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Shape Preserving Local Histogram Modification
Vicent CasellesAssociate Member, IEEBEJose-Luis Lisani, Jean-Michel Morel, and Guillermo Sapiiember, IEEE
based on equalizing the histogram in all theconnected components . u
of the image, which are defined based both on the grey-values

and spatial relations between pixels in the image, and following I

Abstract—A novel approach for shape preserving contrast
enhancement is presented in this paper. Contrast enhancement
is achieved by means of docal histogram equalization algorithm
which preserves thelevel-setof the image. This basic property is
violated by common local schemes, thereby introducing spurious
objects and modifying the image information. The scheme is

mathematical morphology, constitute the basic objects in the
scene. We give examples for both grey-value and color images.

|

Fig. 1. Schematic explanation of the use of histogram modification to
improve image contrast.

Index Terms—Connected components, histogram equalization,
level-sets, local operations, mathematical morphology.

I. INTRODUCTION . ) . )
articular case of homomorphic transformations: Qe IR

MAGES ARE captured at low contrast in a number Oge the image domain and: @ — [a, }] the given (low

different scenarios. The main reason for this problem E%ntrast) image. Let: [a, ] — [c d] be a given function
poor lighting conditions (e.g., pictures taken at night or againgki-h we assume to be 7increasin7g. The image= h(x) is
the sun rays). As a result, the image is too dark or Qled ahomomorphic transformatioaf . The particular case

bright, and is inappropriate for visual inspection or simpl8f histogram equalization corresponds to selecfirtg be the
observation. The most common way to improve the ContraSt&tstribution functionH of w:

an image is to modify its pixel value distribution, loistogram

A schematic example of the contrast enhancement problem and H(\) = Areajx € Q: u(x) < A} 1)

its solution via histogram modification is given in Fig. 1. On Areq(£2)

the left, we see a low contrastimage with two different squargg.we assume that{ is strictly increasing, then the change
one inside the other, and its corresponding histogram. We Ggvariables

observe that the image has low contrast, and the different

objects cannot be identified, since the two regions have almost v(@) = (b= a)H(u(z)) +a (2)

identical grey values. On the right we see what happens Whges a new image whose distribution function is uniform in
we modify the histogram in such a way that the grey valugge interval[a, 8], a, b € R, a < b. This useful and basic
corresponding to the two regions are separated. The contigsération has an important property which, in spite of being

is improved immediately. _ . . obvious, we would like to acknowledge: it neither creates nor
Histogram modification, and in particular histogram equajtestroys image information.

ization (uniform distributions), is one of the basic and most As argued by thenathematical morphologgchool [1], [6],

useful operations in image processing, and its description q& the basic operations on images should be invariant with

be found in any book on image processing. This operation isegspect to contrast changes, i.e., homomorphic transformations.
As a consequence, it follows that the basic information of an
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Although one can argue #il operations in image processing Il. GLOBAL HISTOGRAM MODIFICATION:
must hold this principle, for the purposes of the present paper A VARIATIONAL FORMULATION
we shall stick here to this basic principle. There are a numbenya representativesf « all images of the formy =

of reasons for this. First of all, a considerable large amoupt,y ‘where# is a strictly increasing function. The question
of the research in image processing is based on assuming [8ajhich representative af is the best for our purposes? That
regions with (almost) equal grey-values, which are topologi depend, of course, in what our purposes are. We have seen
ically connected (see below), belong to the same physicgloye which is the functioh we have to select if we want
object in the three-dimensional (3-D) world. Following thisy, normalize the contrast making the distribution function of

it is natural to assume then that the “shapes” in an givenniform. In addition, it was shown in [8] and [9] that when
image are represented by its level-sets (we will later see h%\dualizing an image:: Q — [a, b] on the rangda, b] we are
we deal with noise that produces deviations from the 'everhinimizing the functional

sets). Furthermore, this commonly assumed image processing

principle will permit us to develop a theoretical and practical 1] b—a\?
framework for shape preserving contrast enhancement. This E(v) :m/g )— 2 dx
can be extended to other definitions of shape, different from the
P — % fQ fQ |v(z) — v(2)| dx d=. (5)

