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Abstract

From a pair of images of a scene, the stereo pipeline recovers the 3D
geometry by a succession of algorithms. This geometry is concretely a dis-
parity map, associating to pixels their apparent motion (called disparity)
between both images. This amount is inversely proportional to the depth
of a 3D point. Finding correspondences between images is the fundamen-
tal problem that the stereo pipeline addresses. The most popular method
is based on block matching: each pixel is coded by a neighborhood and
the best correlation of such a block is searched in the other image. We de-
scribe two complementary filters that eliminate ambiguous matches: one
is based on a contrario methodology and the other one rejects blocks with
self-similarity. Finally, we discuss an optimal refinement that computes
sub-pixel disparity, giving better accuracy to the recovered 3D geometry.

1 Preliminaries

We assume throughout this document that images are in the rectified
situation, meaning that the apparent motion of pixels is horizontal ev-
erywhere. As has been seen, there is always the possibility to simulate
this situation with no extra information necessary: this is the task of the
epipolar rectification process.

1.1 The B/H dilemma

The apparent motion of a point in the image due to camera displacement is
illustrated in Fig. 1(a): estimating the altitude h of the 3D point y relative
to the ground amounts to measuring the shift d′′ w.r.t. the projection of
the point X (on the ground in the same light ray as Y in first camera) in
the right image. Besides, all points on the ground have the same apparent
motion x′ − x = f B

H
, if f is the focal length expressed in pixels. We see

that by recovering the apparent motion of the 3D point Y , we can estimate
its altitude by triangulation. We have:

∆x := x′ − x = f
B

H
(1)

∆y := y′ − y = f
B

H − h (2)
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Figure 1: (a) Apparent motion due to camera displacement. (b) Triangulation
formula: H = B

2 tan θ.

from which we get

h = fB(
1

∆x
− 1

∆y
) = H − f B

∆y
. (3)

We see that the depth H − h of point Y is inversely proportional to ∆y,
called the disparity of Y . The disparity map is the image whose intensity
at a pixel is its disparity (provided it can be computed, which implies in
particular that the 3D point is visible in both images).

Assuming h is small with respect to H, we have at first order:

h ∼ H

∆x
d′′. (4)

The displacement is all the more important that the point is closer to
the camera. This is the familiar experience when looking through the
window of a train in motion: hills in the distance seem to move slowly
while mid-distance trees move faster.

Fig. 1(b) illustrates a simple case (isocele) of triangulation. The optical
centers of the two views are the endpoints of the base segment of length
B. The formula yielding H as a function of θ is

H(θ) =
B

2
tan θ.

Deriving this with respect to θ we get

H ′(θ) =
B

2
(1 + tan2 θ) =

B

2

(
1 + 4

(
H

B

)2
)
.

We see that as B/H increases linearly, this derivative increases quadrati-
cally. Therefore, the precision onH is better when B/H is large. However,
in that case, the images look really different with occlusions, stronger per-
spective distortions, etc. Therefore the correspondence problem is all the
more difficult that B/H is large. That is why we prefer a small B/H (for
example 0.1) and recover a good precision through sub-pixel matching.

1.2 Two classes of methods

Two main classes exist to estimate the disparity map:
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Figure 2: The search for the best correlation. To the pixel q in image I is
associated a square window Bq and this window is translated horizontally in
image I ′ in search of the best correlation (typically lowest L2 distance).

1. global methods try to estimate globally the map by minimizing an
energy with a term penalizing image intensity mismatch plus some
prior model of regularity of the map. This energy is typically mini-
mized through dynamic programming or graph cuts algorithms.

2. local methods estimate independently the apparent motion of a point
by considering a neighborhood around it (typically a square window)
and finding the best motion for this neighborhood in the second
image.

Global methods require an a priori regularity assumption about the dis-
parity map. Finding such a realistic prior is very difficult, and we will not
consider this class of methods.

Local methods encode each point by a neighborhood (fixed or variable)
and search for the best horizontal translation of this neighborhood in the
other image, with respect for example to an L2 norm. The simplest is
to use some square (for example 9 × 9) centered around the pixel, as
illustrated in Fig. 2. The best translation found is the estimated disparity
for the pixel.

1.3 The adhesion effect

The major drawback of local methods is the adhesion effect, due to the
fixed window used as neighborhood. This happens when such a window
overlaps two objects with different disparities. Such a depth discontinuity
is often coupled with an intensity discontinuity. The correlation will tend
to align the discontinuities in the images, therefore assigning to window
center one of the disparities present in the windows. What we get is
actually a dilation of the highest disparities equal to the radius of the
window.

