consists in the analysis of the eigenvalues of the structure tensor
T (x, y), an average correlation matrix of first-order derivative defined as follows:

T (x, y) = Gs ∗

( ∂I∂x )2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y ( ∂I∂y )2

 , (10)

where Gs is a Gaussian kernel with standard deviation s. It is well known that the eigenvectors of the
structure tensor are strongly related to the main directions of the gradient (T could be seen as a moment
of inertia matrix). The original cornerness measure of Harris and Stephen is

C(x, y) = Det (T (x, y))− k · Tr(T (x, y))2 > t , (11)

where t and k are two parameters. In [MS01], this criterion is adapted to the scale space analysis by
considering the following matrix Tσ(x, y), define by taking into account the scale parameter σ:

Tσ(x, y) = σ2 ·Gs ∗

 (∂Iσ∂x )2 ∂Iσ
∂x

∂Iσ
∂y

∂Iσ
∂x

∂Iσ
∂y (∂Iσ∂y )2

 . (12)

Observe the presence of the normalizing term σ2, as for the Laplacian operator. The scale-space measure
of cornerness is now:

Cσ(x, y) = Det (Tσ(x, y))− k · Tr(Tσ(x, y))2 > t . (13)

where k = 4 10−2 and t = 2 103.

3.3 Interest-point orientation assignment

The previous detection steps provides interest points {mi : (xi, yi, σi)} in scale-space with similarity
invariant operator (linear scale space and normalized Laplacian operator). A last step is now required
to compute descriptor that are fully invariant to similarity: indeed, in addition to the space and scale
localization, a orientation assignment is also required to achieve complete rotation invariance.

3.3.1 Original SIFT approach

The key idea of D. Lowe in [Low99] is to estimate the main orientation of a given structure by looking
at the statistical distribution of the gradient orientation in the vicinity of the interest point. To do so,
an histogram is first built in which peaks are then detected.

Notation Let consider a circular histogram H defined from M samples {θ1, . . . , θM} (orientations)
quantized uniformly on L values for the interval [−π, π[:

∀ i ∈ {1, . . . , L}H[i] =

∣∣∣∣{θm ∈ [2π

L
(i− 1)− π, 2π

L
i− π

[
,m = 1, . . . ,M

}∣∣∣∣ . (14)

We will denote by I the set of indexes {1, 2, . . . , L} and by L the set of quantized values { πL i − π}i∈I
corresponding to the center of the i-th bin. Recall that the histogram being circular, it means that the
bins with respective index 1 and L are adjacent. A discrete circular interval [a, b] is hence the set of index
values in I starting from bin a towards bin b, i.e. [a, b] := [a, L] ∪ [1, b] when b < a. For commodity, we
will refer from now to bin “i−1” as the bin with index i−1 if i ≤ 2, and as the bin with index L if i = 1.
The length of an interval is defined as its number of bins.
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Peack detection In [Low04], the histogram of the local gradient orientation is quantized on L = 36
accumulators and is built from gradient samples extracted in the neighborhood of the interest point
mi : (xi, yi, σi). Each entry in the histogram is weighted by the gradient norm and by a Gaussian kernel
G3σi(.− xi, .− yi) with variance 9σ2

i and mean (xi, yi).
The peaks in the histogram are then simply defined as local maxima, where local maxima lower than

80% to the global maximum are pruned, that is

P =

{
i ∈ I , H[i− 1] ≤ H[i] and H[i] ≥ H[i+ 1] and H[i] ≥ 0.8 max

j∈I
H[j]

}
(15)

The location of each peak is then refined as the vertex α of the parabola fitted to the 3 histogram
values around the peak, that is

∀i ∈ P , αi = − π b
La

[2π] with


a

b

c

 =


(i− 1)2 i− 1 1

i2 i 1

(i+ 1)2 i+ 1 1


−1 

H[i− 1]

H[i]

H[i+ 1]

 , (16)

where H[0] = H[L] and H[L+ 1] = H[1].
Finally, the orientation αi is assign to the interest point mi so that mi : (xi, yi, σi, αi). Note that the

interest point are duplicated so that we obtain as many interest points as detected peaks.

3.3.2 A contrario detection of orientation

It is obvious from the previous method that the definition of orientation is extremely sensitive to the
quantization level L. There is a trade-off between the precision of the location (which increases with L)
and the detection of the local maxima (which is only robust for small values of L). Ideally, the detection
of dominant mode in the histogram of gradient orientation should not dependent on the quantization and
without any threshold setting.

A good alternative is to use the a contrario algorithm proposed by Desolneux et al. [Des00, DMM03]
to detect modes and gaps in histograms. We will now introduced this approach based on the “a contrario
recipe” described in Section 2.

Null hypothesis H0 Recall that the histogram H is built from samples θm ∈ [−π, π[.

Definition 1 (Null Hypothesis (background model)). the samples {θm}{m=1,...,M} are mutually inde-
pendent random variables, identically and uniformly distributed in [−π, π(.

Observe that this null hypotheses corresponds to a background model of white noise image, since the
orientation of the discrete gradient is uniformly distributed [DLMM02].