level-sets morphological approach here assumed. We should

note that the level-sets theory is also applicable to a largerhe second term of the integral can be understood as a
number of problems beyond image processing [5], [10].  measure of the contrast of the whole image. Thus, when
_In this paper, we want to desiglocal histogram modi- inimizing £(v) we are distributing the values afso that we

fication operations that preserve the family of level-sets gf,yimize the contrast. The first term tries to keep the values of

the image, that is, following the morphology school, preserye.« near as possible to the mean- a) /2. When minimizing

shape. Local contrast enhancement is mainly used to furthery, the class of functions with the same family of binary

improve the image contrast and facilitate the visual inspecti@iaqows as. we get the equalization af. We will see below

of the data. As we will see later in this paper, global histograpy,y to modify this energy to obtain shape preserving local
modification does not always produce good contrast; smallirast enhancement.

regions, especially, are hardly visible after such a global
operation. On the other hand, local histogram modification
improves the contrast of small regions as well, but since the Ill. CONNECTED COMPONENTS
level-sets are not preserved, artificial objects are created. Th@o be able to extend the global approach to a local setting,
theory developed in this paper will enjoy the best of botlve have to insist in our main constraint: we have to keep
words: the shape-preservation property of global techniqu#® same topographic map, that is, we have to keep the same
and the contrast improvement quality of local ones. family of level-sets ofu but we have the freedom to assign
The recent formalization of multiscale analysis given in [lhem a “convenient” grey level. To make this statement more
leads to a formulation of recursive, causal, local, morphologrecise, let us give some definitions (see [11]).
ical, and geometric invariant filters in terms of solutions of Definition 1: Let X be a topological space. We say that
certain partial differential equations of geometric type, providY is connected if it cannot be written as the union of two
ing a new view on many of the basic mathematical morphologywnempty closed (open) disjointsets. A sulSetf X is called
operations. One of their basic assumptions was the localifyconnected component @ is a maximal connected subset
assumption, which aimed to translate into a mathematiasfl X, i.e., C is connected and for any connected suligebf
language the fact that we considered basic operations whighsuch thatC C ¢, thenC; = C.
were a kind of local average around each pixel or, in other This definition will be applied to subset¥ of IR? which
words, only a few pixels around a given sample influencge topological spaces with the topology induced fritn,
the output value of the operations. Obviously, this excludé@., an open set o is the intersection of an open set of
the case of algorithms as histogram modification. This is wig? with X. We shall need the following observation which
operations like those in [8] and [9] and the one described fallows from the definition above: Two connected components
this paper are not modeled by these equations, and a nayeh topological space are either disjoint or they coincide; thus,
framework must be developed. the topological space can be considered as the disjoint union
It is not the goal of this paper to review the extensivef its connected components.
research performed in contrast enhancement. We should onljRemark: There are several notions of connectivity for a
note that basically, contrast enhancement techniques aretdpological space. One of the most intuitive ones is the
vided in the two groups mentioned above, local and globalption of arcwise connected (also called connected by arcs).
and their most popular representatives can be found in afiytopological spaceX is said to be connected by arcs if any
basic book in image processing and computer vision. An eatlyo pointsz, y of X can be joined by an arc, i.e., there exists
attempt to introduce shape criteria in contrast enhancemantontinuous functiony: [0, 1] — X such thaty(0) = «,
was done in [3]. To the best of our knowledge, none of thgl) = . In a similar way as above we define the connected
variations to histogram modification reported in the literatursomponents (with respect to this notion of connectivity) as the
have formally approached the problem of shape preservingximal connected sets. These notions could be used below
contrast enhancement as done in this paper. instead of the one given in Definition 1.
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Definition 2: Let u:  — [a, b] be a given image and,
A2 € [a, b], A1 < A2. A section of the topographic map of
is a set of the form

