
Chapter 1

Local smoothing
neighborhood filters

1.1 Introduction

The neighborhood filter or sigma filter is attributed to J.S. Lee [48] in 1983 but
goes back to L. Yaroslavsky and the Sovietic image processing theory [76]. This
filter is introduced in a denoising framework for the removal of additive white
noise

v(x) = u(x) + n(x),

where x indicates a pixel site, v(x) is the noisy value, u(x) is the “true” value
at pixel x, and n(x) is the noise perturbation. The noise values n(x) and
n(y) at different pixels are assumed to be independent random variables and
independent of the image value u(x), one talks about “white noise.” Generally,
n(x) is supposed to follow a Gaussian distribution of zero mean and standard
deviation σ.

Lee and Yaroslavsky proposed to smooth the noisy image by averaging only
those neighboring pixels having a similar intensity. Averaging is the principle
of most denoising methods. The variance law in probability theory ensures that
if N noise values are averaged, the noise standard deviation is divided by

√
N .

Thus, one should for example find for each pixel nine other pixels in the image
with the same color (up to the fluctuations due to noise) in order to reduce the
noise by a factor 3. A first idea might be to chose the closest ones. Now, the
closest pixels have not necessarily the same color as illustrated in Fig. 1.1. Look
at the red pixel placed in the middle of Fig. 1.1. This pixel has five red neighbors
and three blue ones. If the color of this pixel is replaced by the average of the
colors of its neighbors, it turns blue. The same process would likewise redden
the blue pixels of this figure. Thus, the red and blue border would be blurred.
It is clear that in order to denoise the central red pixel, it is better to average
the color of this pixel with the nearby red pixels and only them, excluding the
blue ones. This is exactly the technique proposed by neighborhood filters.
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Figure 1.1: The nine pixels in the baboon image on the right have been en-
larged. They present a high red-blue contrast. In the red pixels, the first (red)
component is stronger. In the blue pixels, the third component, blue, dominates.

The original sigma and neighborhood filter were proposed as an average
of the spatially close pixels with a grey level difference lower than a certain
threshold h. Thus, for a certain pixel x, the denoised value is the average of
pixels in the spatial and intensity neighborhood

{y ∈ Ω | ‖x− y‖ < ρ and |u(x)− u(y)| < h}.

However, in order to make it coherent with further extensions and facilitate the
mathematical development of this chapter, we will write the filter in a continuous
framework under a weighted average form. We will denote the neighborhood or
sigma filter by NF and define it for a pixel x as

NFh,ρu(x) =
1

C(x)

∫

Bρ(x)

u(y)e−
|u(y)−u(x)|2

h2 dy, (1.1)

where Bρ(x) is a ball of center x and radius ρ > 0, h > 0 is the filtering

parameter and C(x) =
∫

Bρ(x)
e−

|u(y)−u(x)|2

h2 dy is the normalization factor. The

parameter h controls the degree of color similarity needed to be taken into
account in the average. This value depends on the noise standard deviation σ,
and it was set to 2.5σ in [48] and [76]. We will justify the choice of this value
for the h parameter in Section 1.2.

The Yaroslavsky and Lee’s filter (1.1) is less known than more recent ver-
sions, namely the SUSAN filter [69] and the Bilateral filter [71]. Both algo-
rithms, instead of considering a fixed spatial neighborhood Bρ(x), weigh the
distance to the reference pixel x,

SFh,ρu(x) =
1

C(x)

∫

Ω

u(y)e
− |y−x|2

ρ2 e−
|u(y)−u(x)|2

h2 dy, (1.2)

where C(x) =
∫

Ω e
− |y−x|2

ρ2 e−
|u(y)−u(x)|2

h2 dy is the normalization factor and ρ > 0
is now a spatial filtering parameter. Even if the SUSAN algorithm was previ-
ously introduced, the whole literature refers to it as the Bilateral filter. There-
fore, we shall call this filter by the latter name in subsequent sections.
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Figure 1.2: From left to right: noise image, Gaussian convolution, neighbor-
hood filter and Bilateral filter. The neighborhood and Bilateral filters avoid the
excessive blurring caused by a Gaussian convolution and preserve all contrasted
edges in the image.