Then, the probability that one sample θm fall into [a, b] under the null hypothesis H0 (i.e. assuming
that the sample has been drawn using the background model) is hence:

p(a, b) =
|[a, b]|
L

=
1

L

 b− a+ 1 if b ≥ a

a− b+ 1 + L otherwise
. (17)

Consider now several samples: we want to be able to decide if a given interval of the histogram is
meaningful, i.e. with a number of samples being very unlikely under the null hypothesis. Let denote
by k(a, b) the number of samples {θm}m which belong to the discrete circular interval [a, b]. Then,
the probability that at least k(a, b) samples of points among M fall into interval [a, b] under the null
hypothesis is given by the tail of the binomial distribution B(M,k(a, b), p(a, b)) defined as:

PH0
(k ≥ k(a, b)) = B(M,k(a, b), p(a, b)) =

M∑
i=k(a,b)

(
M

i

)
p(a, b)i(1− p(a, b))M−i . (18)
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The lower this probability, the more unlikely the interval [a, b] is under the background model. Deciding
if this interval can be selected boils down to the thresholding of this probability.

Meaningful interval We have previously seen that such a threshold must take into account the number
of tests in order to avoid spurious false alarms (Bonferroni correction). In our setting, this number of
tests is the number of interval that will be considered, that is the total number of distinctive circular
intervals

N := |{(a, b) , a ∈ I, b ∈ I \ {a− 1}} ∪ {[1, L]}| =
∑

i∈I,j∈I\{i−1}

1 + 1 = L(L− 1) + 1 . (19)

Then, we define the following quality measure, called NFA, for a given interval [a, b] with k(a, b) samples
as:

NFA([a, b]) = N B(M,k(a, b), p(a, b)) . (20)

Definition 2 (Meaningful interval). An interval I is a ε−meaningful interval when

NFA(I) = N B(M,k(a, b), p(a, b)) ≤ ε .

Recall that a false alarm is a validated interval that follows the null-hypothesis.

Proposition 1. Let H be an histogram built from M random samples following the null hypothesis H0.
The expected number of false alarms when validating ε−meaningful intervals is smaller than ε.

Computation time consideration: Hoeffding’s inequality The estimation of the NFA for each possible
interval involves the computing of the binomial tail, which can be time consuming. Of course, since
binomial parameters take discrete values (depending on constants L and M), the probability under the
null hypothesis can be precomputed into a look-up table. Nevertheless, it remains fastidious for large
values of M and L. Another interesting alternative is to use the Hoeffding’s inequality to define a sufficient
condition of meaningfulness.

Let first introduce the relative entropy definition. Let r(a, b) = k(a,b)
M be the posterior probability for

a sample to belongs to the interval [a, b], and p(a, b) the prior (uniform).

Definition 3 (Relative entropy of an interval). The relative entropy of probabilities r and p is defined
as:

∀ (r, p) ∈ [0, 1] , H(r, p) = r ln
r

p
+ (1− r) ln

1− r
1− p

. (21)

This quantity is the non-symetric Kullback-Leibler distance between two Bernoulli distributions with
parameters r and p respectively.

Lemma 1 (Hoeffding’s inequality). If k(a,b)
M ≥ p(a, b), then

B(M,k(a, b), p(a, b)) ≤ e−M ·H(
k(a,b)
M ,p(a,b)) . (22)

Proposition 2 (Sufficient condition of meaningfulness). Sufficient conditions for a given interval I=[a,b]
to be ε-meaningful is:

r(a, b) =
k(a, b)

M
> p(a, b) (23)

H(r(a, b), p(a, b)) >
1

M
ln
N
ε

(24)

This simple test is faster to evaluate in practice than the original one in Proposition (1).
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Automatic threshold The thresholding of the quantity NFA with a fixed parameter ε makes it possible
to define automatically thresholds on the number k of samples required for a discrete interval to be
validated. Such a threshold kε, which only depends on the length l (i.e. the number of bins) of the
interval, is defined as

Definition 4 (Meaningful sample threshold).

kε(l) = argmin
k
{k , B(M,k,

l

L
) ≤ ε

N
} . (25)

Then, a interval of length l with k samples is ε-meaningful if k ≥ kε(l)
Using the sufficient condition on meaningfulness (Proposition (2)), we can define equivalently a sufficient

threshold k̂ε(l) on the number of samples such that the considered interval is ε-meaningful.

Definition 5 (Sufficient sample threshold).

k̂ε(l) = argmin
k
{k , k > M

l

L
and H(

k

M
, p) >

1

M
ln
N
ε
} . (26)

A comparison of these two thresholds is given in Figure 5, with the following experimental setting:
L = 102, M = 104. Observe that the sufficient sample threshold k̂ε(l) do better approximate the
meaningful sample threshold kε(l) for large values of l.

(a) Thresholds for ε = 1 (b) Relative error

Figure 5: Comparison of thresholds.

