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Color: Description and Representation

Color: Description

Definition of color

Color is:

a. an attribute of things that results from the light they reflect,
transmit, or emit in so far as this light causes a visual sensation that
depends on its wavelength,

b. the aspect of visual perception by which an observer recognizes this
attribute,

c. the quality of the light producing this aspect of visual perception.”
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Color: Description and Representation

Color: Description

Color description

Three elements are necessary for the existence of color:

A light source, to light the scene.

The objects, which reflect, spread, absorb or diffract the light.

A receptor, which captures the spectrum reflected by the object.
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Color: Description and Representation

Human vision

Two levels

In the human vision system, the information related with color perception
is encoded at two fundamental levels.
The first level occurs in the receptors which are located on the retina. It is
a level related with the existence of three types of receptors called cones.
Their responses are the starting point for the second level, which is based
on the activity of three opponent mechanisms.
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Color: Description and Representation

First level of human vision

Rods and cones

In human vision, cones and rods in the eyes are the receptors of
information from the external world.

Rods are responsible for our ability to see in dim light

Cones are the color receptors.
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Color: Description and Representation

First level of human vision

L, M and S cones

Each rod or cone contains a pigment that absorbs some wavelengths
better than others. Three different types of cones:

L, for the long wavelengths;

M, for the medium wavelengths;

S, for the short ones.
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Color: Description and Representation

Second level of human vision

Opponent process theory proposes that trichromatic signals from the
cones feed into a subsequent neural stage and exhibit three major classes
of information processing in the superior cells of the retina.
The first mechanism is red-green; the second one is yellow-blue; and, the
third one is white-black.
Positive response means a biochemical process in the receptors that
produces a chemical substance; whereas, negative response means the
breakdown of this chemical molecule.
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Color: Description and Representation

Creating colors

Additive and substractive mixture

Additive mixture, addition of different wavelengths. It is produced by
light mixture. Red, green and blue are used as additive primary colors.

Subtractive mixture, subtraction or cancelation of bands of
wavelengths by the combination of light absorbing materials. It is
produced by mixing paints. Yellow, cyan and magenta are used as
subtractive primary colors.
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Color: Description and Representation

RGB Color space

The RGB model is the most natural
space and the most commonly used.

This model is based on the cartesian
coordinate system.

Pure red, green and blue are situated
in three vertices of the cube, while the
other three vertices correspond to pure
yellow, cyan and magenta.

Black has coordinates (0, 0, 0) and, at
the opposite vertex, stands the white
color.

We call the line that joins the black
vertex to the white vertex the grey
axis, in which the three coordinate
values are equal.
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Color: Description and Representation

RGB Color space

Disadvantges

Perceptual non-uniformity

Psychological non-uniformity

A powerful correlation between the different coordinates
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Color: Description and Representation

HSI Color space

Definition

Intensity or lightness is the visual sensation through which a surface
that is illuminated by a given luminous source seems to project more
or less light. It corresponds to light, dark or faint terms.

Hue is the visual sensation that corresponds to the color purity. The
hue is defined by the dominant wavelength in the spectral distribution.

Saturation measures the proportion on which the pure color is diluted
with white light. It corresponds to pale, faded or brilliant terms.
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Color: Description and Representation

HSI Color space

Advantatges:

Intensity component is decoupled from
the chrominance information
represented as hue and saturation.

Hue is invariant with respect to
shadows and reflections.

Disadvantages:

Hue has a nonremovable singularity on
the grey axis. This singularity occurs
whenever R = G = B.
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Histogram processing for image enhancement

Definition.

Histogram definition

The histogram of a digital image of dimensions nx × ny, with L total
possible levels in the range [min,max] is defined as the discrete function

h(lk) = nk,

where lk is the kth intensity level in the interval [min,max] and nk is the
number of pixels in the image whose intensity level is lk.