In what follows, we do not try to correct the adhesion artifact. Ac-
tually, pixels near edges could be simply masked from the disparity map
since they are at risk of suffering from adhesion. We choose not doing
that, to show really what our filters provide.
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2 A contrario block matching

2.1 Background model for patch comparison

Our goal can be formulated in one single question, that clearly depends
on the observed set of patches in one particular image and not on the
probability space of all patches. The question is:

What is the probability that given two images and two patches
in these images, their similarity arises just by chance?

The “just by chance” implies the existence of a stochastic background
model, often called a contrario model.

There is an interesting simplification in a contrario models with re-
spect to classic Bayesian ones. In the Bayes model, a model of the set
of patches (the background model) would be required, but also a model
of the patch itself. The H1 alternative would be that patches 1 and 2
arise from the same patch model, and the H0 or null alternative would be
that a patch similarity like the one observed by patches 1 and 2 is likely
to happen in the background model. A bayesian algorithm would then
choose for each patch the hypothesis (either H0 or H1) with the higher
probability. In the simpler a contrario framework, the decision is based
solely on the probability under H0, which is intuitively the probability of
a match occurring just by chance. If this probability is small enough the
background model (H0 hypothesis) is rejected, and this is enough to claim
that a meaningful match has been found. Thus, in the a contrario setting,
the background model is enough to gain a strict control of the number
of wrong matches, as Thm. 1 will show, and experimental evidence will
confirm.

When trying to define a well suited model for image blocks, many pos-
sibilities open up. Simple arguments show, however, that over-simplified
models do not work. Let H be the gray-level histogram of the second
image I ′. The simplest a contrario model of all might simply assume that
the observed values I ′(x) are instances of i.i.d. random variables I′(x)
with cumulative distribution H. This would lead to declare that pixels q
in image I and q′ in image I ′ are a meaningful match if their gray level
difference is unlikely small,

P[|I(q)− I′(q′)| ≤ |I(q)− I ′(q′)| := θ] ≤ 1

Ntests
.

As we shall see later, the number of tests Ntests is quite large in this case
(Ntests ≈ 107 for typical image sizes), since it must consider all possible
pairs of pixels (q, q′) that may match. But such a small probability can
be achieved (assume that H is uniform over [0, 256]) only if the threshold
θ = |I(q)− I ′(q′)| < 128 · 10−7. On the other hand, |I(q)− I ′(q′)| cannot
be expected to be very small because both images are corrupted by noise,
among other distortions. Even in a very optimistic setting, where there
would be only a small noise distortion between both images (of about 1
gray level standard deviation), such a small difference would only happen
for about a tiny proportion (3.2 ∗ 10−5) of the correct matches.

This means that a pixel-wise comparison would require an extremely
strict detection threshold to ensure the absence of false matches, but this
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leads to an extremely sparse detection (about thirty meaningful matches
per mega-pixel image). This suggests that the use of local information
around the pixel is unavoidable. The next simplest way could be to com-
pare blocks of a certain size

√
s ×
√
s with the usual `2 norm, and with

the same background model as before. Thus, we could declare blocks Bq
and Bq′ as meaningfully similar if

P

[
1

|B0|
∑
x∈B0

|I(q + x)− I′(q′ + x)|2 ≤

1

|B0|
∑
x∈B0

|I(q + x)− I ′(q′ + x)|2 := θ

]
≤ 1

Ntests
(5)

Now the test would be passed for a more reasonable threshold (θ =
6, 28, 47 for blocks of size 3 × 3, 5 × 5, 7 × 7 respectively), which would
ensure a much denser response. However, this a contrario model is by
far too naive, and produces many false matches. Indeed, blocks stemming
from natural images are much more regular than the white noise generated
by the background model. Considering all pixels in a block as independent
leads to overestimating the similarity probability of two observed similar
blocks. It therefore leads to an over-detection.

In order to fix this problem, we need a background model that actually
reflects the statistics of natural image blocks. But directly learning such
a probability distribution from a single image in dimension 81 (for 9 × 9
blocks) is hopeless.

Fortunately, shape high-dimensional distributions can be approximated
by the tensor product of their adequately chosen marginal distributions.
Such marginal laws, being one-dimensional, are more easily learned from
a single image. Ideally, ICA should be used to learn which marginal laws
are the most independent, but the simpler PCA will show accurate enough
for our purposes. Indeed, it ensures that the principal components are de-
correlated, a first approximation to independence. Fig. 4 gives a visual
assessment of how well a local PCA model simulates image patches in a
class.