K a = U Cx (6) 4) Let Xy, x, = Uxcpa,a,]Cx be a section of the topo-
AC[AL Az] graphic map ofu. Letzy € Cy anduy = i(zy, A). By
whereC), is a connected component pf = A] such that for Part 3,0, c0|nc.|d.es W'thht.hﬁ connected component of
each ), M € [\r, Ao, N < M the set [v = pa] containingz whic we denotg byC.., (v):
Let w1 = pa,, H2 = pa,. Since, usingP5, {ux:
Xy = U o @) A€ [, A2} = [, m_], _then we may WriteXAhA% =
ACIV, A UHE[.Hth}OM(U). Now it is easy to see that,, », isa
section of the topographic map of O
is also connected. Remarks:

Definition 3: Let u: € — [a, b] be a given image and let 1) The previous proposition can be phrased as saying that
{X1 A € [a, b]} be the family of its level-sets. We shall say the set of “objects” contained in is the same as the
that the mappingu: €2 x R — R is a local contrast change set of “objects” contained inv, if we understand the
if the following properties hold. “objects” of u as the connected components of the level-

P1: A is continuous in the following sense: sets[\ < u < ], A < p, and, respectively, fop.

, 2) Our definition of local representative is contained in the
h(z, X') = h(=, A),  when notion of dilation as given in [6] and [7], Th. 9.3. Let
z—=x, N = A z€ Xy, €y, U, be a lattice of functiong’: R” — IR™. A mapping
) I u, — U, is called a dilation ots, if and only if it
C) being a connected component[of= A]. can be written as
P2: h(z, -)is an increasing function of for all « € Q.
P3: h(z, A) = h(y, A) for all z, ¥ are in the same P(f)(z) = sup{g(z; y, t): y € R™, ¢ < f(y)},
connected component ¢f = A], A € R. e R
P4: LetT be a connected set with(I') not reduced to
a point. Letv(z) = h(z, u(z)). Thenv(I') is not where g(x; y, t) is a function assigned to each point
reduced to a point. (y,t) € R™ x IR and is possibly different from point
P5: Let Xi », = Ui, Cr be a section of the to point. Thus, leth be a local contrast change and let

topographic map ofi, A1 < Ag, and letz € C,,,
y € Cx,. Thenh(z, A1) < h(y, Ao2).

Definition 4: Letu: Q — [a, b] be a given image. We shall
say thatv is a local representative af if there exists some
local contrast changk such thats(z) = h(z, u(zx)), = € Q.

We collect in the next proposition some properties which
follow immediately from the definitions above.

Proposition 1: Let w: Q@ — [a, b and let v(z)
h(z, u(z)), « € 2, be a local representative af. Then,
we have the following.

1) v(z) = sup{h(z, \): z € X)u, z € Q}. We have that

z € Xyuifand only if x € X3, ayv, € Q, A € R.

3)
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Thus,«(I") is not reduced to a point. By4 of Definition
3, »(I") is not reduced to a point, a contradiction since
v = ponT. It follows thatI' C [x = A]. Sincel is
connected and € I', then’ C I". O

v(z) = h(z, u(x)). Let us denote byX,(f, «) the con-
nected component oY, f which containse if = € X, f,
otherwise, letX,(f, =) = 0. Let g(x; v, t) := h(z, t)

if Xo(f, 2) N Xe(f,y) # 0; and :=0 if Xy (f, 2) N
X(f, yv) = 0. Thenv = ['(w).

Extending the definition of local contrast change to
include more general functions than continuous ones,
i.e., to include measurable functions, we can state and
prove a converse of Proposition 1, saying that the
topographic map contains all the information of the
image which is invariant by local contrast changes [2].

2) v is a continuous function. IV. SHAPE PRESERVING CONTRAST ENHANCEMENT

3) Letl’ (1) be a connected component jof= 1] (resp.  We can now state precisely the main question we want to
[u = A]) containingz, yo = h(z, A). Thenl’ =T". addresswhat is the best local representativeof «, when the
4) Let X, ., be a section of the topographic mapw@f goal is to perform local contrast enhancement while preserving
Then X, is also a section of the topographic maghe connected components (and level-sets). For that we shall
of v. use the energy formulation given in Section Il. Ldtbe a
Proof: connected component of the et < u» < pu], A\, p € R,
1) Is a simple consequence B2 in Definition 3. O A < p. Write
2) Is a consequence 6fl in Definition 3. O A 2
27/ <v(a:) - L) dx
2(n—A) Ja 2
=2 [ [ (@) = v(2)] dz dz. (8)