The histogram provides a global description of the appearance of an image.
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Histogram processing for image enhancement

Examples. Dark image
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Histogram processing for image enhancement

Examples. Bright image
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Histogram processing for image enhancement

Examples. Low contrast image
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Histogram processing for image enhancement

Examples. Well contrasted image
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Histogram processing for image enhancement Linear transformations

Linear transformation of the intensity

Linear transformation of the intensity

T (l) =
smax − smin
lmax − lmin

(l − lmin) + smin

where lmax and lmin are the maximum and minimum values of the
intensity levels in the image, smax and smin are the desired maximum and
minimum values in the histogram.

If the ratio smax−smin
lmax−lmin is smaller than 1 this transformation contract the

histogram, if the ratio is larger than 1 the transformation stretch the
histogram and if smax = 255 and smin = 0 the transformation stretches,
as much as it can, the histogram.
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Histogram processing for image enhancement Linear transformations

Examples of linear transformation. Good Results
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Histogram processing for image enhancement Linear transformations

Examples of linear transformation. Insufficient Result

The histogram of the image occupies all the range [0, 255] due to the little
light.
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Histogram processing for image enhancement Linear transformations

Examples of linear transformations. Insufficient Result

Little improvement in back-lighting images
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Histogram processing for image enhancement Simplest Color Balance

Simplest Color Balance Algorithm

When the dynamic range of the image occupies [0, 255] due to a few
aberrants pixels, thus, spectacular image color improvement is obtained by
saturating a small percentage of the pixels with the highest values to 255
and a small percentage of the pixels with the lowest values to 0, before
applying the affine transform

T (l) =
smax − smin
lmax − lmin

(l − lmin) + smin

The minimum lmin and the maximum lmax are such that the number of
pixels out of the range [lmin, lmax] are some percentage of the total
number of pixels. Choose smin = 0 and smax = 255.
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Histogram processing for image enhancement Simplest Color Balance

Algorithm. Simplest color balance

Given an image of dimensions N = nx × ny and given the saturation level
s ∈ [0, 1), the steps of the algorithm are:

1 Cumulative histogram H(lk) =
∑k

j=0 h(lj).
2 lmin = argmin{l : H(l) ≥ N × s/2}
lmax = argmax{l : H(l) ≤ N × (1− s/2)}

3 Saturate the pixels.

4 Affine transform with smin = 0 and smax = 255.
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Histogram processing for image enhancement Simplest Color Balance

Examples. Simplest Color Balance

Original Image
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Histogram processing for image enhancement Simplest Color Balance

Result with s = 0
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Histogram processing for image enhancement Simplest Color Balance

Result with s = 3%
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Histogram processing for image enhancement Simplest Color Balance

Examples. Simplest color balance

Original image
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Histogram processing for image enhancement Simplest Color Balance

Examples. Simplest color balance

Saturation of 3%
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Histogram processing for image enhancement Simplest Color Balance

Bad Results

Result with a saturation of 3%. Unnatural colors.
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Modifications in the gradient domain Poisson Image Editing

Modifications in the gradient domain

The goal is to modify the image, modifying its gradient. Given a guidance
vector field V. The problem is to find the image whose gradient field is
the closest, in L2-norm, to the prescribed “guidance vector field”. This
problem writes

min
u

∫
R
|∇u−V|2

The minimizer is uniquely determined by the Euler-Lagrange equation

∆u = div V, over R,
∂u

∂n
= 0 over ∂R,

with homogeneous Neumann boundary conditions, where n is the direction
orthogonal to the boundary.
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Modifications in the gradient domain Local constrast adjustment

Local contrast adjustment

Idea

Amplify the image gradient in the dark regions of the image. Then recover
the image using the Poisson equation

To select the dark regions on the image we have used a threshold T . If Ω
denote the dark region , then

Ω = {x ∈ R : f(x) ≤ T}

T = 50 seems to be correct.
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Modifications in the gradient domain Local constrast adjustment

Local contrast adjustment. Algorithm

Given an image f and with the values for T and α the proposed algorithm
is fully automatic:

Select the dark region Ω by the threshold T .

Define the guidance vector field by

V =
{
∇f in R \ Ω
α∇f in Ω

where α ∈ [2, 3] and in the experiment we have took α = 2.5.

Solve the Poisson equation with Neumann boundary conditions using
the Fourier transform as explained in a posterior section.