3 The a contrario Model for Block-Matching

We shall denote by q=(q1, q2) a pixel in the reference image I and by Bq a
block centered at q. To fix ideas, the block will be a square throughout this
paper, but this is by no means a restriction. A different shape (rectangle,
disk) would possible, and even a variable shape. Given a point q and
its block Bq in the reference image, block-matching algorithms look for a
point q′ in the second image I ′ whose block Bq′ is similar to Bq.

3.1 Principal Component Analysis

For building a simple a contrario model the principal component analysis
can play a crucial role. Indeed, it allows a strong dimension reduction
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Figure 3: Left: Reference image of a stereo pair of images. Right: the nine first
principal components of the 9×9 blocks.

and decorrelates these dimensions, giving a first approximation to inde-
pendence. This permits to build up a probabilistic density function for
the blocks as a tensor product of its marginal densities.

Let Bq be the block of a pixel q in the reference image and (xq1 , . . . , x
q
s )

the intensity gray levels in Bq, where s is the number of pixels in Bq. Let
n be the number of pixels in the image. Consider the matrix X = (xji )
1 ≤ i ≤ s, 1 ≤ j ≤ n consisting of the set of all data vectors, one column
per pixel in the image. Then, the covariance matrix is C = Cov(X) =
E(X − x̄1)(X − x̄1)T , where x̄ is the column vector of size s × 1 storing
the mean values of matrix X and 1 = (1, · · · , 1) a row vector of size 1×n.
Notice that x̄ corresponds to the block whose k-th pixel is the average of
all k-th pixels of all blocks in the image. Thus, x̄ is very close to a constant
block, with the constant equal to the image average. The eigenvectors of
the covariance matrix are called principal components and are orthogonal.
They give the new coordinate system we shall use for blocks. Fig. 3 shows
the first principal blocks.

Usually, the eigenvectors are sorted in order of decreasing eigenvalue.
In that way the first principal components are the ones that contribute
most to the variance of the data set. By keeping the first N < s compo-
nents with larger eigenvalues, the dimension is reduced but the significant
information retained. While this global ordering could be used to se-
lect the main components, a local ordering for each block will instead be
used for the statistical matching rule. In other words, for each block,
a new order for the principal components will be established given by
the corresponding ordered PCA coordinates (the decreasing order is for
the absolute values). In that way, comparisons of these components will
be made from the most meaningful to the least meaningful one for this
particular block.

Now each block is represented by N ordered coefficients

(cσq(1)(q), . . . , cσq(N)(q)),

where ci(q) is the resulting coefficient after projecting Bq onto the prin-
cipal component i ∈ {1, . . . , s} and σq the permutation representing the
final order when ordering the absolute values of components for this par-
ticular q in decreasing order. By a slight abuse of notation we will write
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(a) (b)

Figure 4: (a) Patches of the reference image, chosen at random. (b) Simu-
lated random blocks following the law of the reference image. This experiment
illustrates the adequacy of the a contrario model.

ci(q) instead of cσq(i)(q) knowing that it represents the local order of the
best principal components. But notice that σq(1) = 1 for most q because
of the dominance of the first principal component. Moreover notice that
this first component has a quite different coefficient histogram than the
other ones (see Fig. 6), because it approximately computes a mean value
of the block. Indeed, the barycenter of all blocks is roughly a constant
block whose average grey value is the image average grey level. The set
of blocks is elongated in the direction of the average grey level and, there-
fore, the first component computes roughly an average grey level of the
block. This explains why the first component histogram is similar to the
image histogram.

3.2 A Contrario similarity measure between blocks

Definition 1. We call a contrario block model associated with a ref-
erence image a random block B described by its (random) components
B = (c1, . . . , cs) on the PCA basis of the blocks of the reference image,
satisfying

• the components ci, i = 1, . . . , s are independent random variables;

• for each i, the law of ci is the empirical histogram of the i-th PCA
component ci(·) of the blocks of the reference image.

The reference image will be the secondary image I ′. Fig. 4 shows
patches generated according to the above a contrario block model and
compares them to blocks picked at random in the reference image. The
a contrario model will be used for computing a block resemblance prob-
ability as the product of the marginal resemblance probabilities of the
ci in the a contrario model, which is justified by the independence of ci
and cj for i 6= j. There is a strong adequacy of the a contrario model
to the empirical model, since the PCA transform ensures that ci and
cj are uncorrelated for i 6= j, a first approximation of the independence
requirement.
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Figure 5: Normalized cumulative histogram of i-th PCA coordinates of the
secondary image. ci(Bq) is the i-th PCA coordinate value in the first image. The
resemblance probability for the i-th component is twice the distance |Hi(Bq)−
Hi(B

′)| when Hi(Bq) is not too close to the values 0 or 1.

