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Shape Preserving Local Histogram Modification
Vicent Caselles,Associate Member, IEEE,Jose-Luis Lisani, Jean-Michel Morel, and Guillermo Sapiro,Member, IEEE

Abstract—A novel approach for shape preserving contrast
enhancement is presented in this paper. Contrast enhancement
is achieved by means of alocal histogram equalization algorithm
which preserves thelevel-setsof the image. This basic property is
violated by common local schemes, thereby introducing spurious
objects and modifying the image information. The scheme is
based on equalizing the histogram in all theconnected components
of the image, which are defined based both on the grey-values
and spatial relations between pixels in the image, and following
mathematical morphology, constitute the basic objects in the
scene. We give examples for both grey-value and color images.

Index Terms—Connected components, histogram equalization,
level-sets, local operations, mathematical morphology.

I. INTRODUCTION

I MAGES ARE captured at low contrast in a number of
different scenarios. The main reason for this problem is

poor lighting conditions (e.g., pictures taken at night or against
the sun rays). As a result, the image is too dark or too
bright, and is inappropriate for visual inspection or simple
observation. The most common way to improve the contrast of
an image is to modify its pixel value distribution, orhistogram.
A schematic example of the contrast enhancement problem and
its solution via histogram modification is given in Fig. 1. On
the left, we see a low contrast image with two different squares,
one inside the other, and its corresponding histogram. We can
observe that the image has low contrast, and the different
objects cannot be identified, since the two regions have almost
identical grey values. On the right we see what happens when
we modify the histogram in such a way that the grey values
corresponding to the two regions are separated. The contrast
is improved immediately.

Histogram modification, and in particular histogram equal-
ization (uniform distributions), is one of the basic and most
useful operations in image processing, and its description can
be found in any book on image processing. This operation is a
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Fig. 1. Schematic explanation of the use of histogram modification to
improve image contrast.

particular case of homomorphic transformations: Let
be the image domain and: the given (low
contrast) image. Let : be a given function
which we assume to be increasing. The image is
called ahomomorphic transformationof . The particular case
of histogram equalization corresponds to selectingto be the
distribution function of :

Area
Area

(1)

If we assume that is strictly increasing, then the change
of variables

(2)

gives a new image whose distribution function is uniform in
the interval , , . This useful and basic
operation has an important property which, in spite of being
obvious, we would like to acknowledge: it neither creates nor
destroys image information.

As argued by themathematical morphologyschool [1], [6],
[7], the basic operations on images should be invariant with
respect to contrast changes, i.e., homomorphic transformations.
As a consequence, it follows that the basic information of an
image is contained in the family of its binary shadows or
level-sets,that is, in the family of sets

(3)

for all values of in the range of . Observe that, under fairly
general conditions, an image can be reconstructed from its
level-sets by the formula . If is a
strictly increasing function, the transformation does
not modify the family of level-sets of , it only changes its
index in the sense that

for all (4)
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Although one can argue ifall operations in image processing
must hold this principle, for the purposes of the present paper
we shall stick here to this basic principle. There are a number
of reasons for this. First of all, a considerable large amount
of the research in image processing is based on assuming that
regions with (almost) equal grey-values, which are topolog-
ically connected (see below), belong to the same physical
object in the three-dimensional (3-D) world. Following this,
it is natural to assume then that the “shapes” in an given
image are represented by its level-sets (we will later see how
we deal with noise that produces deviations from the level-
sets). Furthermore, this commonly assumed image processing
principle will permit us to develop a theoretical and practical
framework for shape preserving contrast enhancement. This
can be extended to other definitions of shape, different from the
level-sets morphological approach here assumed. We should
note that the level-sets theory is also applicable to a large
number of problems beyond image processing [5], [10].

In this paper, we want to designlocal histogram modi-
fication operations that preserve the family of level-sets of
the image, that is, following the morphology school, preserve
shape. Local contrast enhancement is mainly used to further
improve the image contrast and facilitate the visual inspection
of the data. As we will see later in this paper, global histogram
modification does not always produce good contrast; small
regions, especially, are hardly visible after such a global
operation. On the other hand, local histogram modification
improves the contrast of small regions as well, but since the
level-sets are not preserved, artificial objects are created. The
theory developed in this paper will enjoy the best of both
words: the shape-preservation property of global techniques
and the contrast improvement quality of local ones.