The only difference between the neighborhood filter and the Bilateral or
SUSAN filter is the way the spatial component is treated. While for the neigh-
borhood filter all pixels within a certain spatial distance are treated uniformly,
for the Bilateral or SUSAN filter pixels closer to the reference one are consid-
ered as more important. We display in Fig. 1.2 a denoising experience where a
Gaussian white noise of standard deviation 10 has been added to a non noisy
image. We display the denoised image by both the neighborhood and Bilateral
filters. We observe that both filters avoid the excessive blurring caused by a
Gaussian convolution and preserve all contrasted edges in the image.

The above denoising experience was applied to color images. In order to
clarify how the neighborhood filters are implemented in this case, we remind
that each pixel x is a triplet of values u(x) = (u1(x), u2(x), u3(x)), denoting the
red, green and blue components. Then, the filter rewrites

NFh,ρui(x) =
1

C(x)

∫

Bρ(x)

ui(y)e
− ||u(y)−u(x)||2

h2 dy, (1.3)

being ||u(y)− u(x)||2 the average of the distances of the three channels,

||u(y)− u(x)||2 =
1

3

3
∑

i=1

|ui(y)− ui(x)|.

The same definition applies for the SUSAN and Bilateral filter by incorporating
the spatial weighting term. The above definition naturally extends to multispec-
tral images with an arbitrary number of channels. Bennett et al. [7] applied it
to multispectral data with an infrared channel and Peng et [56] al for general
multispectral data.

The evaluation of the denoising performance of neighborhood filters and
comparison with state of the art algorithms is postponed to Section 1.2. In the
same section we will present a natural extension of the neighborhood filter, the
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NLmeans algorithm, proposed in [12]. This algorithm evaluates the similarity
between two pixels x and y not only by the intensity or color difference of x
and y but the difference of intensities in a whole spatial neighborhood.

Figure 1.3: Several applications of the Bilateral filter for increasing values of
parameters ρ and h. The parameter ρ increases from top to bottom taking
values {2, 5, 10} and h increases from left to right taking value {5, 10, 25, 100}.

The Bilateral filter was also proposed as a filtering algorithm with a filtering
scale depending on both parameters h and ρ. Thus, taking several values for
these parameters we obtain different filtered images and corresponding residuals
in a multi-scale framework. In Fig. 1.3 we display several applications of the
Bilateral filter for different values of the parameters h and ρ. We also display the
differences between the original and filtered images in Fig. 1.4. For moderated
values of h this residual contains details and texture but it doesn’t contain
contrasted edges. These contrasted information is removed by the bilateral
filter only for large values of h. In that case, all pixels are judged as having a
similar intensity level and the weight is set taking into account only the spatial
component. It is well known that the residual by such an average is proportional
to the laplacian of the image. In section 1.3 we will mathematically analyze the
asymptotical expansion of the neighborhood residual image.

This detail removal of the Bilateral while conserving very contrasted edges
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Figure 1.4: Residual differences between original and filtered images in Fig.
1.3. For moderated values of h this residual contains details and texture but it
doesn’t contain contrasted edges. These contrasted information is removed by
the bilateral filter only for large values of h.

is the key in many image and video processing algorithms. Durand and Dorsey
[28] use this property in the context of tone mapping whose goal is to compress
the intensity values of a high-dynamic range image. The authors isolate the
details before compressing the range of the image. Filtered details and texture
are added back at the final stage. Similar approaches for image editing are
presented by Bae et al. [5], which transfers the visual look of an artist picture
onto a casual photograph. Eisemann and Durand [32] and Petschnigg et al.
[58] combine the filtered and residual image of a flash and non flash image of
the same scene. These two last algorithms, in addition computes the weight
configuration in one image of the pair and averages the intensity values of the
other image. As we will see in Section 1.4 this is a common feature with iterative
versions of neighborhood filters. However, for these applications, both images
of the pair must be correctly and precisely registered.

The iteration of the neighborhood filter was not originally considered by the
pioneering works of Lee and Yaroslavsky. However, recent applications have
shown its interest. The iteration of the filter as a local smoothing operator
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Figure 1.5: Colorisation experiment using the linear iteration of the neighbor-
hood filter. Top Left: Input image with original luminance and initial data on
the chromatic components. Bottom Right: Result image by applying the linear
neighborhood scheme to the chromatic components using the initial chromatic
data as boundary conditions. Top middle and right: initial data on the two
chromatic components. Bottom middle and bottom right: final interpolated
chromatic components.