Figure 6: Histogram of the reference image, followed by the first five histograms
of the block PCA coordinates. The first principal component roughly computes
a mean of the block, which explains why its histogram is so similar to the image
histogram.

We start by defining the resemblance probability between two blocks
for a single component. Denote by Hi(.) := Hi(ci(.)) the normalized
cumulative histogram of the i-th PCA block component ci(.) for the sec-
ondary image I ′.

Definition 2 (resemblance probability). Let Bq be a block in I and B′

a block in I ′. Define the probability that a random block B of I ′ be as
similar to Bq for its i-th component as B′ is, by

p̂iBq B′ =


Hi(B

′) if Hi(B
′)−Hi(Bq) > Hi(Bq);

1−Hi(B′) if Hi(Bq)−Hi(B′) > 1−Hi(Bq)

2|Hi(Bq)−Hi(B′)| otherwise.

Fig. 5 illustrates how the resemblance probability is computed, and
Fig 6 shows empirical marginal densities.

3.3 Robust similarity distance

The first principal components of Bq, being in decreasing order, contain
the relevant information on the block. Thus, if two blocks are not similar
for one of the first components, they should not be matched, even if their
other components are similar: we do not want a bad match for one com-
ponent to be compensated by a better match for the other components.
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Therefore, we will consider the worst match of the first k components:

p̂Bq B′(k) = max
i=1...k

p̂iBq B′ . (6)

We consider a quantization function π of probabilities, which maps a
probability to its closest upper bound in Π := {πj = 1/2j−1}j=1,...,Q.

The probability of having p̂Bq B′(k) ≤ πj (for a given j) is that of

having p̂iBq B′ ≤ πj for all i. Assuming these are independent events, we
get

PBq B′(k) = π
(
p̂Bq B′(k)

)k
. (7)

Since we do not know how many components k should be compared, we
try a range of sensible values:

PBq B′ = min
k=kmin...kmax

PBq B′(k). (8)

Definition 3 (quantized probability). Let Bq be a block in I. Assume
the components of the blocks are sorted in decreasing order:

c1(Bq) ≥ c2(Bq) ≥ · · · ≥ ckmax(Bq).

The quantized probability sequence that the random block B be as similar
to Bq as B′ is, is defined by

PBq B′ = min
k=kmin...kmax

π
(

max
i=1...k

p̂iBq B′

)k
. (9)

3.4 Number of tests

The number tests for comparing all the blocks is the product of three
terms. The first one is the image size #I. The second one is the size of
the search region. We mentioned before that the search is done on the
epipolar line. In practice, a segment of this line is enough. If q = (q1, q2)
is the point of reference it is enough to look for q′ = (q′1, q2) such that
q′1 ∈ [q1 − R, q1 + R] where R is a fixed integer larger than the maximal
possible disparity. The third factor is the number of possible probability
distributions that can be envisaged. Of course all of these tests are not
performed, but only the one indicated by the observed block Bq′ . Yet, the
choice of this unique test is steered by an a posteriori observation, while
the calculation of the expectation of the number of false alarms (NFA)
must be calculated a priori. Thus we must compute the NFA as though
all comparisons for all quantized decreasing probabilities were effectuated.
This term is Q · (kmax − kmin + 1) (choice of a quantization level πj and
choice of a number k of components).

Definition 4. With the above notation we call number of tests for match-
ing two images I and I ′ the integer

Ntest = #I ·#S′ ·Q · (kmax − kmin + 1) (10)

We are now in position to define a number of false alarms, which will
control the overall number of false detections on the whole image.
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Definition 5 (Number of false alarms). Let Bq ∈ I and Bq′ ∈ I ′ be two
observed blocks. Assume the principal components i ∈ {1, 2, . . . , s} are
reordered so that c1(q) ≥ c2(q) ≥ · · · ≥ cs(q). We define the Number of
False Alarms of the event

“the random block B has components as similar to components
of Bq as components of Bq′ are”

by
NFABq,Bq′ = Ntest · PBq Bq′ . (11)

Definition 6 (ε-meaningful match). A pair of pixels q and q′ in a stereo
pair (I, I ′) is an ε-meaningful match if

NFABq Bq′ ≤ ε.

3.5 The main theorem

The NFA of a match actually gives a security level: the smaller the NFA,
the more meaningful the match intuitively is. But Thm. 1 will give the
real meaning of the NFA. To state it, we will use a clever trick used by
Shannon in his information theory, namely to consider the probability of
a random event as random variable. Here the NFA will become a random
variable, by replacing Bq′ by B in its definition.