3) By P3 of Definition 3, we havel” C [v = u]. Since
z € IV andI" is connected, thef’ C I". Now, suppose
that
We then look for a local representativeof « that minimizes
E(v, A) for all connected componentd of all sets of the
form [A < v < pu], A, p € R, A < p, or, in other words,

E(v, A) : 4]

< sup u(z) = u(y2),
zel

y1, y2 €I

uy1) = inf u(z)
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the distribution function of; in all connected components of Lemma 2: Let Oy, O, C Q such thatD; N Oy = 0. Letuy:
[A € v < p] is uniform in the rangéX, 4], for all A, p € IR, O; — [a, b), uz: Oz — [b, ¢) be two functions with uniform

A < p. We now show how to solve this problem. histogram in[a, b), [b, ¢), respectively. Assume that
Let us introduce some notation that will make our discussion
. . . |Ol| b—a |02| c—b
easier. Without loss of generality we assume that? — o o = , o o= . (15
0,1]. Let Ay ; = j/2% k =0,1,2, -+, 5 =0, -, 2" O] +102]  c—a e O

We need to assume that, the distribution function ot is Let w: O; U Oy — [a, ¢) be given by
continuous and strictly increasing. For that we assumesthat

is continuous and w(z) = {ul(ﬂ?), if z € Oy,

UQ(.’L'), if = € 02. (16)

Areax € Q:ulx) = A} =0, forall A e R (9) Thenw has a uniform histogram ifu, c).

We shall construct a sequence of functions converging Proof of Theorem 1:The first part of the statement fol-
to the solution of the problem. Letsy = H(u) be the 0ws immediately from the two lemmas above. Now, consider

histogram equalization of.. Suppose that we already conihe sequencgw;}. Observe that

structedwy, ---, w; 1. Let us constructw;. For eachj = 1
0,1,---,20 — 1, let lwi(z) — wit1(2)] < PSR for all = € €. a7)
Oi,j = [)\i,j <wig < )\i,j—i—l] (10) Indeed, Ifwz(a:) E [)\i-,j! )\i+1,2j+1)1 thenwi+1(a:) € [)\1‘_1_172]',
)\i+1,2j+1)1 while, if wz(a:) € [)‘i+1,2j+11 )\i,j—l—l) then
and letO; ;. be the connected components ©f ;, 7 = w;1(x) € [Nig1, 2541, Ai+1,2j+2). The estimate (17) follows.
1,---, n; j (ny,; can be eventuallyc). Define Now, since
[fwi—1 <Al N O; j;+ N
i jir(N) = T L5 (N, g1 — Ni )+ N wy = Z (w; —w;_1) + wo (18)
Ly 35 T 7:1
A€ X, Ai i) (11)

and the series on the right-hand side is absolutely convergent,
By our assumption (9)/; ;. is a continuous strictly thenwy converges absolutely and uniformly to some contin-
increasing function iffA; ;, A; ;+1) and we can equalize theuous functionw: 2 — [0, 1]. w satisfies the statement above.

histogram ofw;_; in O;_;,». Thus, we define Indeed, since
wi i =R g (wio1)X0; ., [wi < A, 5] =lwr < Ax,jl;
‘72071,"',2i—177’:17"',ni,j7 (12) foralli>Fk, j=0,---,28 -1 (29)
and _ andw is the uniform limit ofwy, then for alle > 0 there is
2"—1 g, ;
J some Ny such that
Wi =Y Wi X0 e (13)
G=1 r=1 [wi <Ak, j] Clw < A ;] Clwn < A,y +¢ (20)
We will then prove the following. foralli > % j =0,---,2 —1and all N > N,. Letting

Theorem 1:Under the assumption (9), the functions ¢ — 0, it follows that
have a uniform histogram for all connected components of all
“dyadic” sets of the form{A < w; < p] whereX, € {\; ;: Il < Al = A5
j=0,---,2}, A < u. Moreover, ag — oo, w; CONVerges forall k=0,1,---,j=0,---,2" -1 (21)
to a functionw that has a uniform histogram for all connecte

components of all seth < w < 4], for all A, x € [0, 1], ?f A € [0, 1] is not dyadic, let)y ;, Ax, ;41 be such that