The recent formalization of multiscale analysis given in [1]
leads to a formulation of recursive, causal, local, morpholog-
ical, and geometric invariant filters in terms of solutions of
certain partial differential equations of geometric type, provid-
ing a new view on many of the basic mathematical morphology
operations. One of their basic assumptions was the locality
assumption, which aimed to translate into a mathematical
language the fact that we considered basic operations which
were a kind of local average around each pixel or, in other
words, only a few pixels around a given sample influence
the output value of the operations. Obviously, this excluded
the case of algorithms as histogram modification. This is why
operations like those in [8] and [9] and the one described in
this paper are not modeled by these equations, and a novel
framework must be developed.

It is not the goal of this paper to review the extensive
research performed in contrast enhancement. We should only
note that basically, contrast enhancement techniques are di-
vided in the two groups mentioned above, local and global,
and their most popular representatives can be found in any
basic book in image processing and computer vision. An early
attempt to introduce shape criteria in contrast enhancement
was done in [3]. To the best of our knowledge, none of the
variations to histogram modification reported in the literature
have formally approached the problem of shape preserving
contrast enhancement as done in this paper.

II. GLOBAL HISTOGRAM MODIFICATION:
A VARIATIONAL FORMULATION

We call representativesof all images of the form
, where is a strictly increasing function. The question

is, which representative of is the best for our purposes? That
will depend, of course, in what our purposes are. We have seen
above which is the function we have to select if we want
to normalize the contrast making the distribution function of

uniform. In addition, it was shown in [8] and [9] that when
equalizing an image: on the range we are
minimizing the functional

(5)

The second term of the integral can be understood as a
measure of the contrast of the whole image. Thus, when
minimizing we are distributing the values ofso that we
maximize the contrast. The first term tries to keep the values of

as near as possible to the mean . When minimizing
on the class of functions with the same family of binary

shadows as , we get the equalization of. We will see below
how to modify this energy to obtain shape preserving local
contrast enhancement.

III. CONNECTED COMPONENTS

To be able to extend the global approach to a local setting,
we have to insist in our main constraint: we have to keep
the same topographic map, that is, we have to keep the same
family of level-sets of but we have the freedom to assign
them a “convenient” grey level. To make this statement more
precise, let us give some definitions (see [11]).

Definition 1: Let be a topological space. We say that
is connected if it cannot be written as the union of two

nonempty closed (open) disjointsets. A subsetof is called
a connected component if is a maximal connected subset
of , i.e., is connected and for any connected subsetof

such that , then .
This definition will be applied to subsets of which

are topological spaces with the topology induced from,
i.e., an open set of is the intersection of an open set of

with . We shall need the following observation which
follows from the definition above: Two connected components
of a topological space are either disjoint or they coincide; thus,
the topological space can be considered as the disjoint union
of its connected components.

Remark: There are several notions of connectivity for a
topological space. One of the most intuitive ones is the
notion of arcwise connected (also called connected by arcs).
A topological space is said to be connected by arcs if any
two points of can be joined by an arc, i.e., there exists
a continuous function : such that ,

. In a similar way as above we define the connected
components (with respect to this notion of connectivity) as the
maximal connected sets. These notions could be used below
instead of the one given in Definition 1.
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Definition 2: Let : be a given image and ,
, . A section of the topographic map of

is a set of the form

(6)

where is a connected component of such that for
each , , , the set

(7)

is also connected.
Definition 3: Let : be a given image and let

: be the family of its level-sets. We shall say
that the mapping : is a local contrast change
if the following properties hold.

P1: is continuous in the following sense:

when

being a connected component of .
P2: is an increasing function of for all .
P3: for all , are in the same

connected component of , .
P4: Let be a connected set with not reduced to

a point. Let . Then is not
reduced to a point.

P5: Let be a section of the
topographic map of , , and let ,

. Then .

Definition 4: Let : be a given image. We shall
say that is a local representative of if there exists some
local contrast change such that , .

We collect in the next proposition some properties which
follow immediately from the definitions above.

Proposition 1: Let : and let
, , be a local representative of. Then,

we have the following.

1) : . We have that
if and only if , , .

2) is a continuous function.
3) Let ( ) be a connected component of (resp.

) containing , . Then .
4) Let be a section of the topographic map of.

Then is also a section of the topographic map
of .

Proof:

1) Is a simple consequence ofP2 in Definition 3.
2) Is a consequence ofP1 in Definition 3.
3) By P3 of Definition 3, we have . Since

and is connected, then . Now, suppose
that

Thus, is not reduced to a point. ByP4of Definition
3, is not reduced to a point, a contradiction since

on . It follows that . Since is
connected and , then .

4) Let be a section of the topo-
graphic map of . Let and . By
Part 3, coincides with the connected component of

containing which we denote by .
Let , . Since, usingP5, :

, then we may write
. Now it is easy to see that is a

section of the topographic map of.