In the a contrario model, each comparison of Bq with some Bq′ is
interpreted as a comparison of Bq to a trial of the random block model
B. Since 2R + 1 comparisons are involved for each q ∈ I, we are led
to distinguish for each q (2R+ 1) trials which are as many i.i.d. random
blocks Bq,j , j ∈ {1, 2, . . . 2R+1}, all with the same law as B. They model
a contrario the (2R+ 1) trials by which Bq is matched to (2R+ 1) blocks
in I ′. We are interested in the expectation of the number of such trials
being successful (i.e. ε-meaningful), “just by chance”.

Consider the event EBq,Bq,j that a random block Bq,j in the a con-

trario model with reference image I ′ meaningfully matches Bq. If this
happens, it is obviously a false alarm. We shall denote by χBq,Bq,j the
random characteristic function associated with this event, with the con-
vention that χBq,Bq,j = 1 if EBq,Bq,j is true, χBq,Bq,j = 0 otherwise.

Theorem 1. Let Γ = Σq∈I,j∈{1,...,2R+1}χBq,Bq,j be the random variable
representing the number of occurrences of an ε-meaningful match between
a deterministic patch in the first image and a random patch in the second
image. Then the expectation of Γ is smaller than ε.

Proof. We have

χBq,Bq,j =

{
1, if NFABq,Bq,j ≤ ε;
0, if NFABq,Bq,j > ε.

Then, by the linearity of the expectation

E[Γ] =
∑
q,j

E[χq,i] =
∑
q,j

P
[
NFABq,Bq,j 6 ε

]
.
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The probability inside the above sum can be computed by Definitions 5
and 3:

P
[
NFABq,Bq,j 6 ε

]
= P

[
min
k
π(max

i≤k
piBq,Bq,j )

k ≤ ε

Ntest

]
There are many probability N -uples p = (piBq,Bq,j )i=1,...,N permitting to
obtain the inequality inside the above probability. Nevertheless, the prob-
abilities having been quantized, we can reduce it to a (non-disjoint) union
of events, namely all p ∈ Υ such that

∏
i pi 6 ε/Ntest. By the Bonferroni

correction, the considered probability can be upper-bounded by the sum
of their probabilities sum. In addition the intersection below involves only
independent events according to our background model. Thus

P

[
N∏
i

piBq,Bq,j 6
ε

Ntest

]
= P

 ⋃
p∈Υ∏

i pi6ε/Ntest

⋂
i

(
piBq,Bq,j 6 pi

)
6

∑
p∈Υ∏

i pi6ε/Ntest

∏
i

pi

6
ε

#I #S′
,

where we have also used Ntests = #I #S′#Υ. So we have shown that

E[Γ] =
∑
q,i

E
[
χBq,Bq,j

]
6
∑
q,i

ε

#I #S′
= ε.

The ε parameter is the only parameter of the method, the other ones
being fixed one and for all. The question of how many false alarms should
be acceptable in a stereo pair depends on the size of the images. In all
experiments with moderate size images, of the order of 106 pixels, the
decision was to fix ε = 1, which makes the method into a parameterless
method for all moderately sized images.

4 Self-similarity filter

Human environments contain many periodic local structures (for example
the windows on a façade). Since, in general, the number of repetitions
is insignificant with respect to the number of blocks that have been used
to estimate the empirical a contrario probability distributions, the a con-
trario model does not learn this repetition, and can be fooled by such
repetitions, thus signaling a significant match for each repetition of the
same structure. Of course, one of those significant matches is the correct
one, but chances are that the correct one is not the most significant one.
In such a situation two choices are left: (i) try to match the whole set
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of self-similar blocks of I as a single multi-block (typically, global meth-
ods such as graph-cuts do that implicitly); or (ii) remove any (probably
wrong) response in the case where the stroboscopic effect is detected. The
first alternative would lead to errors anyway, if the similar blocks have not
the same height, or if some of them are out of field in one of the images.
Fortunately, stereo pair block-matching yields a straightforward adaptive
threshold. A distance function d between blocks being defined, let q and
q′ be points in the reference and secondary images respectively that are
candidates to match with each other. The match of q and q′ will be
accepted if the following self-similarity (SS) condition is satisfied:

d(Bq, Bq′) < αmin{d(Bq, Br)| r ∈ I ∩ S(q)} (12)

where S(q) = [q1 − R , q1 + R] \ {q1, q1 + 1, q1 − 1} and R is the search
range. The parameter α can be chosen as 0.6, as in the SIFT method [1].
As noted earlier, the search for correspondences can be restricted to the
epipolar line. This is why the automatic threshold is restricted to S(q).