)\k,j <AL )\k,j-i—l- Then

A< p.
Theorem 2: Let w be the function constructed in Theoremy, . = |[w < A ;]| < |[w < ]| < |[w < A, 1]l = Mo a1
1. Thenw is a local representative af. (22)

The proof of Theorem 1 is based in the next two simpfghus, by approaching with dyadic numbers, we prove that
lemmas.

Lemma 1: Let Oy, Oy C Q such thatO; N Oy, = . Let lw< A=A, forall Ae 0, 1]. (23)
w;: O; — [a, b), ¢ = 1, 2, be two functions with uniform
histogram in[a, b). Let w: Oy U O3 — [a, b] be given by

. ul(a:), ifa?EOl,

Let us mention in passing that the above proof also shows that
Area[w = A]) = 0, for all A € [0, 1]. (24)

Similarly, one proves thaty has a uniform histogram in all
connected components of all sets of the fdprk w < ] for
all dyadic numbers,, i € [0, 1], A < p. Now let A, p € [0, 1]

1This assumption is mainly theoretical and does not necessarily needated letO be a connected component b‘ STw< N]- Let
hold for basic practical purposes. Ak, j» Ak, ;- be such thath, ; < A < p < Ay, ;. Let O’ be

Then,« has a uniform histogram ifu, ].
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a connected component ff; ; < w < A, ;] containingO.
Then

N— Ak,
Ak, jr = Ak, j

2

[wlo < nll < [[wlor < 7l = O] (25)

for all € [A, u]. By property (24), we may approachand and
1 by dyadic numbers whilg0’| — |O|. It follows that

[[wlo <mll _ n—A
O] T e-2A

(26)

|Hiy1(z, A) —

Let Ho(x, A) = holz, A), Hi(x, A) = hi(x, Hi_1(x, \)),
¢ > 1. Observe thatd v (z, u(x)) =

Wi(z). Since

N—-1

Hy(z, )= Y (Hi(z, \) = Hi_1(z, X))+ Ho(z, \) (27)

=0

H;(z, )]
= |hi+l(x7 HZ(.T, )‘)) - Hl(xv )‘)| <

2i+1

the series in (27) is absolutely and uniformly convergent.

The other inequality is proved in a similar way. It follows tha
w has a uniform histogram for all connected components Rf
all sets of the formjA < w < p] for all numbersh, p € [0, 1],
A< .

Proof of Theorem 2:We shall use the notation intro-
duced previously. First we defire (xz, A) = H()) (H being
the global histogram of;). Let: > 1. Letz € Q, A € [0, 1].
Let 4, » be such that: € O; ;... Then we define

A, if A< )\i,jy
hi(x, A) = § hi jir(A), 0 XE [N 5 A, j41),
A if A > Ay 41

It is clear thath is a local contrast change af Let us check
thath; is a local contrast change ef _,4 > 1, i.e., it satisfies

P1-P5, for all :. To simplify our notation, let us writéV p2:
instead ofw,_;. P3:

Pl: Letz — z, NV — A 2z € Xy(W), W(z) = A
Suppose thatn € [\ ;, A j41) andz € O; ;..
Then eitherz € O; ;.. or z € O, ;_1,5 for some
s. If 2 € 01‘7]',1;5, then W(Z) € [)\iyjfl, )\i,j)
and W(z) — W(x). Hence, W(z) = A;,; and
N — )\i,ji N oe [)\1‘7]'_1, )\@j). Then hi(z, )\/) =

hij—1;5(N) = hij—15(Ni, ) = N = higie(N) - P4

= hi(z, A). If z € O, ;,;», then one easily checks
that hi(z, )\/) — hz(a:, )\)

P2;: Follows from the definition ofi;(x, A).

P3;: Let z, ¥ be in the same connected component of
[W = A], A € [0, 1]. Let j be such that\ € [X; ;,
Ai,j41). Then,z,y € O, ;. for somer. Then
hi(z, A) = hi(y, A) = hq, j;+(A).