tends to piecewise constant images by creating artificial discontinuities in reg-
ular zones. Barash et al. [6] showed that an iteration of the neighborhood
filter was equivalent to a step of a certain numerical scheme of the classical
Perona-Malik equation [57]. A complete proof of the equivalence between the
neighborhood filter and the Perona-Malik equation was presented in [13] in-
cluding a modification of the filter to avoid the creation of shocks inside regular
parts of the image. Another theoretical explanation of the shock effect of the
neighborhood filters can be found in Van de Weijer and van den Boomgaard [72]
and Comaniciu [20]. Both papers show that the iteration of the neighborhood
filter process makes points tend to the local modes of the histogram but in a
different framework. The first for images and the second for any dimensional
clouds of points. This discontinuity or shock creation in regular zones of the
image is not desirable for filtering or denoising applications. However, it can be
used for image or video editing as proposed by Winnemoller et al. [74] in order
to simplify video content and achieve a cartoon look.

Even if it may seem paradoxical, linear schemes have showed to be more
useful than non linear ones for iterating the neighborhood filter. That is, the
weight distribution for each pixel is computed once and is maintained during
the whole iteration process. We will show in section 1.4, that by computing the
weights on an image and keeping them constant during the iteration process, an
histogram concentration phenomenon makes the filter a powerful segmentation
algorithm. The same iteration is useful for linearly diffuse or filter any initial
data or seeds as proposed by Grady et al [38] for medical image segmentation or
[11] for colorization (see Fig. 1.5 for an example). The main hypothesis for this
seed diffusion algorithms is that pixels having a similar grey level value should
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be related and are likely to belong to the same object. Thus, pixels of different
sites are related as in a graph with a weight depending on the grey level distance.
The iteration of the neighborhood filter on the graph is equivalent to the solution
of the heat equation on the graph by taking the graph Laplacian. Eigenvalues
and eigenvectors of such a graph Laplacian can be computed allowing the design
of Wiener and thresholding filters on the graph, see [70] and [59], [60] for more
details.

Both the neighborhood filter and the NLmeans have been adapted and ex-
tended for other types of data and other image processing tasks: for 3D data
set points [43], [35], [17][80], [26], and [42], demosaicking, the operation which
transforms the “R or G or B” raw image in each camera into an “R and G
and B” image [63], [15], [51], movie colorization, [34] and [49]; image inpainting
by proposing a non local image inpainting variational framework with a unified
treatment of geometry and texture [2] (see also [75]) ; Zooming by a fractal like
technique where examples are taken from the image itself at different scales [29];
movie flicker stabilization [24], compensating spurious oscillations in the colors
of successive frames; super-resolution an image zooming method by which sev-
eral frames from a video, or several low resolution photographs, can be fused into
a larger image [62]. The main point of this super-resolution technique is that
it gives up an explicit estimate of the motion, allowing actually for a multiple
motion, since a block can look like several other blocks in the same frame. The
very same observation is made in [30] for devising a super-resolution algorithm
and in [33], [22].

1.2 Denoising

1.2.1 Analysis of neighborhood filter as a denoising algo-
rithm

In this section we will further investigate the neighborhood filter behavior as a
denoising algorithm. We will consider the simplest neighborhood filter version
which averages spatially close pixels with a intensity difference lower than a
certain threshold h. By classical probability theory, the average of N random
and i.i.d values has a variance N times smaller than the variance of the origi-
nal values. However, this theoretical reduction is not observed when applying
neighborhood filters.

In order to evaluate the noise reduction capability of the neighborhood filter,
we apply it to a noise sample and evaluate the variance of the filtered sample.
Let us suppose that we observe the realization of a white noise at a pixel x,
n(x) = a. The nearby pixels with a intensity difference lower than h, will be
independent and identically distributed with probability distribution function
the restriction of the Gaussian to the interval (a−h, a+h). If the research zone
is large enough, then the average value will tend to the expectation of such a
variable. Thus, the increase of the research zone and therefore of the number
of pixels being averaged does not increase the noise reduction capability of the
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filter. Such a noise reduction factor is computed in next result.

Theorem 1.2.1 Assume that the n(i) are i.i.d. with zero mean and variance
σ2. Then, the filtered noise by the neighborhood filter NFh satisfies,

(i) The noise reduction depends only on the value of h,

Var NFh n(x) = f(
h

σ
)σ2,

where

f(x) =
1

(2π)3/2

∫

R

1

β2(a, x)
(e2xa − 1)2e(a+x)2e

−a2

2 da,

is a decreasing function with f(0) = 1 and limx−>∞ f(x) = 0.