Computing the similarity of matches in one of the images is not a new
idea in stereovision. In [2] the authors define the distinctiveness of an
image point x as the perceptual distance to the most similar other point
in the search window. In particular, they study the case of the auto-
SSD function (Sum of Squared Differences computed in the same image).
The flatness of the function contains the expected match accuracy and
the height of the smallest minimum of the auto-SSD function beside the
one in the origin gives the risk of mismatch. They are able to match
correctly ambiguous points by matching intrinsic curves [6]. However, the
proposed algorithm only accepts matches when their quality is above a
certain threshold. The obtained disparity maps are rather sparse and the
accepted matches are completely concentrated on the edges of the image.
According to [3], the ambiguous correspondences should be rejected. In
this work a new stability property is defined as a condition a set of matches
must satisfy to be considered unambiguous at a given confidence level.
The stability constraint and the tuning of two parameters permits to take
care of flat or periodic autocorrelation functions.

4.1 A Contrario vs Self-Similarity

Is the self-similarity (SS) threshold really necessary? One may wonder
whether the a contrario decision rule to accept or reject correspondences
between patches would be sufficient by itself. Conversely, is the self-
similarity threshold enough to reject false matches in a correlation algo-
rithm? This section addresses both questions and analyzes some simple
examples enlightening the necessity and complementarity of both tests.
For each example we are going to compare the result of the a contrario
test and the result of a classic correlation algorithm combined with the
self-similarity threshold alone.

First consider two independent Gaussian noise images (Fig 7). It is
obvious that we would like to reject any possible match between these
two images. As expected, (this is a sanity check!) the a contrario test
rejects all the possible patch matches. On the other hand, the correlation
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(a) (b) (c)

Figure 7: (a) Reference noise image. (b) No match at all has been accepted by
the a contrario test! (c) Many false correspondences have been accepted by the
self-similarity threshold.

Bad matches Total matches
SS 3.35% 85.86%

ACBM 0.37% 64.85%
ACBM+SS 0.36% 64.87%

Table 1: Quantitative comparison of several algorithms on Middlebury’s Map
image: the block matching algorithm with the self-similarity threshold (SS), the
a contrario algorithm (ACBM) and the algorithm combining both (ACBM+SS).
The percentage of matches for each algorithm is computed in the whole image
and among these the number of wrong matches is also given. A match is con-
sidered wrong if its disparity difference with the ground truth disparity is larger
than one pixel.

algorithm combined with the self-similarity is not sufficient: many false
matches are accepted.

The second comparative test is about occlusions. If a point of the
scene can be observed in only one of the images of the stereo pair, then
an estimation of its disparity is simply impossible. The best decision is to
reject its matches. A good example to illustrate the performance of both
rejection tests ACBM and SS is the map image (Middlebury stereovision
database, Fig 8) which has a large baseline and therefore an important
number of occluded pixels. ACBM gives again the best result (see Table
1). The table indicates that the self-similarity test only removes a few
additional points. Yet, even if the proportion of eliminated points is tiny,
such mismatches can be very annoying and the gain is not negligible at
all.

The a contrario methodology cannot detect the ambiguity inherent in
periodic patterns. Indeed, periodicity certainly does not occur “just by
chance”. The match between a window and another identical window
on a building façade is obviously non casual and is therefore legally ac-
cepted by an a contrario model. In this situation, the self-similarity test
is necessary. A synthetic case has been considered in Fig. 9, where the
accepted correspondences are completely wrong in the a contrario test for
the repeated lines. On the contrary, the self-similarity threshold is able
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(a)

(c)

(b)

(d)

Figure 8: (a) Reference image (b) Secondary image. The rectangular object
occludes part of the background (c) The a contrario test does not accept any
match for pixels in the occluded areas. (d) With the self-similarity threshold the
disparity map is denser, but wrong disparities remain in the occluded region.

to reject matches in this region of the image.
In short, ACBM and SS are both necessary and complementary. SS

only removes a tiny additional number of errors, but even few outliers
can be very annoying in stereo. From now on a possible match (q,q′)
will therefore be accepted only if it is a meaningful match (ACBM test in
Def. 6) and satisfies the SS condition given by (12).

5 Sub-pixel refinement

In this section we show how to refine the disparity map to reach sub-pixel
accuracy. This has a direct consequence on the precision of the recovered
3D, avoiding a staircase effect of the depth function. The algorithm pre-
sented here is optimal in the sense that it relies on exact interpolation
under usual assumptions concerning the sampling of the digital image.