P4;: Let I' be a connected set wittW(I") not re-
duced to a point. Lel’;,, = I' N O, ;,~. Since
r = u;.r,, for somej », W(l;,,) is not
reduced to a point. Thus, there existy € L',
with W(z) < W(y). Then, hi(z, W(z)) =

hi e (W (2)) < hi (W (y)) = hi(y, W(y)). The P5:

set{h;(z, W(z)): z € '} is not reduced to a point.

P5: Let X x», = Uxep,r)Cx be a section of the
topographic map oW and letz € Cy,, y € Ch,.
Let 5 be such that\; € [)\1‘7]', )\i,j-l—l)u x € Oi,j;r-
If Ao € [)\i,jv )\i,j+1)1 then X)\l,)\z - Oi,j;r
since X, », is connected and contains. Thus,
Yy € Oi,j;r- Hence, hz(l’, )\1) = hi7j;,,()\1) <
hi jir(A2) = hi(z, X2). Letk > j+1, s be such that
A2 € [Aijky Aijkt1)s ¥ € O gys. Thenhy(y, Az) =
Rikss(A2) 2 ik > Aij 1 > ha(w, Ag).

ence, Hy(z, A\) — H(xz, A) for some functionH (z, A).
follows that H(xz, u(z)) = w(z). Let us now prove that
H(z, \) is a local contrast change far.

P1:

Letz — x, N — A, z € Xx(u), u(z) = A. Since

H=Hy+ > (Hyi—H) (28)
=N
then
|H(Z, )‘/) - H(xv )‘)|
2
= —+|HN(27 )‘/)_HN(xv )‘)| (29)

S 5N

Using the corresponding propertyl; we see that
H(z, V) - H(z, \) asz — z, ' — A,

Follows fromP2; and the definition ofH.

Let z, y be in the same connected component of
[u = A, A € [0,1]. Then Ho(z, A) = Ho(y, \)
and z, y are in the same connected component of
[Wo = Ho(x, )\)] Then Hl(.’IZ, )\) = Hl(y, )\)
Proceeding iteratively and usinB3; we get that
Hpy(x, \) = Hny(y, A) for all N. Letting N — oo

we get thatH (x, A\) = H(y, A).

Let T" be a connected set with(I") not reduced
to a point. For anyz € I', let Cy)(z) be the
connected component dfi = u(x)] containingz.
Let I'™* = U,erCyq(x). Sincew(I) is not reduced
to a point, it contains an interval. This implies that
AreaI™) > 0. Now we observe that (') = w(l™).
Obviously,w(I") € w(I'). Now, lety € C;(x) for
somez € I. Since, byP3, w(z) = w(y), we have
that w(y) € w(l'). It follows that w(I'™*) C w(l"),
hence the equality. liv(I") was reduced to a point
u, then w(l™) = {u}. Hence, Aretw = p) >
AreaI'*) > 0, contradicting (24). Thereforev(I")
cannot be reduced to a point.

Let X, x, = Uxcia,a]Ox be a section of the
topographic map of: and letx € C»,, ¥ € Cl,. First,
usingP5; and the fact that eadhy; transformsX,, »,

into a section of the topographic mapof (Proposi-
tion 1), it follows that Hy(x, A1) < Hy(y, Ag) for

all N. Letting N — oo, we get thatH (z, A1) <
H(y, A2). Now, let z € Xy a,. Since Xy ),
Xu(2),, are also sections of the topographic map
of w, then by the previous observation we have
H(z, A1) < H(z, u(2)) < H(y, A2). If H(z, \;) =
H(y, \2), then w(z) = H(z, w(z)) = p for all
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Fig. 2. Example of the level-sets preservation. The top row shows the original image and its level-sets. The second row shows the result of global
histogram modification and the corresponding level-sets. Results of classical local contrast enhancement and its corresponding levelsetsnare sho

the third row. The last row shows the result of our algorithm. Note how the level-sets are preserved, in contrast with the result on the third row, while
the contrast is much better than the global modification.