Remarks:

1) The previous proposition can be phrased as saying that
the set of “objects” contained in is the same as the
set of “objects” contained in , if we understand the
“objects” of as the connected components of the level-
sets , , and, respectively, for .

2) Our definition of local representative is contained in the
notion of dilation as given in [6] and [7], Th. 9.3. Let

be a lattice of functions : . A mapping
: is called a dilation of if and only if it

can be written as

where is a function assigned to each point
and is possibly different from point

to point. Thus, let be a local contrast change and let
. Let us denote by the con-

nected component of which contains if ,
otherwise, let . Let
if ; and if

. Then .
3) Extending the definition of local contrast change to

include more general functions than continuous ones,
i.e., to include measurable functions, we can state and
prove a converse of Proposition 1, saying that the
topographic map contains all the information of the
image which is invariant by local contrast changes [2].

IV. SHAPE PRESERVING CONTRAST ENHANCEMENT

We can now state precisely the main question we want to
address:what is the best local representativeof , when the
goal is to perform local contrast enhancement while preserving
the connected components (and level-sets). For that we shall
use the energy formulation given in Section II. Let be a
connected component of the set , , ,

. Write

(8)

We then look for a local representativeof that minimizes
for all connected components of all sets of the

form , , , , or, in other words,
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the distribution function of in all connected components of
is uniform in the range , for all , ,

. We now show how to solve this problem.
Let us introduce some notation that will make our discussion

easier. Without loss of generality we assume that:
. Let , , .

We need to assume that, the distribution function of , is
continuous and strictly increasing. For that we assume that
is continuous and1

Area for all (9)

We shall construct a sequence of functions converging
to the solution of the problem. Let be the
histogram equalization of . Suppose that we already con-
structed . Let us construct . For each

, let

(10)

and let be the connected components of ,
( can be eventually ). Define

(11)

By our assumption (9), is a continuous strictly
increasing function in , and we can equalize the
histogram of in . Thus, we define

(12)

and

(13)

We will then prove the following.
Theorem 1: Under the assumption (9), the functions

have a uniform histogram for all connected components of all
“dyadic” sets of the form where , :

, . Moreover, as , converges
to a function that has a uniform histogram for all connected
components of all sets , for all , ,

.
Theorem 2: Let be the function constructed in Theorem

1. Then is a local representative of.
The proof of Theorem 1 is based in the next two simple

lemmas.
Lemma 1: Let , such that . Let
: , , be two functions with uniform

histogram in . Let : be given by

if ,

if .
(14)

Then, has a uniform histogram in .

1This assumption is mainly theoretical and does not necessarily need to
hold for basic practical purposes.

Lemma 2: Let , such that . Let :
, : be two functions with uniform

histogram in , , respectively. Assume that

(15)

Let : be given by

if ,

if .
(16)

Then has a uniform histogram in .
Proof of Theorem 1:The first part of the statement fol-

lows immediately from the two lemmas above. Now, consider
the sequence . Observe that

for all (17)

Indeed, if , , then ,
, while, if , then

, . The estimate (17) follows.
Now, since

(18)

and the series on the right-hand side is absolutely convergent,
then converges absolutely and uniformly to some contin-
uous function : . satisfies the statement above.
Indeed, since

for all (19)

and is the uniform limit of , then for all there is
some such that

(20)

for all , and all . Letting
, it follows that

for all (21)

If is not dyadic, let , be such that
. Then

(22)
Thus, by approaching with dyadic numbers, we prove that

for all (23)

Let us mention in passing that the above proof also shows that

Area for all (24)

Similarly, one proves that has a uniform histogram in all
connected components of all sets of the form for
all dyadic numbers , , . Now let ,
and let be a connected component of . Let

, be such that . Let be
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a connected component of containing .
Then

(25)

for all . By property (24), we may approachand
by dyadic numbers while . It follows that

(26)

The other inequality is proved in a similar way. It follows that
has a uniform histogram for all connected components of

all sets of the form for all numbers , ,
.

Proof of Theorem 2:We shall use the notation intro-
duced previously. First we define ( being
the global histogram of ). Let . Let , .
Let be such that . Then we define

if ,
if ,
if .

It is clear that is a local contrast change of. Let us check
that is a local contrast change of , , i.e., it satisfies
P1–P5, for all . To simplify our notation, let us write
instead of .

P1 : Let , , , .
Suppose that , and .
Then either or for some
. If , then ,

and . Hence, and
, , . Then

. If , then one easily checks
that .