(ii) The values NFhn(x) and NFhn(y) are uncorrelated for x 6= y.

The function f(x) is plotted in Fig. 1.6. The noise reduction increases as
the ratio h/σ also does. We see that f(x) is near zero for values of x over 2.5 or
3, that is, values of h over 2.5 σ or 3 σ which justifies the values proposed in the
original papers by Lee and Yaroslavsky. However, for a gaussian variable, the
probability of observing values at a distance of the average larger than 2.5 or
3 times the standard deviation is very small. Thus, by taking these values we
excessively increase the probability of mismatching pixels of different objects.
Thus, close objects with an intensity contrast lower than 3σ will not be correctly
denoised. This explains the decreasing performance of the neighborhood filter
as the noise standard deviation increases.
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Figure 1.6: Noise reduction function f(x) given by theorem 1.2.1.

The previous theorem also tells us that the denoised noise values are still
uncorrelated once the filter has been applied. This is easily justified since we
showed that as the size ρ of the neighborhood increases the filtered value tends
to the expectation of the Gauss distribution restricted to the interval (n(x) −
h, n(x)+h). The filtered value is therefore a deterministic function of n(x) and
h. Independent random variables are mapped by a deterministic function on
independent variables.
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This property may seem anecdotic since noise is what we wish to get rid of.
Now, it is impossible to totally remove noise. The question is how the remnants
of noise look like. The transformation of a white noise into any correlated
signal creates structure and artifacts. Only white noise is perceptually devoid
of structure, as was pointed out by Attneave [3].

The only difference between the neighborhood filter and the Bilateral or
SUSAN filter is the way the spatial component is treated. While for the classical
neighborhood all pixels within a certain distance are treated equally, for the
Bilateral filter pixels closer to the reference pixel are more important. Even if
this can seem a slight difference, this is crucial from a qualitative point of view,
that is, the creation of artifacts.

It is easily shown that by introducing the weighting function on the intensity
difference instead of a non weighted average does not modify the second property
of Theorem 1.2.1, and the denoised noise values are still uncorrelated if ρ is
large enough. However, the introduction of the spatial kernel by the Bilateral
or SUSAN filter affects this property. Indeed, the introduction of a spatial decay
of the weights makes denoised values at close positions to be correlated.

There are two ways to show how denoising algorithms behave when they are
applied to a noise sample. One of them is to find a mathematical proof that the
pixels remain independent (or at least uncorrelated) and identically distributed
random variables. The experimental device simply is to observe the effect of
denoising on the simulated realization of a white noise. Figure 1.11 displays the
filtered noises for the neighborhood filter, the Bilateral filter and other state of
the art denoising algorithms.

1.2.2 Neighborhood filter extension: the NL-means algo-
rithm

Now in a very general sense inspired by the neighborhood filter, one can define as
“neighborhood of a pixel x” any set of pixels y in the image such that a window
around y looks like a window around x. All pixels in that neighborhood can be
used for predicting the value at x, as was shown in [23, 31] for texture synthesis
and in [21, 81] for inpainting purposes. The fact that such a self-similarity
exists is a regularity assumption, actually more general and more accurate than
all regularity assumptions we consider when dealing with local smoothing filters
and it also generalizes a periodicity assumption of the image.

Let v be the noisy image observation defined on a bounded domain Ω ⊂
R

2, and let x ∈ Ω. The NL-means algorithm estimates the value of x as an
average of the values of all the pixels whose Gaussian neighborhood looks like
the neighborhood of x,

NL(v)(x) =
1

C(x)

∫

Ω

e−
(Ga∗|v(x+.)−v(y+.)|2)(0)

h2 v(y) dy,

where Ga is a Gaussian kernel with standard deviation a, h acts as a filtering

parameter, and C(x) =
∫

Ω
e−

(Ga∗|v(x+.)−v(z+.)|2)(0)

h2 dz is the normalizing factor.
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(a) (b)

(c) (d)

Figure 1.7: Weight distribution of NL-means, the bilateral filter and the anisotropic
filter used to estimate the central pixel in four detail images. On the two right-hand
side images of each triplet, we display the weight distribution used to estimate the
central pixel of the left image by the neighborhood and the NL-means algorithm.
(a) In straight edges, the weights are distributed in the direction of the level line (as
the mean curvature motion). (c) On curved edges, the weights favor pixels belonging
to the same contour or level line, which is a strong improvement with respect to the
mean curvature motion. In the cases of (e) and (f), the weights are distributed across
the more similar configurations, even though they are far away from the observed
pixel. This shows a behavior similar to a nonlocal neighborhood filter or to an ideal
Wiener filter.