Meaningful gaps and modes The previous definitions enables us to define a meaningful interval as an
interval containing sufficiently more samples than it is expected from the background model. Nevertheless,
it is insufficient in practice to select main modes of an histogram, since a meaningful interval can contains
some “gaps”. To take this into account, we first define meaningful gaps and then meaningful modes.

The definition of a meaningful gap is straight-forward: it is an interval that contains sufficiently few
samples than expected from the background model. More precisely, the probability that at most k(a, b)
samples of points among M fall into interval [a, b] under the null hypothesis is given by PH0

(k ≤ k(a, b)) =∑k(a,b)
i=0

(
M

i

)
p(a, b)i(1 − p(a, b))M−i, which can be expressed from again from the tail of the binomial

distribution
PH0(k ≤ k(a, b)) = B(M,M − k(a, b), 1− p(a, b)) . (27)

Then, we define
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Definition 6 (Meaningful gap). An interval [a, b] is a ε−meaningful gap when

NFA’(a, b) = N B(M,M − k(a, b), 1− p(a, b)) ≤ ε . (28)

Definition 7 (Meaningful mode). An interval I is a ε-meaningful mode if it is a ε-meaningful interval
that does not contain any ε-meaningful gap.

Maximality From the previous paragraph we can guess that several meaningful modes with overlaps
could be detected (redundant detections). Therefore we need a maximality criterion to select only non-
overlapping modes.

Definition 8 (Maximal meaningful mode). An interval I is a maximal-ε-meaningful mode if it is a
ε-meaningful mode and if for all ε-meaningful mode J ⊂ I, NFA(J) ≥ NFA(I) and for all ε-meaningful
mode J ! I, NFA(J) > NFA(I).

Algorithm The a contrario algorithm for the detection of dominant mode in circular histogram is de-
scribed in Table 2.

Table 2: A Contrario mode detection.

Algorithm 2 Automatic mode selection.

Input: Histogram H with M samples and L bins.

parameter ε = 1.

1) Find ε-meaningful intervals (definition 2);

2) Find ε-meaningful gaps (definition 6);

3) Find ε-meaningful modes (definition 7);

4) Find maximal ε-meaningful modes (definition 8).

Output: List of intervals.

Interest point filtering and orientation assignment Now that we have defined an algorithm to detect
meaningful mode in histograms, the definition of orientation is straight-forward. For a given 1-meaningful
mode [a, b], the corresponding orientation α[a,b] is simply defined as the circular barycenter of the his-
togram values in this interval, i.e.

α[a,b] =
2π

L


∑b
i=a i ·H[i] if a ≤ b∑L

i=a i ·H[i] +
∑b
i=1(i+ L) ·H[i] if a > b

[2π] . (29)

Figure 6 shows an example of the detection of the dominant orientation of an interest point from its
histogram of gradient orientation.

A comparison the original SIFT orientation assignment technique with the a contrario mode detection
is provided on a toy example in Figure 7.

Eventually, observe that the a contrario mode selection makes it also possible to discard interest points
that lies on edges structures. Indeed, only interest points with at least two orientation assignments should
be kept.

3.4 Descriptor construction

Once interest points {mi : (xi, yi, σi, αi)}i have been identified (typically a few thousand for a 1 mega-
pixel digital image), a descriptor is then build for each of them. The SIFT descriptor is compact vector
made of local histograms of the gradient orientation, extracted from the vicinity of the interest point.
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(a) An interest point and its orientation
assignment

(b) a contrario selection of histogram mode [DMM03]

Figure 6: Illustration of the detection of the dominant orientation of an interest point based on mode detection.

(a) Orientation assignment with the original
SIFT method

(b) Orientations assignment with the a contrario
framework

Figure 7: Comparison of orientation assignment techniques.

Local histograms First, a localization grid (see Figure 8(a)) is centered in the interest-point location
(xi, yi, σi, αi) in the scale-space representation of the image. Its size is proportional to the interest-point
scale σi, and its orientation is defined accordingly to the point orientation αi.

Tough D. Lowe makes use of a Cartesian grid in [Low04], one can use radial grid to achieve complete
rotation invariance [MS05, Rab09]. This grid is divided into M radial regions (here M = 9), for each of
which a local 1-D histogram of the gradient orientation is built from the image Iσi .

Orientation histograms are composed of N = 8 accumulators (or bins). In order to be robust to
noise (the estimation of gradient orientation is not reliable for gradients with small magnitude), to the
quantization and also to boundary effects, the entry of a sample (xm, ym, θm) into an histogram is weighted
by

• the gradient magnitude in (xm, ym);

• a weight defined from the distance of the sample (xi, yi, αi) to the nearest bin, using linear inter-
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(a) Radial localization grid with 9 regions. (b) Discrete mask with a ra-
dius of 12 pixels.
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(c) Corresponding histograms of the
gradient orientation

Figure 8: Radial localization grid used to extract local histograms.

polation;

• a weight defined from the distance of the gradient sample to the center (xi, yi) of the grid, using a
Gaussian kernel.

Normalization The SIFT descriptor, which is composed of M 1-D histograms {hm}m=1,...,M , can be
seen as a compact vector with N ×M dimensions. The last step of the SIFT method consists in scaling
the values of this vector in such a way that it has a unit Euclidean-norm. This normalization achieves
the invariance of the descriptor to affine contrast change.