∆u = div V, over R,
∂u

∂n
= 0 over ∂R,
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Modifications in the gradient domain Local constrast adjustment

Local contrast adjustment. Examples
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Modifications in the gradient domain Local constrast adjustment

Local contrast adjustment. Examples
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Modifications in the gradient domain Local constrast adjustment
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Modifications in the gradient domain Local constrast adjustment

Local contrast adjustment. Examples
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Modifications in the gradient domain Copy-Paste

Copy-Paste

Idea

The idea is to make a copy-paste of a part of an image into another from
the gradients and then solve the Poisson equation.

The algorithm is :

Select Ω ⊂ R the region from the image source g we want to paste
on the image f .

Define the guidance vector field as

V =
{
∇f in R \ Ω
∇g in Ω

Solve the Poisson equation with Neumann boundary conditions using
Fourier method.
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Modifications in the gradient domain Copy-Paste

Copy-Paste. Examples
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Modifications in the gradient domain Copy-Paste

Copy-Paste. Examples

Source image Destination image

Copy-Paste result
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Modifications in the gradient domain Copy-Paste

Another example. Image Fusion
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Modifications in the gradient domain Retinex

Retinex

In 1964 Edwin H. Land formulated the Retinex theory, the first attempt to
simulate and explain how the human visual system perceives color. His
theory and an extension, the “reset Retinex” were further formalized by
Land and McCann in 1971. This algorithm modify the RGB values at
each pixel to give an estimate of the physical color independent of the
shading.

The basic Retinex model is based on the assumption that the HVS
operates with three retinal-cortical systems, each one processing
independently the low, middle and high frequencies of the visible
electromagnetic spectrum. Each system produces one lightness value
which determines, by superposition, the perception of color in the HVS.
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Modifications in the gradient domain Retinex

Original Retinex

The image data I(x) is the intensity value for each chromatic channel at
x. Land and McCann consider a collection of N paths γ1, . . . , γk, . . . , γN
starting at x and ending at an arbitrary image pixel yk. Let nk be the
number of pixels of the path γk, and denote by xtk = γk(tk) for
tk = 1, . . . , nk and by xtk+1 = γk(tk + 1) the subsequent pixel of the path
so that γk(1) = x and γk(nk) = yk.
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Modifications in the gradient domain Retinex

Retinex definition

The lightness L(x) of a pixel x in a given chromatic channel is the
average of the relative lightness at x over all paths, that is

L(x) =
∑N

k=1 L(x; yk)
N

,

where L(x; yk) denotes the relative lightness of a pixel x with respect to
yk on the path γk defined by

L(x; yk) =
nk∑
tk=1

δ

[
log

I(xtk)
I(xtk+1)

]
,

and, for a fixed contrast threshold t,

δ(s) =

{
s if |s| ≥ t
0 if |s| < t

.
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Modifications in the gradient domain Retinex

Original Reset Retinex

The reset mechanism proposes an adaptation of the above definition to
ensure that all paths start from regions where the maximal luminance
value is attained.

Extrema Retinex

The lightness L(x) of a pixel x in a given chromatic channel is the
average of the relative lightness at x over all paths linking x to an
arbitrary image extremum yk, the path meeting no other extremum before
reaching yk. We therefore have

L(x) =
∑N

k=1 L(x; yk)
N

where L(x; yk) is given by previous definition.
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Modifications in the gradient domain Retinex

A PDE Formalization of Retinex Theory

Theorem

The lightness value in a chromatic channel L is the unique solution of the
discrete Poisson equation{

−∆dL(x) = F (x) x ∈ R
∂L
∂n = 0 x ∈ ∂R

where ∆dL denotes the discrete Laplace operator and

F (x) = f

(
I(x)
I(x−0)

)
+ f

(
I(x)
I(x+0)

)
+ +f

(
I(x)
I(x0−)

)
+ f

(
I(x)
I(x0+)

)
,

where f(x) = δ(log(x)), x−0 = (i− 1, j), x0− = (i, j − 1),
x+0 = (i+ 1, j), and x0+ = (i, j + 1).
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Modifications in the gradient domain Retinex