We recall that

(Ga ∗ |v(x+ .)− v(y+ .)|2)(0) =
∫

R2

Ga(t)|v(x + t)− v(y+ t)|2dt.

We will see that the use of an entire window around the compared points
make this comparison more robust to noise. For the moment, we will compare
the weighting distributions of both filters. Fig. 1.7 illustrates how the NL-
means algorithm chooses in each case a weight configuration adapted to the
local geometry of the image. Then, the NL-means algorithm seems to provide
a feasible and rational method to automatically take the best of all classical
denoising algorithms, reducing for every possible geometric configuration the
mismatched averaged pixels. It preserves flat zones as the Gaussian convolution
and straight edges as the anisotropic filtering while still restores corners or
curved edges and texture.

Due to the nature of the algorithm, one of the most favorable cases is the
textural case. Texture images have a large redundancy. For each pixel, many
similar samples can be found in the image with a very similar configuration,
leading to a noise reduction and a preservation of the original image. In Fig. 1.8
one can see an example with a Brodatz texture. The Fourier transform of the
noisy and restored images shows the ability of the algorithm to preserve the
main features even in the case of high frequencies.

The NL-means seems to naturally extend the Gaussian, anisotropic and
neighborhood filtering. But it is not easily related to other state of the art
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Figure 1.8: NL-means denoising experiment with a Brodatz texture image. Left:
Noisy image with standard deviation 30. Right: NL-means restored image. The
Fourier transform of the noisy and restored images show how main features are
preserved even at high frequencies.

denoising methods as the Total Variation minimization [64], the wavelet thresh-
olding [27, 19] or the local DCT empirical Wiener filters [77]. For this reason
we compare these methods visually in artificial denoising experiences (see [12]
for a more comprehensive comparison).

Figure 1.9 illustrates the fact that a nonlocal algorithm is needed for the
correct reconstruction of periodic images. Local smoothing filters, Wiener and
thresholding methods are not able to reconstruct the wall pattern. Only NL-
means and the global Fourier–Wiener filter reconstruct the original texture.
The Fourier–Wiener filter is based on a global Fourier transform which is able
to capture the periodic structure of the image in a few coefficients. But this
only is an ideal filter: the Fourier transform of the original image is being used.
Figure 1.7(d) shows how NL-means chooses the correct weight configuration and
explains the correct reconstruction of the wall pattern.

The NL-means algorithm is not only able to restore periodic or texture im-
ages. Natural images also have enough redundancy to be restored. For example,
in a flat zone, one can find many pixels lying in the same region and with sim-
ilar configurations. In a straight or curved edge a complete line of pixels with
a similar configuration is found. In addition, the redundancy of natural images
allows us to find many similar configurations in far away pixels.

Figure 1.10 shows that wavelet and DCT thresholding are well adapted to the
recovery of oscillatory patterns. Although some artifacts are noticeable in both
solutions, the stripes are well reconstructed. The DCT transform seems to be
more adapted to this type of texture, and stripes are a little better reconstructed.
For a much more detailed comparison between sliding window transform domain
filtering methods and wavelet threshold methods, we refer the reader to [78].
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NL-means also performs well on this type of texture, due to its high degree of
redundancy.

Figure 1.9: Denoising experience on a periodic image. From left to right and
from top to bottom: noisy image (standard deviation 35), Gauss filtering, total
variation, neighborhood filter, Wiener filter (ideal filter),TIHWT, DCT empirical
Wiener filtering, and NL-means.

Figures 1.11 displays the application of the denoising methods to a white
noise. We display the filtered noise.

1.2.3 Extension to movies

Averaging filters are easily extended to the denoising of image sequences and
video. The denoising algorithms involve indiscriminately pixels not belonging
only to same frame but also the previous and posterior ones.

In many cases, this straightforward extension cannot correctly deal with
moving objects. For that reason, state of the art movie filters are motion com-
pensated (see [10] for a comprehensive review). The underlying idea is the
existence of a “ground true” physical motion, which motion estimation algo-
rithms should be able to estimate. Legitimate information should exist only
along these physical trajectories. The motion compensated filters estimate ex-
plicitly the motion of the sequence by a motion estimation algorithm. The
motion compensated movie yields a new stationary data on which an averaging
filter can be applied. The motion compensation neighborhood filter was pro-
posed by Ozkan et al [55]. We illustrate in Fig. 1.14 the improvement obtained
with the proposed compensation.