z € X, a, and some constant. Hence Are&w = Proof of Lemma 2:Let A € [a, b[. Since[u < A] =
) > Area X, a,) > 0, again a contradiction with [u; < }]
(24). Thus,H(x, A1) < H(y, A2). O
Proof of Lemma 1:Let A € [a, b]. Since s Al _ b <A 104]
’ |O1] + 10| 01 |O1] + 102
[u <Al = [ur < AJ U [ug < A _A-ab—a
b—ac—a
it follows that _ A—a
<N _ [ <A |0y o
|01 +[02] —  [01]  |O1] + 04| Now, let A € [b, ¢). Since[u < Al = 01 U [uz < A]
- WAl _ 10 fme< Al |0
|02 |O1] + 02| 01 +102] ~ |O1] 40 02| [O1] + 02|
_A-a |04 A—a O] b—a A—bc—b
b—a [0l +102] * b—a |0 +]0] e e be-a
_)\_a/ A—a
S b—a’ =

Hence,u has a uniform histogram. O We conclude that: has a uniform histogram. O
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Fig. 3. Additional example of the level-sets preservation. The first row shows the original image, global histogram modification, classicalifmegiomod
and the proposed shape preserving local histogram modification. The second row shows the corresponding level-sets.

_—

Fig. 4. Example of shape preserving local histogram modification for real data. (a) Original image. (b) Result of global histogram madification. (c)
Intermediate state (d) Steady-state of the proposed algorithm.
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() (b)

(© (d)

Fig. 5. Additional example of shape preserving local histogram modification for real data. (a) Original image. (b)—(d) Results of global histadjrztioeg
classical local scheme (6% 61 neighborhood), and our algorithm, respectively.

V. THE ALOGRITHM AND NUMERICAL EXPERIMENTS Remark: An interesting variant in practice consists in using

The algorithm has been described in the previous sectidflé mean ofwo,.denoted bymo, 1, as the value to subdivide
Let us summarize it here. Let: @ — [0, M] be an image € range ofuwy:
Wﬂr;oz% v;;sllueg qa\ée beerjlrnqrma(;ized[(igljg\/[]. Let Ay, ; = O1.0=1[0 < wo < mo, 1],
J / ’ — Yy Ly &t y J =Y, " ' Ol,l:[mo,lSwOSM]- (32)
Step 1) Constructwy = H(u) be the histogram equaliza-
tion of . Then we equalizevy in all connected components 6#; ¢
Step 2) Construction ofw;, i = 1, ---, N. in the range[0, mq 1 — 1], respectively, in all connected
Suppose that we already constructeg, - - -, wi_,. Let us COmPonents of0y, 1 in the range[mo, 1, M]. In this way,
constructuw;. For eachj = 0, 1, ---, 20 — 1, let we constructw;. Then we compute the mean valuesof
’ ’ T ’ ' in 0170, 0171. Denote them byn171, mi,3 (m172 = m071).
Oi ;= [N S wii1 < A jq1] (30) Now we use these values to subdivide again into four
’ T ’ pieces and proceed to equalize the histogramuefin all
and let O; ;.. be the connected components d¥; ;, connected components of all these pieces. We may continue

r =1,---,n; ;. Let h; ;.. be the distribution function of iteratively in this way until desired. .
wi_1xo0, ,., With values in the rang@\; ;, \i j11]- _In Fig. 2,'we c'ompare'the cIassma! local histogram glgo-
Then we define rithm described in [4] with our algorithm. In the classical
algorithm the procedure is to define anx m neighborhood
21 and move the center of this area from pixel to pixel. At
wi = > > hi jr(wis1)xo, ., (31) each location we compute the histogram of the m points

=1 r=1 in the neighborhood and obtain a histogram equalization (or
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Fig. 6. Example of local histogram modification of a color image. The original image is shown on the top. The bottom left is the result of applying our
algorithm to the Y channel in the YIQ color space. On the right, the algorithm is applied again only to the Y channel, but rescaling the chrominance
vector to maintain the same color point on the Maxwell triangle.