Let us denote by x = (x, y) an image point in the continuous image do-
main, and by u1(x) = u1(x, y) and u2(x) the images of an ortho-rectified
stereo pair. Assume that the epipolar direction is the x axis. The under-
lying depth map can be deduced from the disparity function ε(x) giving
the shift of an observed physical point x from the left image u1 in the right
image u2. The physical disparity ε(x) is not well-sampled. Therefore, it
cannot be recovered at all points, but only essentially at points x around
which the depth map is continuous. Around such points, a deformation
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(a) (b) (c)

Figure 9: (a) Reference image with a texture and a stripes periodic motif. The
secondary image is a 2 pixels translation of the reference image. The obtained
disparity map should be a constant image with value 2. (b) The a contrario
test gives the right disparity 2 everywhere, except in the stripes region. (c) The
repeated stripes are locally similar, so the self-similarity threshold rejects all the
patches in this region.

model holds:
u1(x) = u2(x+ ε(x), y). (13)

The deformation model (13) is a priori valid when the angle of the 3D
surface at x with respect to the camera changes moderately, which is
systematically true for small (0.02 to 0.15) baseline stereo systems. The
restriction brought by (13) is moderate. Indeed, the trend in stereo vision
is to have multiple views of the 3D object to be reconstructed and therefore
many pairs with small base line.

5.1 Preliminaries on sub-pixel interpolation

This section proves a discrete correlation formula which is faithful to the
continuous image interpolates. Thanks to it, an accurate sub-pixel match-
ing becomes possible. Without loss of generality, all considered images are
defined on a square [0, a]2 and are supposed to be square integrable. Thus,
the Fourier series decomposition applies

u(x, y)=
∑
k,l∈Z

ũk,le
2iπ(kx+ly)

a , (14)

where the ũk,l are the Fourier series coefficients (or shortly the Fourier
coefficients) of u. By the classic Fourier series isometry, for any two square
integrable functions u(x) and v(x) on [0, a]2,∫

[0,a]2
u(x)v(x)dx = a2

∑
k,l∈Z

ũk,lṽk,l. (15)

The digital images are usually given by their N2 samples u(m) for m
in the grid

Z1
a = [0, a]2 ∩

(( a

2N
,
a

2N

)
+

a

N
Z2
)
.

Similarly, the over-sampling grid with four times more samples is denoted
by

Z
1
2
a = [0, a]2 ∩

(( a

4N
,
a

4N

)
+

a

2N
Z2
)
.
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N is always an even integer. In all that follows we shall assume that
the images obtained by a stereo vision system are band-limited. This as-
sumption is classical and realistic, the aliasing in good quality CCD cam-
eras being moderate. As classical in image processing, under the (forced)
a-periodicity assumption a band-limited image becomes a trigonometric
polynomial. This periodicity assumption is not natural, but it only en-
tails a minor drawback, namely a small distortion near the boundary of
the image domain [0, a]2. The payoff for the band-limited + periodic as-
sumption is that the image can be interpolated, and its Fourier coefficients
computed from discrete samples. Indeed, given N2 samples um for m in
Z1
a, there is a unique trigonometric polynomial in the form

u(x, y)=

N/2−1∑
k,l=−N/2

ũk,le
2iπ(kx+ly)

a (16)

such that u(m) = um. We shall call such polynomials N-degree trigono-
metric polynomials. The coefficients ũk,l are the Fourier coefficients of u in

the Fourier basis e
2iπ(kx+ly)

a , k, l ∈ Z. The map um → uk,l is nothing but
the 2D Discrete Fourier Transform (DFT), and the map (um)→ N(ũk,l)

is an isometry from CN
2

to itself. The function u(x, y) is therefore usually
called the DFT interpolate of the samples um. In consequence, there is an
isometry between the set of N -degree trigonometric polynomials endowed

with the L2([0, a]2) norm, and CN
2

endowed with the usual Euclidean
norm:

∫
[0,a]2

|u(x, y)|2 = a2

N/2−1∑
k,l=−N/2

|ũk,l|2 =
a2

N2

∑
m∈Z1

a

|u(y + m)|2 , (17)

where the N2 samples grid can have an arbitrary origin y. If u(x) and
v(x) are two N -degree trigonometric polynomials, we therefore also have∫

[0,a]2
u(x)v(x) =a2

N/2−1∑
k,l=−N/2

ũk,lṽk,l =
a2

N2

∑
m∈Z1

a

u(y + m)v(y + m) , (18)

where v is the complex conjugate of v. Taking four times more samples,
it follows from (18) that∫

[0,a]2
u(x)v(x) =a2

N−1∑
k,l=−N

ũk,lṽk,l =
a2

4N2

∑
m∈Z

1
2
a

u(m)v(m). (19)

which is also valid if u(x) and v(x) are up to 2N -degree trigonometric
polynomials in x.