4 SIFT-like features matching

We have seen in the previous section how to get a local representation of images from SIFT descriptors.
Within this framework, the comparison of several images boils down to the matching of such local features.

In the following, we consider a situation where one seeks for correspondences between NQ query de-
scriptors {ai} and a database of NC candidate descriptors {bj}, as illustrated by Figure 9.

A B

⇔



a1

...

ai

...

aNQ


-



b1

...

bj

...

bNC


Figure 9: Image matching via local representation A is a query image described with NQ query descriptors,

and B is an image database composed of NC candidates. The comparison of the query image with the
database boils down to the problem of local feature matching.

The matching criterion should adapt itself to the complexity and diversity of the features.

4.1 Preliminary step: similarity measure

As it has been previously stressed in the introduction, a preliminary step to the feature matching consists
in defining a similarity measure. From now, we denote by D(a, b) the similarity measure descriptors a
and b. We assume that the lower the quantity D(a, b), the better the similarity. The definition of such
a measure is very important in practice: for a given query descriptor ai, we can sort the candidates
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in the dataset {bj}j by increasing order of similarity. The matching criterion then simply consists in
thresholding this similarity measure to select relevant matches.

The dissimilarity measure should provide relevant comparisons between features and should be robust
enough to cope with small variations of these features (quantization effect, geometrical distortions, etc).

The most classical way to compare SIFT-like descriptors is simply to use the Lp distance as in For-
mula (30), usually with p = 2 (Euclidean distance) [Low04]. Other distances that are used to compare
local features include the χ2 distance, as in [FL07] or the Mahalanobis distance [MM07]. The defini-
tions of these distances in the framework of SIFT-like descriptors are recalled in Formula (31) and (32)
respectively.

dLp(a, b) :=

(
M∑
m=1

N∑
i=1

| am[i]− bm[i] |p
) 1
p

(30)

dχ2(a, b) :=

M∑
m=1

N∑
i=1

(am[i]− bm[i])2

am[i] + bm[i]
(31)

dM (a, b) :=

 M∑
m,n=1

N∑
i,j=1

(am[i]− bm[i]) · wi,j,m,n · (an[j]− bn[j])

 1
2

, (32)

where wi,j,m,n is a weighting term (generally learn from the covariance of the data) enabling the com-
parison of bins with different index.

In what follows, we assume that distances have been computed between each ai and each bj . Note that
this step can sometimes be replaced by approximate allocation algorithms, as in [BL97, ML09].

Two different criteria are often used in practice to validate matches, as detailed in [MS05, MP07], both
relying on user-selected thresholds on the similarity measure. These criteria are discussed in Sections 4.2
and 4.3. Ideally, these thresholds should be set automatically and should depend on both the query and
candidate descriptors. In sections 4.4 and 4.5 are shown two alternative matching criteria relying on such
adaptive thresholds. Matches between the query and candidate descriptors are validated by rejecting
casual matches, that are matches that can be produced by chance. Similar ideas are present in works
dealing with the statistical analysis of object recognition processes [Lin97, Lin95]. Specifically, we resort
to an a contrario methodology, first introduced in [DMM00] and then applied, among other things, to
shape matching [MSC+06]. This approach provides thresholds on the dissimilarity measure that adapt
to the query and candidate descriptors. This matching procedure also allows multiple detections over
a database, while controlling the total number of matches, in particular in cases where the structure of
interest is not present.

4.2 Fixed distance thresholding

The simplest matching criterion, that we call dt (Distance Threshold), relies on a global threshold on
distances. That is, each query ai is simply matched with candidates {bj} that are at a distance d(ai, bj)
smaller than the threshold.

Definition 9 (dt Criterion). For each query descriptor ai, every correspondence with a candidate de-
scriptor for which the similarity measure is smaller than a global threshold t is validated. The set of
selected matches is therefore:

CDT :=
{

(ai, bj) , i ∈ {1, . . . , NQ} and j ∈ {1, . . . , NC} : D(ai, bj) ≤ t
}

Usually, matches are restricted to the nearest neighbor [Bau00, JT08] for each query descriptor, in
order to limit multiple false detections that often affect some query descriptors. We will refer to this
criterion as nn-dt (Nearest Neighbor Distance Threshold).
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Definition 10 (nn-dt Criterion). For each query descriptor ai, a unique correspondence with the nearest
candidate descriptor is validated if the similarity measure is smaller than a global threshold t. The set of
selected matches is therefore:

CNN-DT :=

{
(ai, bJ(i)) , i ∈ {1, . . . , NQ} : D(ai, bJ(i)) ≤ t s.t. J(i) = arg min

j∈{1,...,NC}
D(ai, bj)

}

Three main drawbacks inherent to this approach restrict its use in practice. First, the nearest neighbor
restriction limits the number of correct matches so that, in some applications, one prefers to select the K
nearest neighbors: K = 3 in [FTG06], K = 4 in [BL07] for image stitching, and K between 5 and 10 in
[RLSP07]. The price to pay is then a higher proportion of false matches. Secondly, the nearest neighbor
restriction is also problematic in cases where there are multiple occurrences of the structure of interest,
for instance when the target object is present more than once in the database (see for instance [DMA07]),
when dealing with objects having repetitive parts, such as buildings (this issue is studied in [ZK06]), or
when the interest point detector yields spurious repetitions of the structure to be coded. Lastly, the great
variability of distances between descriptors from images to images (as shown in Section 4.6) makes it
particularly difficult to set the right threshold for a particular application.

