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Abstract

Block matching along epipolar lines is the core of most stereovision al-
gorithms in geographic information systems. The usual distances between
blocks are the sum of squared distances in the block (SSD) or the corre-
lation. Minimizing these distances causes the fattening effect, by which
the center of the block inherits the disparity of the more contrasted pixels
in the block. This fattening error occurs everywhere in the image, and
not just on strong depth discontinuities. The fattening effect at strong
depth edges is is a particular case of fattening, called foreground fattening
effect. A theorem proved in the present paper shows that a simple and
universal adaptive weighting of the SSD resolves the fattening problem at
all smooth disparity points’. The optimal SSD weights are nothing but
the inverses of the squares of the image gradients in the epipolar direction.
With these adaptive weights, it is shown that the optimal disparity func-
tion is the result of the convolution of the real disparity with a prefixed
kernel. Experiments on simulated and real pairs prove that the method
does what the theorem predicts, eliminating surface bumps caused by fat-
tening. However, the method does not resolve the foreground fattening.

1 Introduction

Stereovision comnsists in finding the depth of a scene from several views of it.
This is one of the central problems in computer vision, and it has been an
active object of research in the last forty years. Stereovision is based on the fact
that differences of depth in a 3D scene create geometrical disparities between
views of the same scene taken from different points of view.

Given two stereo rectified images u and v, the question reduces to finding a
disparity function € such that u(z) = v(z 4 €(z)). Like in motion estimation,
the above equation presents the aperture problem, namely the ambiguity of the
solution, even when some regularity is demanded for the disparity. For this
reason, many stereovision algorithms do not look for a function € matching the
grey level intensity of each pixel. They prefer to compare the grey levels of an

*CNES, 18 avenue Edouard Belin, Toulouse 31401, France

TDpt Matematiques Informatica, Universitat Illes Balears, Ctra Valldemossa km 7.5, Palma
de Mallorca, Spain

fMAPS5, CNRS - Université Paris Descartes, 45 rue des Saints Péres, 75270 Paris Cedex
06, France

8CMLA, ENS Cachan, 61 av. Président Wilson, Cachan 94235, France

TCESBIO, 18 Av. Edouard Belin, Toulouse 31400, France

LA Spanish patent has been applied for by Universitat de Illes Balears [1]



entire block around each pixel. The simplest resulting algorithm is known as
block matching by SSD (sum of squared distances).

The most important drawback of SSD is the well known “fattening effect”.
According to Kanade et Okutomi [7],

A central problem in stereo matching by computing correlation
or sum of squared differences (SSD) lies in selecting an appropriate
window size. The window size must be large enough to include
enough intensity variation for reliable matching, but small enough
to avoid the effects of projective distortion. If the window is too
small and does not cover enough intensity variation, it gives a poor
disparity estimate, because the signal (intensity variation) to noise
ratio is low. If, on the other hand, the window is too large and covers
a region in which the depth of scene points (i.e. disparity) varies,
then the position of maximum correlation or minimum SSD may
not represent correct matching due to different projective distortion
in the left and right images. The fattening effect occurs when the
selected window contains pixels at different depth. In that case we
cannot find exactly the same window and the obtained disparity
depends on the different disparities of the window and not only the
central pixel itself.

The usual way to cope with the fattening effect is to use adaptive win-
dows that avoid image discontinuities as was first proposed by Kanade et al [7].
Similar works pre-computing edge points and recursively growing a comparison
window avoiding them were proposed by Lotti et al. [9] and recently by Wang
et al. [23]. Patricio et al. [15] and Yoon et al. [25] select an adaptive win-
dow containing only pixels with a grey level similar to the reference one, like in
neighborhood and bilateral filters [21, 24].

Other approaches do not try to avoid the discontinuities of the image. They
select an adaptive window with a minimum distance criterion. The subjacent
idea is that windows which do not contain discontinuities will be matched with
a small window distance. Fusiello et al. [5] choose among all the windows
containing the reference pixel the one which has a minimal distance with its
corresponding one in the second image. Veksler [22] applied the same strategy
but used in addition square windows of different sizes. A more elaborated
version by Hirschmuller et al [6] adapts the shape of the window by dividing
the comparison window into small sub-windows and taking those which attain
the minimum distance. The Delon et al. [4] paper proposes a different strategy,
the barycentric correction attributing the disparity of a window to the window
barycenter pondered by the image gradients.