@ (b) ©

Fig. 7. Comparison between the classical local histogram modification scheme with the new one proposed in this paper for a color image. (a) @giginal ima
(b) Image obtained with the classical technique. (c) Result of applying our scheme. Note the spurious objects introduced by the classical éocal schem

histogram specification) transformation function. This functioequalization. Its corresponding level-lines are displayed in
is used to map the level of the pixel centered in the neighkig. 2(h). We see that they coincide with the level-lines of
borhood. The center of the x m region is then moved to the original image, Fig. 2(b).

an adjacent pixel location and the procedure is repeated. IrFig. 3 repeats the experiments in Fig. 2 for another synthetic
practice, one updates the histogram obtained in the prevignfage. Fig. 3(a) has been constructed by cutting half of the
location with the new data introduced at each motion stefight side of Fig. 2(a) and putting it at the left side of it.
Fig. 2(a) shows the original image whose level-lines aggg. 3(b) shows the global histogram equalization of Fig. 3(a).
displayed in Fig. 2(b). In Fig. 2(c) we show the result ofig 3(c) shows the result of the classical local histogram
the global histogram equalization of Fig. 2(a). Its level-linegyyajization described above. Fig. 3(d) presents the result of
are displayed in Fig. 2(d). Note how the level-sets lines agg,r 5gorithm applied to Fig. 3(a). The level-lines off all the
p.reserved, while the contrast of small _objects is .reduc%ures are given in Fig. 3(e)—(h), respectively. We see how
Fig. 2(e) shows the result of the classical local histogragjerent connected components do not interact in the proposed

equalization described above (34 31 neighborhood), with scheme, and the contrast is improved while preserving the
level-lines displayed in Fig. 2(h.We see that new level- ol?jects ’in the scene
0! .

lines appear thus modifying the topographic map (the set Results for a real image are presented in Fig. 4. Fig. 4(a)

level-lines) of the original image, introducing new objects. . o , e . .
. . . Is the typical “Bureau de I'INRIA” image. Fig. 4(b) is the
Fig. 2(g) shows the result of our algorithm for local hIStogramglobaI histogram equalization of Fig. 4(a). Fig. 4(c) shows an

2All the level sets for grey-level images are displayed at intervals of é@termediate step of the proposed algo!’ithm, while Fig. 4(d) is
grey-values. the steady-state solution. Note how objects that are not visible
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in the global modification, like those through the window, are
now visible with the new local scheme.
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An additional example is given in Fig. 5. Fig. 5(a) iSy5tabase.

the original image. Fig. 5(b)—(d) are the results of global
histogram equalization, classical local scheme %681 neigh-
borhood), and our algorithm, respectively.

Experiments with a color image are given in Fig. 6, workingl1l
on the YIQ (luminance and chrominance) color space. In
Fig. 6(a) we present the original image. In Fig. 6(b), our2]
algorithm has been applied to the luminance image Y (mairr;][-3
taining 1Q) and then we recomposed the RGB color system.
In Fig. 6(c), again, we apply the proposed local histogram
modification to the color Y channel only, but rescaling the[4
chrominance vector to maintain the same color point on the
Maxwell triangle. (5]

In the last example, Fig. 7, we compare the classical local
histogram modification scheme with the new one proposed ifs]
this paper for a color image, following the same procedure 15,
in Fig. 6. Fig. 7(a) shows the original image, Fig. 7(b) the on
obtained with the classical technique, and Fig. 7(c) the resulg]
of applying our scheme. Note the spurious objects introduce,
by the classical local scheme. (This figure is reproduced in
black and white here.) [10]

[11]

VI.

This paper presented a novel algorithm for the most basic
and (probably) most important operation in image processing:
contrast enhancement. The algorithm is motivated by ideas
from the mathematical morphology school, and it holds the
main properties of both global and local schemes: It preser
the level-sets of the image, that is, its basic morphologi
structure, as global histogram modification does, while achi
ing high contrast results as in local histogram modification

A number of problems remain open in this area, and
believe they can be approached with the framework presen
in this paper, which complements the results in [8] and [
One of the open problems is to extend the algorithm to ot

CONCLUDING REMARKS

definitions of connected components, that is, other definitiong, sacrions on Ivace
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