This last fact has a first important consequence in block-matching.
Consider two images u1(x) and u2(x) on [0, a]2 and a window function
ϕ(x). Block-matching is the search for a value of µ minimizing the con-
tinuous quadratic distance

ex0(µ) :=

∫
[0,a]2

ϕ(x− x0)
(
u1(x)− u2(x + (µ, 0))

)2
dx. (20)
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5.2 Arbitrary accuracy with ×2 zoom of images

Proposition 1. (Equality of the discrete and the continuous quadratic
distance) Let u1(x) and u2(x) be two N-degree trigonometric polynomi-
als on [0, a]2 and let ϕ(x) be a window function which we assume to be a
2N-degree trigonometric polynomial. Then

ex0(µ) = edx0
(µ), where (21)

edx0
(µ) :=

a2

4N2

∑
m∈Z

1
2
a

ϕ(m− x0)
(
u1(m)− u2(m + (µ, 0))

)2
. (22)

The proof follows from (19). Indeed,
(
u1(x) − u2(x + (µ, 0))

)2
and

ϕ(x−x0) are both 2N -degree trigonometric polynomials in x, so according
to (19) the discrete scalar product defining edx0

(µ) equals the continues
scalar product defining ex0(µ). Thus the continuous block distance is a
finite sum of discrete samples!

The block distance function µ → ex0(µ), whose minimization is our
main objective here, is also easily sampled. By (22) it is a 2N -degree
trigonometric polynomial with respect to µ. This proves:

Proposition 2 (Sub-pixel correlation requires ×2 zoom). Let u1(x) and
u2(x) be two N-degree trigonometric polynomials. Then the quadratic dis-
tance edx0

(µ) is well-sampled provided it has at least 2N successive samples.
Thus the computation of edx0

(µ) at half samples µ ∈ aZ
2

(via zero-padding)

allows the exact reconstruction of edx0
(µ) for any real µ by DFT interpo-

lation.

Remark that the last proposition does not require any assumption on
the window function ϕ(x). Prop. 2, which opens the way to rigorous
block-matching with sub-pixel accuracy, has been noticed in [5]. It is also
used in the MARC method used by the French space agency (CNES). The
above simple proof of Prop. 2 is new.

From the above formulation, it seems possible to reach arbitrary ac-
curacy on the disparity. Actually, there is a limitation: the samples u(m)
are known only with fixed precision, and more importantly they are pol-
luted by some noise. So in practice there is a positive lower bound on the
minimum error that can be expected, this bound being linked to the level
of noise in the images.

6 Projects

These projects are under the supervision of Toni Buades, Pascal Monasse
and Jean-Michel Morel

6.1 Project 1: IPOL implementation of various
disparity filters

Various filters up to 2002 were listed in the famous paper [4]. This was ac-
companied with the Middlebury benchmark http://vision.middlebury.edu/stereo/,
still used as a reference for comparing various stereo algorithms. The goal
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of this project is to implement in IPOL some of the filters listed in that
paper. These include:

• Bidirectional filter: validate the best match from a window W of I
to a window W ′ of I ′ only if W is the best match when looking for
W ′ in I.

• The min-filter, which associates to a pixel P the disparity evaluated
from all windows containing P (not just the centered window) and
yielding the lowest L2 distance. This can be computed efficiently by
the following algorithm:

1. Attribute the best match at each pixel of the window centered
around it, as usual, and keep track of the resulting error.

2. At each pixel P , put the disparity associated with minimal error
among all pixels within the window W centered on P .

6.2 Project 2: RAFA algorithm for adhesion cor-
rection

A recent algorithm named RAFA (Réduction de l’Adhérence par Fenêtre
Adaptative) attempts to correct the adhesion effect by weighing each pixel
in the L2 distance by the inverse of the square image derivative along
epipolar direction (x):

e(µ) =

∫∫
W

(u2(x+ µ, y)− u1(x, y))2∣∣ ∂u1
∂x

(x, y)
∣∣2 . (23)

The adhesion effect occurs when pixels with different disparities are present
within the correlation window. The simple weight above is shown to yield
the best correction under certain conditions in zones where the disparity
is continuous. In particular, it does not solve the adhesion problem near
disparity discontinuities.
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