Point feature matching methods overcome the fattening problem at the cost
of a drastic reduction of the match density. Matched features can also be curvi-
linear, which also circumvents the fattening problem to some extent. For in-
stance, Schmid [20] describes a set of algorithms for automatically matching
individual line segments and curves. Robert [16] presents an edge-based stere-
ovision algorithm, where the primitives to be matched are cubic B-splines ap-
proximations of the 2-D edges. Musé et al. [14] and Cao et al. [3] discuss
how to automatically match pieces of level lines and extract coherent groups
of such matches. The Matas et al. [11] MSER method solves the problem by



matching stable and homogeneous image regions, but their match set is again
sparse. Even if features may seem more local, they depend anyway on a broad
neighborhood. The same remark applies to the SIFT method (Lowe [10]) and
their affine invariant extensions [13]. Even if the fine scale Laplacian extrema
used (e.g.) in the SIFT method are very local, their descriptor around involves
anyway a 8 x 8 window (see [2, 8, 12] for comparison on MSER and SIFT). Thus
the fattening problem can occur anyway with these methods.

The fattening effect is not the sole obstacle to a correct disparity compu-
tation. Occlusions and moving objects make it a very difficult and sometimes
ill-posed problem. Taking simultaneous snapshots with a low baseline avoids
partially these drawbacks. However, when using a low baseline a larger preci-
sion in the disparity computation is needed to get the same depth precision. The
use of a low B/H (where B is the baseline and H is the altitude) was proposed
in satellite imaging by Delon and Rouge [4].

2 Mathematical analysis of SSD

Let us denote by x = (x,y) an image point in the continuous image domain,
and by u1(x) = u1(z,y) and us(x) the images of an ortho-rectified stereo pair.
Assume that the epipolar direction is the z axis. The underlying depth map
can be deduced from the disparity function £(x) giving the shift of an observed
physical point x from the left image uy in the right image uo. The physical dis-
parity £(x) is not well-sampled. Therefore, it cannot be recovered at all points,
but only essentially at points x around which the depth map is continuous. Fol-
lowing the formulation by Delon and Rouge [4] and Sabater [17], around such
points, the deformation model from an image to the other is

uy(x) = u(z +£(x),y) + n1(x)

up(x) = u(x) + na(x), (1)
where u the true scene image and n4(x) and ny(x) independent Gaussian white
noises with standard deviation o. (The captor noises are independent because

the snapshots are different.) Block matching amounts to finding the disparity
at xg minimizing
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where p(x—xg) is a soft window function centered at xq. For a sake of compact-

ness in notation, ¢y, (x) stands for ¢(x—xq), fw u(x)dx will be an abbreviation
x0

for [ p(x — xo)u(x)dx; we will write u(x + p) for u(x + (u,0)) and e for £(x).

The minimization problem (2) rewrites
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Differentiating this energy with respect to p implies that any local minimum

= p(xo) satisfies
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One has by Taylor-Lagrange formula u,(x + p) = (uz(x+¢)) + O1(p — €), with
On (s — £) < | — el max fuga (x + ) (1)

and u(x + g(x)) — u(x + p) = uz(x +€)(e — p) + Oa((e — p)?), where
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Thus equation (3) yields
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Denote by € the average of € on the support of p(x — x¢), denoted by By,. By
the Taylor-Lagrange theorem we have

A:A-l-OA

where
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and



Ou=(e- u)/ (ua (x4 €))(n2) (% + £(x))dx, (12)

*0

where £(x) satisfies £(x) € [min(u,€), max(u,)]. In the same way,
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so that B = B + Op, where

B= (n1(x) — n2(x +8)) (n2)q (x + €)dx (13)
and

O =(1=2) [ mlx)(na)ua -+ £0)) — (nalna))ulx + Gxdx. (14)

0

The terms A and B are stochastic and we must estimate their expectation and
variance. The terms Op, Oz, O 4, Op are higher order terms with respect to
€ — u and are negligible if € — p is small, and the noise samples bounded.