A PDE Formalization of Retinex Theory

Corollary

Let Y be the set of image maxima. The Extrema Retinex lightness value
in a chromatic channel L is the unique (M,N) symmetric and periodic
solution of the discrete Poisson equation{

−∆dL(x) = F (x) x /∈ Y
L(x) = 0 x ∈ Y

.
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Modifications in the gradient domain Retinex

Retinex and Poisson image editing

The equation obtained in this theorem is very similar, to the Poisson
editing equation proposed in Perez et al.
These authors propose a texture flattening application, whose goal it is to
wash out the texture and keep only the edges.
Using the same notation as in the previous section they consider a
guidance vector field

v =

{
∇I if there is an edge
0 in other case

,

but they do not specify which kind of edge detector they use.
Using as edge detector a threshold functions of the gradient applied to the
gradient, then the texture flattening of Perez et al. is equal to the Retinex
equation.

Jean-Michel Morel, Ana Belén Petro and Catalina Sbert ()Contrast and Color 56 / 69



Modifications in the gradient domain Retinex

Examples
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Modifications in the gradient domain Retinex

Some Examples
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Implementation of Poisson equation using Fourier Transform

Implementation by Fourier method

The Fourier method applies directly to solve the Poisson equation with
Neumann conditions

∆u = div V, over R,
∂u

∂n
= 0 over ∂R

The Neumann boundary condition is implicitly imposed by extending the
original image symmetrically across its sides, so that the extended image,
which is four times bigger, becomes symmetric and periodic.
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Implementation of Poisson equation using Fourier Transform

Fourier Implementation

Discrete Fourier Transform

ûmn =
J−1∑
j=0

L−1∑
l=0

ujle
−i 2πmj

J e−i
2πnl
L

with m = 0, 1, . . . , J − 1 i n = 0, 1, . . . , L− 1.

Inverse Discrete Fourier Transform

ujl =
1
JL

J−1∑
m=0

L−1∑
n=0

ûmne
i 2πjm

J ei
2πln
L

with j = 0, 1, . . . , J − 1 i j = 0, 1, . . . , L− 1.
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Implementation of Poisson equation using Fourier Transform

Fourier Implementation

The equation

∆u = divV

becomes by Fourier method((
2πm
J

)2

+
(

2πn
L

)2
)
ûmn =

2πim
J

V̂1mn +
2πin
L

V̂2mn,

where V = (V1, V2).
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Implementation of Poisson equation using Fourier Transform

Fourier Implementation

Quadruplicate by symmetry the discrete domain and V.

Compute the discrete Fourier transforms of V1 and V2.

Compute the discrete Fourier transform of the solution ûmn as

ûmn =
2πim
J V̂1mn + 2πin

L V̂2mn(
2πm
J

)2 +
(

2πn
L

)2 .

Obtain the samples ujl of the solution by the inverse discrete Fourier
transform.

Restrict them to the initial domain.
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Projects

Local contrast enhancement by “center-surround” filters

The aim of this project is to stretch locally the histogram from three
measures, the mid point of the local dynamic range, the mean intensity
value or the median intensity value.
Given an image I defined on a rectangle R, for each point x ∈ R, consider
a x-neighborhood of radius r, Br(x). The algorithm consists on:

Compute m(x) = minBr(x) I(y) and M(x) = maxBr(x) I(y).

Compute the values:

mp(x) =
m(x) +M(x)

2
mean(x) = (I ∗ χBr(x))

1
πr2

med(x) = medianBr(x)I(y)
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Projects

Local contrast enhancement by “center-surround” filters

Stretch the local histogram as

I ′(x) = I(x) + k(I(x)− V (x))

where k is some constant corresponding to the factor range of
stretching, and V (x) is one of the three values mp(x), mean(x) or
med(x).
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Projects

Local histogram equalization preserving the level sets

Lecture and compression of the work of Vicent Caselles, Jose Luis Lisani,
Jean-Michel Morel and Guillermo Sapiro, Shape Preserving Local
Histogram Modification to design an optimal strategy to implement the
model . This work consists on a local histogram equalization algorithm
preserving the level sets of the image.
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