P2 : Follows from the definition of .
P3 : Let , be in the same connected component of

, . Let be such that ,
. Then, for some . Then

.
P4 : Let be a connected set with not re-

duced to a point. Let . Since
, for some , is not

reduced to a point. Thus, there exist
with . Then,

. The
set : is not reduced to a point.

P5 : Let be a section of the
topographic map of and let , .
Let be such that , , .
If , , then
since is connected and contains. Thus,

. Hence,
. Let , be such that

, , . Then
.

Let , ,
. Observe that . Since

(27)

and

the series in (27) is absolutely and uniformly convergent.
Hence, for some function .
It follows that . Let us now prove that

is a local contrast change for.

P1: Let , , , . Since

(28)

then

(29)

Using the corresponding propertyH1 we see that
as , .

P2: Follows from P2 and the definition of .
P3: Let , be in the same connected component of

, . Then
and , are in the same connected component of

. Then .
Proceeding iteratively and usingP3 we get that

for all . Letting
we get that .

P4: Let be a connected set with not reduced
to a point. For any , let be the
connected component of containing .
Let . Since is not reduced
to a point, it contains an interval. This implies that
Area . Now we observe that .
Obviously, . Now, let for
some . Since, byP3, , we have
that . It follows that ,
hence the equality. If was reduced to a point

, then . Hence, Area
Area , contradicting (24). Therefore
cannot be reduced to a point.

P5: Let be a section of the
topographic map of and let , . First,
usingP5 and the fact that each transforms
into a section of the topographic map of (Proposi-
tion 1), it follows that for
all . Letting , we get that

. Now, let . Since ,
are also sections of the topographic map

of , then by the previous observation we have
. If

, then for all
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Fig. 2. Example of the level-sets preservation. The top row shows the original image and its level-sets. The second row shows the result of global
histogram modification and the corresponding level-sets. Results of classical local contrast enhancement and its corresponding level-sets are shown in
the third row. The last row shows the result of our algorithm. Note how the level-sets are preserved, in contrast with the result on the third row, while
the contrast is much better than the global modification.

and some constant. Hence Area
Area , again a contradiction with

(24). Thus, .

Proof of Lemma 1:Let . Since

it follows that

Hence, has a uniform histogram.

Proof of Lemma 2:Let . Since

Now, let . Since

We conclude that has a uniform histogram.
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Fig. 3. Additional example of the level-sets preservation. The first row shows the original image, global histogram modification, classical local modification,
and the proposed shape preserving local histogram modification. The second row shows the corresponding level-sets.

(a) (b)

(c) (d)

Fig. 4. Example of shape preserving local histogram modification for real data. (a) Original image. (b) Result of global histogram modification. (c)
Intermediate state (d) Steady-state of the proposed algorithm.
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(a) (b)

(c) (d)

Fig. 5. Additional example of shape preserving local histogram modification for real data. (a) Original image. (b)–(d) Results of global histogram equalization,
classical local scheme (61� 61 neighborhood), and our algorithm, respectively.

V. THE ALOGRITHM AND NUMERICAL EXPERIMENTS

The algorithm has been described in the previous section.
Let us summarize it here. Let: be an image
whose values have been normalized in . Let

, , .

Step 1) Construct be the histogram equaliza-
tion of .

Step 2) Construction of , .

Suppose that we already constructed . Let us
construct . For each , let

(30)

and let be the connected components of ,
. Let be the distribution function of

with values in the range , .
Then we define

(31)

Remark: An interesting variant in practice consists in using
the mean of , denoted by , as the value to subdivide
the range of :

(32)

Then we equalize in all connected components of
in the range , respectively, in all connected
components of in the range . In this way,
we construct . Then we compute the mean values of
in , . Denote them by , ( ).
Now we use these values to subdivide again into four
pieces and proceed to equalize the histogram ofin all
connected components of all these pieces. We may continue
iteratively in this way until desired.

In Fig. 2, we compare the classical local histogram algo-
rithm described in [4] with our algorithm. In the classical
algorithm the procedure is to define an neighborhood
and move the center of this area from pixel to pixel. At
each location we compute the histogram of the points
in the neighborhood and obtain a histogram equalization (or
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Fig. 6. Example of local histogram modification of a color image. The original image is shown on the top. The bottom left is the result of applying our
algorithm to the Y channel in the YIQ color space. On the right, the algorithm is applied again only to the Y channel, but rescaling the chrominance
vector to maintain the same color point on the Maxwell triangle.