Note that in [DZLF94], a variant of nn-dt consists in keeping only matches (a, b) for which a is also
the nearest neighbor of b.

4.3 Distance ratio thresholding (Lowe criterion)

In order to reduce the variability of the chosen threshold, Lowe [Low04] introduces another criterion by
comparing the distances between ai and its closest and second-closest neighbors respectively. If the ratio
between the two distances is below a threshold r, the match with the closest neighbor is validated.

Definition 11 (nn-dr Criterion). For each query descriptor ai, compute the nearest and the sec-
ond nearest candidate descriptor in the database, respectively referred to as bJ1 and bJ2. A unique
correspondence with the nearest candidate descriptor is validated if the ratio of similarity measures
D(ai, bJ1(i))/D(ai, bJ2(i)) is smaller than a global threshold r. The set of selected matches is therefore:

CNN-DR :=

{
(ai, bJ1(i)) , i ∈ {1, . . . , NQ} :

D(ai, bJ1(i))

D(ai, bJ2(i))
≤ r , s.t.

J1(i) = arg min
j∈{1,...,NC}

D(ai, bj) et J2(i) = arg min
j∈{1,...,NC}\J1(i)

D(ai, bj)

}

This popular criterion, that we call nn-dr (Nearest Neighbor Distance Ratio), benefits from its sim-
plicity and the fact that it is by far more robust than a simple threshold on distances. However, the choice
of the “optimal” threshold r is strongly dependent on both the application and the database: r = 0.8
in [Low04], r = 0.6 in [SSS08], r = 0.95 in [CM05], or r between 0.56 and 0.7 in [MP07] for instance.
In practice, the nn-dr criterion behaves very well (and in particular significantly better than the nn-dt
criterion as shown in [MP07]) when the target to be matched is present exactly once in the candidate
database. Indeed, in this case, it makes sense to assume that the distance to the nearest neighbor is small
compared to distances to other candidates and in particular to the second nearest neighbor.

Now, the reason why this criterion should work when the structure of interest is not present is less
clear. Such a situation is shown in the experimental section 4.6. It is of great practical importance,
because in real situations a computer vision system relying on the matching of local features has to deal
with situations when the target is present as well as with situations when the target is missing. Moreover,
this criterion is by nature limited to the nearest neighbor, and, as nn-dt, may fail in the case where the
structures of interest appear more than once, as already mentioned.
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4.4 Adaptive distance thresholding (Lisani criterion)

Several variants of the nn-dr matching criterion have been proposed. In [BSW05], it is suggested to adapt
the nn-dr criterion by averaging the distance to the second neighbor over several images for panorama
stitching.

Another interesting alternative matching criterion has been proposed by J-L. Lisani in [CLM+08]. His
idea is to adapt the distance ratio test in such a way that it tolerates multiple detections. To do so, one
consider an alternative database B′ composed of N ′C descriptors in which we look for the nearest neighbor
for each query descriptor. Now, a match is validated if the ratio between the distance from the query to
a given candidate in B and the distance from the query to its most similar candidate in B′ is below a
fixed threshold r. This method can be seen as an a contrario approach in which one estimates adaptive
thresholds on the similarity measure depending on the query and a background model (the database B′).

Definition 12 (adt Criterion). For each query descriptor ai, define an adaptive threshold t(ai) as the
similarity measure with the nearest descriptor in an alternative database. Then, every correspondence
with a candidate descriptor bj for which the similarity measure is smaller than the threshold t(ai) is
validated. The set of selected matches is therefore:

CADT :=

{
(ai, bj) , i ∈ {1, . . . , NQ} and j ∈ {1, . . . , NC} : D(ai, bj) ≤ r · min

j∈{1,...,N ′C}
D(ai, b′

j
)

}
This criterion, that we call adt(Adaptive distance thresholding), has two major advantages over the

nn-dr criterion: the threshold automatically adapt to the query (without being affected by self-similarity
and multiple occurrences) to the query and the criterion enables multiple matches.

Nevertheless, it requires some extra computations (the database B′ should have at least the same size
as B′). Moreover, contrary to the a contrario methodology introduced in Section 2, it does not make it
possible to set the threshold r in such way that we control the expected number of false alarms.

4.5 A contrario matching criterion

In this section, we introduce a generic way to compute matching thresholds in the framework of local,
SIFT-like descriptors. Recall that we consider NQ query descriptors {ai} and NC candidate descriptors
{bj}. The question is then: for each ai, to which bj (if any) should it be matched? To answer this
question, we rely on the general principle of a contrario methodology presented in Section 2 and fix
matching thresholds that ensure the rejection of casual matches.