Lemma 1 Consider the main error terms
A= Uy (x 4 £(x)) (n1(x) — na(x +€))dx
®xq

and
B= (n1(x) — n2(x +8)) (n2)(x + &)dx
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as defined above. One has EA=EB =0 and
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Proof: Notice that nq(x) and na(x + &) are independent Gaussian noises with
variance o2. Thus their difference is again a Gaussian noise with variance 202.
It therefore follows that
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Theorem 1 (Main disparity formula and exact noise error estimate)
Consider an optimal disparity p(xg) obtained as any absolute minimizer of
exo (1) (defined by (2)). Then
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and Ox, is made of smaller terms. In addition the variances of the main error
terms due to noise satisfy
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Proof: This result is an immediate consequence of (6) completed with the
variance estimates in Lemma 1. The estimates for the higher order terms O are
a straightforward application of Cauchy-Schwartz inequality.

Remark Theorem 1 makes sense only when the optimal disparity u(xg) is
consistent, namely satisfies for x in the support By, of p(x — xq),

le(x) — p(xo)| << 1. (18)

Thus, one of the main steps of block matching must be to eliminate inconsistent
matches.

Remark In all treated examples, it will be observed that Var(B) < Var(A),
which by Lemma 1 directly follows from
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3 Mathematical definition of fattening, and its
solution

The previous mathematical formulation tells us that the obtained minimizer for
the SSD problem satisfies
[, o+ £(0)) = ()

Jipeg Tt (x + £(x)) 2dx (20)

w(xo) =

up to the noise terms. In other terms, the obtained minimizer will be an center
of mass of the disparities at each pixel in the correlation window, each being
weighted by its squared image gradient.

This explains the fattening effect, which actually occurs at every pizel:
Whenever a pixel or a cluster of pixels have a large gradient with respect to
their neighboring ones, the estimated disparity for these neighboring pixels will
be obtained by combining mainly the disparities of these few very contrasted
pixels. It can even happen that a single pixel dominates the estimated disparity
for all of its neighboring ones. This effect is strong in all textures and also
near image edges, where a line of pixels dominates the SSD of all their neigh-
boring ones. This case causes the so called foreground fatteming phenomenon
by which buildings looks fatter than they really are. Yet, the fattening effect
happens everywhere, because a gradient barycenter is never exactly the center
of the correlation window. Even if this is not very noticeable when looking at
the disparity image, this effect becomes conspicuous when looking at the 3D
reconstruction of the estimated depth, (Fig. 4).

The above calculations show that there is only one way to avoid the fattening:
It is to remove the disparity imbalance in the comparison window. One can
compensate the effect of the squared gradients in the above integral by directly
modifying the values of the window function ¢, making it adaptive. By taking

Vo (X) = % in equation (20) we obtain
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(21)

which is equivalent to
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since the function p is normalized to have the integral equal to one. In that way
the disparity becomes a weighted average of all disparities in the correlation
neighborhood, which is no more weighted by the image gradient. Therefore, the
computed disparity is the convolution of the ground truth disparity ¢ with a
kernel, which can incidently be fixed at will. The most natural choice for the
window p is an isotropic kernel, for example a Gaussian G,. If we select such
a kernel, the computed disparity writes G, * €, which can be interpolated and
could even be deconvolved to some extent. The choice of the size of the window
depends primarily on the noise variance. If there were no noise at all the window
could be a Dirac. In presence of noise, the dominant disparity error term due



to the noise given by Theorem 1 rewrites
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Thus, the size of the window must be large enough to ensure this value to be low
enough to compensate for o2. Indeed, the integral of p being 1, the broader the
support of p the smaller the integral will be, because of the presence of the p?
term. This implies that the integral behaves like 1/n, where n is the number of
pixels in the window. A good point of the above result is that adaptive window
can be larger without causing a fattening effect.

The discrete implementation of such an algorithm faces the problem of com-
puting the true derivatives u,(x + £(x)) from the two available images u; and
ug. We can compute the derivative on the first image, obtaining

uy(x)? = (u'(x + (%)) (1 + €'(x)) +nf (x))*
Since this is a stochastic term, the right choice must be indicated by its mean
Bul(x)? =/ (x 4+ e(x))*(1 + €/(x))* + 202

This identity shows that, because of the noise term, we will be only able to
compute the actual derivatives if and when £'(x) is small. We shall make this
assumption, which means that the relief is smooth. In order to avoid too small
gradients due mainly to noise, we shall use the following weighting function

Pxo (X)
max(ug (x + £(x))?,602)’

Pxo (X) =

where o is the noise standard deviation.