(a) (b) (c)

Fig. 7. Comparison between the classical local histogram modification scheme with the new one proposed in this paper for a color image. (a) Original image.
(b) Image obtained with the classical technique. (c) Result of applying our scheme. Note the spurious objects introduced by the classical local scheme.

histogram specification) transformation function. This function
is used to map the level of the pixel centered in the neigh-
borhood. The center of the region is then moved to
an adjacent pixel location and the procedure is repeated. In
practice, one updates the histogram obtained in the previous
location with the new data introduced at each motion step.
Fig. 2(a) shows the original image whose level-lines are
displayed in Fig. 2(b). In Fig. 2(c) we show the result of
the global histogram equalization of Fig. 2(a). Its level-lines
are displayed in Fig. 2(d). Note how the level-sets lines are
preserved, while the contrast of small objects is reduced.
Fig. 2(e) shows the result of the classical local histogram
equalization described above (31 31 neighborhood), with
level-lines displayed in Fig. 2(f).2 We see that new level-
lines appear thus modifying the topographic map (the set of
level-lines) of the original image, introducing new objects.
Fig. 2(g) shows the result of our algorithm for local histogram

2All the level sets for grey-level images are displayed at intervals of 20
grey-values.

equalization. Its corresponding level-lines are displayed in
Fig. 2(h). We see that they coincide with the level-lines of
the original image, Fig. 2(b).

Fig. 3 repeats the experiments in Fig. 2 for another synthetic
image. Fig. 3(a) has been constructed by cutting half of the
right side of Fig. 2(a) and putting it at the left side of it.
Fig. 3(b) shows the global histogram equalization of Fig. 3(a).
Fig. 3(c) shows the result of the classical local histogram
equalization described above. Fig. 3(d) presents the result of
our algorithm applied to Fig. 3(a). The level-lines off all the
figures are given in Fig. 3(e)–(h), respectively. We see how
different connected components do not interact in the proposed
scheme, and the contrast is improved while preserving the
objects in the scene.

Results for a real image are presented in Fig. 4. Fig. 4(a)
is the typical “Bureau de l’INRIA” image. Fig. 4(b) is the
global histogram equalization of Fig. 4(a). Fig. 4(c) shows an
intermediate step of the proposed algorithm, while Fig. 4(d) is
the steady-state solution. Note how objects that are not visible



CASELLES et al.: LOCAL HISTOGRAM MODIFICATION 229

in the global modification, like those through the window, are
now visible with the new local scheme.

An additional example is given in Fig. 5. Fig. 5(a) is
the original image. Fig. 5(b)–(d) are the results of global
histogram equalization, classical local scheme (6161 neigh-
borhood), and our algorithm, respectively.

Experiments with a color image are given in Fig. 6, working
on the YIQ (luminance and chrominance) color space. In
Fig. 6(a) we present the original image. In Fig. 6(b), our
algorithm has been applied to the luminance image Y (main-
taining IQ) and then we recomposed the RGB color system.
In Fig. 6(c), again, we apply the proposed local histogram
modification to the color Y channel only, but rescaling the
chrominance vector to maintain the same color point on the
Maxwell triangle.

In the last example, Fig. 7, we compare the classical local
histogram modification scheme with the new one proposed in
this paper for a color image, following the same procedure as
in Fig. 6. Fig. 7(a) shows the original image, Fig. 7(b) the one
obtained with the classical technique, and Fig. 7(c) the result
of applying our scheme. Note the spurious objects introduced
by the classical local scheme. (This figure is reproduced in
black and white here.)

VI. CONCLUDING REMARKS

This paper presented a novel algorithm for the most basic
and (probably) most important operation in image processing:
contrast enhancement. The algorithm is motivated by ideas
from the mathematical morphology school, and it holds the
main properties of both global and local schemes: It preserves
the level-sets of the image, that is, its basic morphological
structure, as global histogram modification does, while achiev-
ing high contrast results as in local histogram modifications.

A number of problems remain open in this area, and we
believe they can be approached with the framework presented
in this paper, which complements the results in [8] and [9].
One of the open problems is to extend the algorithm to other
definitions of connected components, that is, other definitions
of objects. In this paper, we define objects as done by the
mathematical morphology school, via level-sets, and since this
is not the only possible definition, it remains to be shown
that a similar approach can be used for other relevant object
descriptions. Note that objects can be defined also via optical
flow components in video data, or with a concept of connected
components in multivalued images. A general framework for
shape preserving contrast enhancement should include these
possible definitions as well.

From the energy formulation shown in this paper, (5), it is
clear that histogram modification is using a measurement of
contrast that it is not appropriate at least for human vision. This
is because absolute value is not a good model for how humans
measure contrast (this value should be at least normalized by
the average brightness of the pixel region). The extension of
the approach presented in this paper to other models of image
contrast is an interesting open area as well. We expect to
address these issues elsewhere.
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