Note that an alternative a contrario approach for the matching of SIFT descriptors has been proposed
in [CLM+08]. Other a contrario matching criteria as also been proposed for shape recognition [MSC+06],
image retrieval [HGS08] and stereoscopic vision [SAM08].

4.5.1 The null hypothesis

Recall that each descriptor ai is made of M orientation histograms, ai = (ai1, . . . , a
i
M ). In order to define

the null hypothesis, we assume that the distance between two descriptors ai and bj can be written as
D(ai, bj) =

∑M
m=1 d(aim, b

j
m). This means that the total distance between two descriptors is merely a

sum of distances between histograms. Observe that this is a very mild assumption, satisfied for classical
bin-to-bin distances (see e.g. L2, L1 or χ2 in formulas (30 and (31)), as well as for the Circular Earth
Mover’s Distance (cemd) proposed in [RDG09].

Now, the idea is to fix matching thresholds in such a way that a given descriptor ai would scarcely be
matched with a generic random descriptor. In what follows, we will write b for a random descriptor, that
is a collection (b1, . . . ,bM ) of M random histograms. In order to specify what we mean by a “generic”
random descriptor, we now define a hypothesis on b relying on the independence of the M real random
variables d(aim,bm).
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Definition 13. For i ∈ {1, . . . , NQ}, a random descriptor b is said to satisfy the ith null hypothesis, Hi0,
if {

d(aim,bm)
}
m∈{1,...M} are mutually independent random variables.

Under hypothesis Hi0, the law of the random variable D(ai,b) has density
M∗
m=1

pim, where ∗ denotes the

convolution product and pim the probability density function of the random variable d(aim,bm). Thus,

Proposition 3. Under the hypothesis Hi0, the probability that the distance between ai and b is smaller
than a given threshold δ is

fi(δ) := P
(
D(ai,b) ≤ δ |Hi0

)
=

∫ δ

0

M∗
m=1

pim(x) dx . (33)

The validity of a match will then be decided by thresholding this probability, as explained in the next
section. This in turn yields thresholds on distances that depend on both ai and the observed distribution
of candidate descriptors.

In order to numerically compute the probability given by Equation (33), we need to estimate the
probability density functions pim, for each i ∈ {1, . . . NQ} and each m ∈ {1, . . .M}. These laws are
empirically estimated over the database {b1, . . . , bNC}. For this, we simply use histograms of realizations
of the distances over the database.

4.5.2 Meaningful matches

Let us consider two given descriptors ai and bj at distance δ = D(ai, bj). We decide to match these
descriptors as soon as fi(δ) = P(D(ai,b) ≤ δ |Hi0) is small enough. In other words, we match these
descriptors if it is unlikely that a generic random descriptor b (that is, a descriptor satisfying Hi0) is
closer from ai than bj is. In this case, we conclude that the proximity between ai and bj cannot be due
to chance. It therefore remains to define what we mean by “small”, thus to automatically fix a threshold
on this probability. Following the general approach of a contrario methods, we choose the threshold in
order to control the average number of false detections.

Definition 14. For a given ε > 0, a match between {ai} and a candidate descriptor {bj} is said to be
ε-meaningful if

fi
(
D(ai, bj)

)
≤ ε

NQNC
, (34)

where the function fi is defined by Formula (33), NQ is the number of query descriptors and NC the
number of candidate descriptors.

Observe that for a given ε > 0, the unique threshold ε
NQNC

yields NQ adaptive thresholds on distances,

defined for i = 1, . . . , NQ by

δi(ε) = arg max
δ

{
fi(δ) ≤

ε

NQNC

}
. (35)

For each query descriptor ai, a match between ai and some bj will be ε-meaningful if D(ai, bj) ≤ δi(ε).
The reason behind the choice of the threshold ε

NQNC
is the following:

Proposition 4. When testing NQ queries against NC candidates satisfying all the null hypotheses, the
expected number of ε-meaningful matches is smaller than ε.

Proof. The function fi : δ 7→ PHi0(D(ai,b) ≤ δ) is the repartition function of the random variable D(ai,b)

when the random descriptor b follows the null hypothesis Hi0. Recall that if X is a random variable with
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a repartition function FX , then P(FX(X) ≤ α) ≤ α ∀α ≤ 0. Hence, PHi0(Fi(D(ai,b)) ≤ α) ≤ α. We
denote by 1(χ) the indicator of event χ, and EH0 the expectation under the global null hypothesis H0.

EH0

[ NC∑
i=1

NQ∑
j=1

1
{

(ai,bj) is ε-significatif
} ]

=

NC∑
i=1

NQ∑
j=1

PHi0
[
Fi
(
D(ai,bj)

)
≤ ε

NQNC

]

≤
NC∑
i=1

NQ∑
j=1

ε

NQNC
= ε .