4 Comparative experiments

In order to illustrate and compare the performance of the classical SSD strategy
and the proposed adaptive algorithm, several tests were performed on synthetic
and real stereo pairs, and the proposed method was compared with the two
most classic fattening correction strategies.

The first experiments were simulated pairs with a smooth disparity function.
The disparity ¢ in Fig. 2 was applied to the reference texture images u of Fig. 1.
Each image was warped by ¢ to obtain the image pair. Gaussian white noise was
added to both images of the pair. Texture images were used to make sure that
around each pixel there was enough information to permit its correct matching.
The first ground truth disparity varies slowly and smoothly while the other two
are more oscillatory.

Fig. 3 presents the disparity maps obtained by both strategies for the first
image of the data base. In this case, a noise with standard deviation 1 has
been added, yielding a signal to noise ratio of about one hundred. The results
with SSD and with the proposed strategy are shown with prolate functions
supported by 7x7 and 11x11 pixels. Observe that the disparity obtained with
the proposed strategy is more similar to the ground truth than the classical
SSD algorithm. This improvement is conspicuous when the 11x11 prolate is



Figure 1: Reference image warped by a known disparity to obtain an image

-

Figure 2: Ground truth disparities applied to images in Fig. 1.

used or when the disparity map is more oscillatory. This experimental fact is
in agreement with the mathematical arguments and formulas developed in the
previous section. The obtained disparity for the classical SSD strategy depends
on the true disparity on the 7x7 or 11x11 neighborhood and is weighted by the
square of the gradient. Thus, with a larger window the probability of having
large gradients on the window is increased and the favored disparity by these
large gradient points can be more different than the one of the reference pixel.

In Fig. 4 are displayed the three-dimensional representations of the central
row in Fig. 3 with a 7x7 prolate function. One better evaluates with this repre-
sentation the difference between the classical and the adaptive SSD. The surface
obtained by the adaptive SSD is smooth and very similar to the ground truth.
However, the surface by the classical SSD strategy presents many irregularities
due to its dependence on the image gradients.

Table 1 shows the average Euclidean distance between the obtained disparity
and the ground truth for the six images in Fig. 1. The error values are very
similar when the prolate is small or when the disparity varies slowly, while they
increase for the classical SSD algorithm when a larger prolate or an oscillating
ground truth is applied. Table 2 shows the error committed by comparing the
true normals to the surface of the ground truth with the normals to the surfaces
of the obtained disparities. Are shown the ratio of points of the surface for which
the normal has an error of more than 10 degrees with respect to the original
normal. The accuracy gain is quite important by using the adaptive strategy.
Notice that the distance of normals is the right measure to estimate how two
renderings of the same object differ visually. Indeed, most 3D visualizations are
done by a Lambertian model. The grey level of the rendered image is the scalar
product of the surface normal with the solar direction. Thus the above error
measure is the right one to estimate the visual gain.

It is observed in Table 2 that with a small correlation window the use of
the adaptive strategy is more sensitive to noise. This is not easily explained by
comparing the precision terms in Theorem 1, but it can be explained by simple
probabilistic arguments. When computing the weighted Euclidean distance of
two noisy patches, the influence of noise on the distance is proportional to



Figure 3: Obtained disparities for the first image in Fig. 1 and the three ground
truth disparities in Fig. 2. The left column shows the disparities obtained with
a classical SSD algorithm with an isotropic weighting window of size 7x7 and
11x11. In the right column same experiments, but with the proposed algorithm.

the energy of the window weight distribution. This influence is minimal when
using a flat window or similarly an isotropic kernel. When using the proposed
adaptive kernel, the weight of large gradient points is reduced and the weight of
non gradient points increased. This makes the window weighting less uniform.
This noise sensitivity is reduced by increasing the window size, as shown in the
same table.

The next experiment was performed with a synthetic disparity map applied
to a building image. The background has uniform disparity but the building has
a sloped roof. Since the background has uniform disparity, we can only observe
the fattening effect in and near the building. The ground truth disparity and the
simulated image pair are shown in Fig. 5. Fig. 6 shows the estimated disparities
with the classical SSD algorithm and with the proposed adaptive SSD, using
again prolate windows of 7x7 and 11x11 pixels. The same figure shows the
error image, namely the difference between the estimated disparities and the
ground truth. With the proposed strategy the obtained image difference stands
between the estimated disparities and the convolved ground truth by the same
prolate. This is consistent with the formulation in the previous section, where
we showed that the adaptive SSD estimates a convolved disparity, independent
of the gradient of the image. For the SSD algorithm, we observe a prominent
error near the boundaries of the building, while for the proposed strategy this
error passed unnoticed.

The next experiment displays a more complicated case with occlusion and
shadows containing nearly no information. Fig. 7 shows the image pair and
its ground truth. In Fig. 8 are displayed the estimated disparities and the
error image difference between the estimated disparities and the ground truth.

10



Figure 4: Three dimensional representation of the estimated disparity from the
middle row of Fig. 3. Top: estimated disparity by SSD with a 7x7 correla-
tion window. Bottom: proposed adaptive SSD with the same 7x7 correlation
window. The fattening effect creates evident irregularities in the reconstructed
surface.

<7 c=0.0 o=1.0(SNR=100) o =2.0 (SNR=50)
SSD 0.118 0.121 0.138
Proposed | 0.108 0.113 0.139

11x11 0=0.0 o¢=10(SNR=100) o =2.0(SNR=50)
SSD 0.135 0.136 0.139
Proposed | 0.107 0.109 0.116

Table 1: Average error on the disparity computation on the six images of Fig. 1
and the middle ground truth of Fig. 2. For the proposed method the distance is
computed to the convolved ground truth as predicted by the formulas. The first
table is obtained by using a correlation window of 7x7 pixels while the second
table is obtained by using a correlation prolate of size 11x11. We observe
that the SSD error increases when using a larger window. By using a larger
window the ground truth disparity varies more and the possibility of having a
large gradient increases, therefore making SSD more sensitive to adhesion. The
obtained errors are quite similar for both algorithms, showing that the use of
an adaptive SSD does not diminish the precision of SSD.
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X7 c=0.0 o=1.0(SNR=100) o =2.0 (SNR=50)
SSD 0.35 0.54 1.27
Proposed 0.04 0.20 1.26

11x11 0=0.0 o0=10(SNR=100) o =2.0(SNR=50)
SSD 0.48 0.50 0.64
Proposed 0.01 0.01 0.11

Table 2: Average on the six images of Fig. 1 and the middle ground truth
of Fig. 2 of the percentage of points with an angular difference of the surface
normal to the ground truth normal larger than 10 degrees. For the proposed
method the distance is computed to the convolved ground truth as predicted by
the formulas. The first table is obtained by using a correlation window of 7x7
pixels while the second table is obtained by using a correlation prolate of size
11x11. Observe that with a larger correlation window a surface more similar to
the original one is obtained. This result is notable: the obtained percentage of
points with a very different normal to the surface is much higher for the classical
SSD than the proposed algorithm.

Figure 5: Synthetic image pair. Left: the disparity ground truth, the back-
ground has uniform disparity while the building simulates the slope of a roof.

Center and right: image pair.

Figure 6: Obtained disparities for the synthetic image pair in Fig. 5. The top
left columns display the disparities obtained with a classical SSD algorithm with
an isotropic weighting window of size 7x7 and 11x11. The top right columns
show the same experiments but with the proposed algorithm. Bottom: image
difference between the estimated disparities and the ground truth. For the
proposed strategy the displayed image difference stands between the estimated
disparities and the convolved ground truth by the same prolate.
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Figure 7: Synthetic image pair. Left: the disparity ground truth. The back-
ground has uniform disparity while the building has a sloped roof. Center and
right: image pair.

a) Classmal SSD b) Adaptive SSD

Figure 8: Estimated disparities with the classical SSD (a) and adaptive SSD
strategy (b) for the synthetic image pair in Fig. 5. Top: disparities obtained
with a weighting window of size 7x7 and 11x11. Bottom: image difference
between the estimated disparities and ground truth.

For the proposed strategy the image difference stands again between the esti-
mated disparities and the convolved ground truth by the same prolate. Observe
that the error is mainly concentrated near the edges of the building, where the
foreground fattening effect is severe. Although in the synthetic case of Fig 6
we were able to nearly eliminate the error near the edges with the proposed
strategy, this is not the case for this pair. The error committed by the SSD
algorithm is reduced but not eliminated. This is due to the occlusions which
make ¢ discontinuous, and to the fact that near most of the building boundaries
the shadow has removed all possible information that could be used to correct
the match. Surprisingly, the error is much smaller at non shadowed edges, even
if occlusions and discontinuities of the disparity are still present.