This result is a simple consequence of the linearity of the mathematical expectation. Observe that it
would have been much more difficult to bound the probability of false detections, since distances between
different descriptors are not necessarily independent. A more in-depth analysis of this interesting aspect
can be found in [DMM08]. Let us also remark that this choice of δ is actually one of the simplest ap-
proaches to multiple testing, and is known in the statistical community as a Bonferroni correction [Mil91].

Definition 15 (ac criterion). A correspondence (ai, bj) is validated if the quantity NFA(ai, D(ai, bj)) is
lower or equal to the threshold ε. The set of matches is therefore:

CAC :=
{

(ai, bj) , NFA
(
ai, D(ai, bj)

)
≤ ε ∀i ∈ {1, . . . , NQ} and ∀j ∈ {1, . . . , NC}

}
In practice, for a fixed ε and for each descriptor ai we perform the several steps summed up in the

table 3 to achieve the matching procedure.

Table 3: A Contrario (AC) matching procedure.

Algorithm 3 Automatic distance threshold setting.

Input: NQ query descriptors {ai} and NC candidate descriptors {bj},
parameter ε > 0.

For each query descriptor ai, i = 1, . . . , NQ:

1) computation of distances dm(ai, bj) for all m = 1, . . . ,M and j = 1, . . . , NC ;

2) estimation of probability density functions: for each m, pim computed as

the empirical distribution of dm(ai, bj), when bj spans the database;

3) computation of fi : δ 7→ P
(
D(ai,b) ≤ δ |Hi0

)
using Formula (33);

4) computation of threshold δi(ε) using Formula (35);

5) matching of ai with each descriptor bj such that D(ai, bj) ≤ δi(ε);
Output: List of correspondences.

From now on, we will refer to this matching criterion as ac. Let us now comment on this criterion.
First, one needs to fix the value of ε, that in turn yields a threshold on distances. Since this value
corresponds to an expected number of false detections, we claim that it is much simpler to set than a
threshold on distances. Indeed, it is well known that distances between descriptors vary very much from
one descriptor to another or one image to another, as will be illustrated in the experimental section. Now,
the threshold on distances computed thanks to step 3) above depends on both the particular descriptor
at hand, ai, and the database (e.g. an image, or a set of images) against which it is matched. This is
due both to the learning of marginals pim and to the fact that the number of descriptors is taken into
account by Formula (35). In particular, one can hope that the proposed matching criterion works well
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over a relatively large image database and in the presence of distractors, as will be confirmed by the
experimental section.

Last, observe also that the number of matches is not restricted to the nearest neighbor, even though
one has the possibility to add such a restriction depending on the application. As already mentioned, this
is in contrast with classical approaches to the matching of local features. In the experimental section,
we will see that removing the nearest neighbor restriction on the a contrario criterion does not yield
an explosion of the number of wrong matches, contrarily to what is observed when simply thresholding
distances between local features.

Observe now that the only parameter to be set is the matching threshold ε in Formula (35). Following
the classical framework of a contrario methods [DMM08], ε can be safely set to the value ε = 1 in all
cases. However, because of some dependencies introduced in particular by the Gaussian blur involved in
the scale space computation, histograms from neighboring regions in the localization grid are not fully
independent for a given SIFT descriptor. As a consequence, values of ε equal to 10−1 or 10−2 often yield
better results, as will be shown in the experiments. It is important at this point to notice that, as it is
common with a contrario methods[DMM08], the influence of ε is better expressed on a logarithmic scale.

Proposition 5. Meaningfulness in the Gaussian case Let a be a given descriptor and b a random descrip-
tor, such that the distances d = d(am, bm) are independent and identically distributed, and assume that
their probability density function can be well approximated by a Gaussian distribution. The convolution
of those M marginals is hence a Gaussian distribution, from which the mean and the standard deviation
are respectively noted µ and σ.

Then, if ε ≤ NQNC
2e
√
π

and if D(a, b) < µ − σ
√

2

√
log

NQNC
2
√
πε

, then the matching of a and b is ε-

meaningful.

Proof. Following Definition 14, the matching between a and b is ε-meaningful if f(D(a, b)) ≤ ε

NQNC
.

Under the previous hypotheses, f can be written as the Gauss error function:

f(δ) =
1

2
(1 + erf(

δ − µ√
2σ

)) ,

where the error function is defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt =
2√
π

∫ x

−∞
e−t

2

dt− 1 .

Now, for x < 0,

erf(x) ≤ 2√
π

∫ x

−∞
e−t

2

(
1 +

1

2t2

)
dt− 1 =

1√
π

e−x
2

|x|
− 1 .

Consequently, if δ < µ,

f(δ) ≤ 1

2
√
π

e
−

δ − µ√
2σ

2

∣∣∣∣δ − µ√
2σ

∣∣∣∣ . (36)

Thus, if D(a, b) < µ− σ
√

2

√
log

NQNC
2
√
πε

, then

D(a, b)− µ
σ
√

2
< −

√
log

NQNC
2
√
πε

, and

(
D(a, b)− µ

σ
√

2

)2

> log
NQNC
2
√
πε

.
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Moreover, if we assume that ε ≤ NQNC
2e
√
π

, then log
NQNC
2
√
πε

> 1 , and it follows that
|D(a, b)− µ|

σ
√

2
> 1 .