4.1 Comparison with foreground fattening elimination strate-
gies

As exposed in the introduction, many strategies have been proposed to remove

the fattening effect and are beautifully reviewed and compared in [19]. Our

goal now is to compare the proposed strategy with two of the more performing
algorithms. Yoon et al. [25] selects an adaptive window containing only pixels
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Figure 9: Estimated disparity on stereo pair in Fig. 7. From left to right:
Fusiello et al [5] min-filter, Yoon et al [25] bilateral strategy, and the proposed
adaptive window strategy. The three estimated disparities remove the dilatation
of buildings due to the fattening effect. The estimated disparity by RAFA is

more blurred than the other two, because the recovered disparity is a convolution
of the original one with the correlation window.

with a grey level similar to the reference one, in the spirit of bilateral filters [21].
The main idea is to keep in the correlation window only points belonging to the
same object, which are likely to have a similar grey level. The Fusiello et al. [5]
classic min-filter chooses among all the windows containing the reference pixel
the one which has a minimal distance with its corresponding one in the second
image.

Fig. 9 compares the adaptive strategy with these two algorithms on the pair
of Fig. 7. The three estimated disparities remove the dilatation of buildings due
to the fattening effect. But the estimated disparity by RAFA is more blurred
than the other two, since the recovered disparity is by our theorem a convolution
of the original one with the correlation window.

In order to evaluate the subpixel precision of the three methods, we applied
the algorithms to the first texture image in Fig. 1 and the second simulated
ground truth disparities in Fig. 2. Fig. 11 displays the estimated disparity for
the three algorithms. It is observed that the disparity estimated by the min-filter
produces a shock effect which creates discontinuities of the estimated disparity.
These shocks are not present when using the adaptive window of Yoon et al..
However, many irregularities are present in the estimated disparity, which are
similar to the ones obtained by the classical SSD. The estimated disparity by
RAFA algorithm is more similar to the ground truth. This can also be observed
by looking at the 3D representation of the estimated disparities by the three
algorithms.

The conclusion of these comparisons is that classical fattening removal tech-
niques work correctly when for foreground fattening due to the presence of im-
portant disparity discontinuities. Nevertheless, as was pointed out, fattening
occurs everywhere, even in the absence of strong depth discontinuities. In that
case classical techniques do not attain the optimal precision obtained with the
adaptive window technique. This might be due to the fact that most exist-
ing databases for stereo benchmarks furnish only a pixel precise ground truth.
Therefore the benchmarks do not permit to detect or to evaluate the loss of
precision due to the general surface fattening. To demonstrate this fact, Fig.
13 shows a detail of a stereo pair of the Middlebury dataset [18]. Are shown
the estimated disparities by the classical SSD and by the adaptive RAFA. Both
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Figure 10: Estimated disparity on the first texture image in Fig. 1. Independent
additive white noise with standard deviation 2 was added to both images before
matching. From left to right: the min-filter Fusiello et al [5], the bilateral Yoon
et al [25], and the proposed adaptive window strategy. The RMSE (in pixels)
are respectively 0.18, 0.19, and 0.11.

Figure 11: Three dimensional representation of the estimated disparity from
Fig. 11. As predicted by the theorem, the fattening effect is optimally removed
by the adaptive window.
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Figure 12: Stereo pair obtained from Middlebury dataset [18].

disparities present many irregularities probably present in the object (a rough
stone). However, the smoothness of the furnished ground truth did not allow
for a numerical comparison of the two estimated disparities.

5 Conclusion

This paper has shown that in block matching methods the fattening phenomenon
occurs everywhere. A mathematical analysis has proved that fattening could
be completely avoided in the regions with smoothly varying disparity, by intro-
ducing adaptive weights in the SSD block matching. Experimental evidence on
simulated data has been provided to confirm that fattening is indeed avoided
with the adaptive window. Yet the adaptive window does not correct the strong
foreground fattening, particularly annoying near large building edges in aerial
imaging. However, the adaptive window promises to be a valuable and simple
correction the fixed windows used widely in block matching method. Future
work will consider how to insert this correction in a complete stereo reconstruc-
tion chain.
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