As a consequence, (
D(a, b)− µ

σ
√

2

)2

+ log

∣∣∣∣D(a, b)− µ
σ
√

2

∣∣∣∣ > log
NQNC
2
√
πε

.

Finally, using Eq.(36), we obtain that f(D(a, b)) ≤ ε

NQNC
.

4.6 Experiments

In this section are shown some experiments illustrating the aforementioned approaches.
Firstly, we show the behavior of the proposed matching procedure using different thresholds in the case

of a scene with repetitive structures. Such a situation is common in the case of, e.g., images of buildings.
As pointed out in [ZK06], these are difficult correspondence problems. Classical approaches could fail to
provide enough relevant correspondences between images of the same scene. We compare two different
views of the tower of Pisa shown in Fig. 10. Criterion nn-dr (used in Figs. 10(e), 10(f), 10(g) and 10(h)
with respectively r = 0.7, r = 0.8, r = 0.85 and r = 0.9) can only correctly match a relatively low number
of points while controlling the number of false matches. Indeed, the presence of repetitive structures can
foul the nn-dr criterion because of several candidate descriptors at a similar distance to the query. On
the contrary, using the ac matching criterion -which is not restricted to the nearest neighbor-, results
in multiple matches between columns and arches (Figs. 10(a), 10(b), 10(c) and 10(d) with respectively
ε = 10−2, ε = 10−1, ε = 1, and ε = 10).

Next, a single image (blue-framed) is matched separately with 8 different images (Fig. 11(a)). Four of
them contain (one or several times) a common object with the query image (a can). The four other images
do not contain the can. The ac matching procedure presented in section 4.5 is shown in Fig. 11(b)). It
is compared to two classical matching procedures: nn-dr criterion in Fig. 12(a) or nn-dt criterion in
Fig. 12(b). For each method, all images are matched with the same threshold (ε = 10−2 for ac, r = 0.8
for nn-dr, and t = 0.45 for nn-dt). These thresholds are set in such a way as to obtain roughly the
same number of correct matches between the query image and the image at the center of the leftmost
column.

This matching experiment shows that the ac criterion yields much fewer false matches on images where
the object is not present and better detection of multiple occurrences. It is also interesting to notice that
there are less false matches even in images where the object is present.

The last figure shows the interest of the ac criterion for multiple occurrences. Even in such an
extremal situation where the structure of interest (the logo) is present 28 times in the database, the
corresponding matches are still meaningful and thus validated.
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(a) ac, ε = 10−2 (b) ac, ε = 10−1 (c) ac, ε = 1 (d) ac, ε = 10

(e) nn-dr, r = 0.7 (f) nn-dr, r = 0.8 (g) nn-dr, r = 0.85 (h) nn-dr, r = 0.9

Figure 10: Matching an object with repetitive structures: the tower of Pisa. Two different matching procedures
are used with different thresholds: the first row corresponds to the ac criterion and the second row
corresponds to the nn-dr criterion. The first criterion permits to match the repeated elements of the
tower.
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(a) query image and 8 images dataset

(b) ac matching criterion with ε = 10−2

Figure 11: Comparison of different matching procedures. One query image (blue framed) containing a can is
matched separately against 8 images (Fig. 11(a)). Only half of these images contain the can, present
one or several times. For each matching procedure, the query image is compared with all 8 images
using the same threshold.
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(a) nn-dr matching criterion with r = 0.8

(b) nn-dt matching criterion with t < .45

Figure 12: Observe that for a given number of correct matches with this left-centered image, the ac matching
procedure introduced in FIgure 11(b) (§ 4.5) yields more correct matches in other images while pro-
viding a better control of the number of false detections than classical procedures (nn-dt and nn-dr
criteria).
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(a) Query image. (b) A bunch of soda cans.

(c) ac with ε = 10−1 (d) nn-dr with r = 0.8

Figure 13: Multiple object matching. (Photography courtesy of Frédéric Sur)
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5 Projects

Project 1 - A contrario orientation selection of SIFT features

This project is devoted to the study of the orientation assignment techniques previously described in
Section 3.3.

First, it is asked to study the a contrario mode detection approach to select SIFT orientation. More
details may be found in [Des00] for the selection of modes in non-circular histograms.

The second goal of the project is to propose a detailed comparison with the original SIFT orientation
assignment method described in [Low04].

Codes are available for experimental study on demand.
An IPOL publication may be proposed, with a short description of both methods and a clean imple-

mentation.

Project 2 - SIFT matching

The goal of this project is to compare the matching criteria described in Sections § 4.2, § 4.3 and § 4.4.
Codes are available for experimental study on demand.

An IPOL publication may be proposed, with a short description of both methods and a clean imple-
mentation.

Project 3 - A contrario SIFT matching

This project is devoted to the study of the a contrario matching criterion presented in Section 4.5
(see [RDG09] for further details).

Codes are available for experimental study on demand.
An IPOL publication may be proposed, with a short description of both methods and a clean imple-

mentation.
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