One of the major difficulties in motion estimation is the ambiguity of trajec-
tories, the so called aperture problem. This problem is illustrated in Fig. 1.12.
At most pixels, there are several options for the displacement vector. All of
these options have a similar grey level value and a similar block around them.
Now, motion estimators have to select one by some additional criterion.
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Figure 1.10: Denoising experience on a natural image. From left to right
and from top to bottom: noisy image (standard deviation 35), total variation,
neighborhood filter, translation invariant hard thresholding (TIHWT), empirical
Wiener and NL-means.

The above description of movie denoising algorithms and its juxtaposition
to the NL-means principle shows how the main problem, motion estimation,
can be circumvented. In denoising, the more samples we have the happier we
are. The aperture problem is just a name for the fact that there are many
blocks in the next frame similar to a given one in the current frame. Thus,
singling out one of them in the next frame to perform the motion compensation
is an unnecessary and probably harmful step. A much simpler strategy which
takes advantage of the aperture problem is to denoise a movie pixel by involving
indiscriminately spatial and temporal similarities (see [14] for more details on
this discussion). The algorithm favors pixels with a similar local configuration,
as the similar configurations move, so do the weights. Thus, the algorithm is
able to follow the similar configurations when they move without any explicit
motion computation (see Fig. 1.13).

1.3 Asymptotic

1.3.1 PDE models and local smoothing filters

According to Shannon’s theory, a signal can be correctly represented by a dis-
crete set of values, the ”samples”, only if it has been previously smoothed. Let
us start with u0 the physical image, a real function defined on a bounded do-
main Ω ⊂ R

2. Then a blur optical kernel k is applied, i.e. u0 is convolved
with k to obtain an observable signal k ∗ u0. Gabor remarked in 1960 that the
difference between the original and the blurred images is roughly proportional
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Figure 1.11: The noise to noise criterion. From left to right and from top to
bottom: original noise image of standard deviation 20, Gaussian convolution,
anisotropic filtering, total variation, TIHWT, DCT empirical Wiener filter, neigh-
borhood filter, Bilateral filter and the NL-means. Parameters have been fixed
for each method so that the noise standard deviation is reduced by a factor 4.
The filtered noise by the Gaussian filter and the total variation minimization
are quite similar, even if the first one is totally blurred and the second one has
created many high frequency details. The filtered noise by the hard wavelet
thresholding looks like a constant image with superposed wavelets. The filtered
noise by the neighborhood filter and the NL-means algorithm looks like a white
noise. This is not the case for the Bilateral filter, where low frequencies of noise
are enhanced because of the spatial decay.

to its Laplacian, ∆u = uxx + uyy. In order to formalize this remark, we have
to notice that k is spatially concentrated, and that we may introduce a scale
parameter for k, namely kh(x) = h−1k(h− 1

2x). If, for instance, u is C2 and
bounded and if k is a radial function in the Schwartz class, then

u0 ∗ kh(x)− u0(x)

h
→ c∆u0(x).

Hence, when h gets smaller, the blur process looks more and more like the heat
equation

ut = c∆u, u(0) = u0.
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Figure 1.12: Aperture problem and the ambiguity of trajectories are the most diffi-
cult problem in motion estimation: There can be many good matches. The motion
estimation algorithms must pick one.

Thus, Gabor established a first relationship between local smoothing operators
and PDE’s. The classical choice for k is the Gaussian kernel.

Remarking that the optical blur is equivalent to one step of the heat equation,
Gabor deduced that we can, to some extent, deblur an image by reversing the
time in the heat equation, ut = −∆u. Numerically, this amounts to subtracting
the filtered version from the original image,

u−Gh ∗ u = −h2∆u+ o(h2).

This leads to considering the reverse heat equation as an image restoration,
ill-posed though it is. The time-reversed heat equation was stabilized in the
Osher-Rudin shock filter [54] who proposed

ut = −sign(L(u))|Du|, (1.4)

where the propagation term |Du| is tuned by the sign of an edge detector L(u).
The function L(u) changes sign across the edges where the sharpening effect
therefore occurs. In practice, L(u) = ∆u and the equation is related to a
reverse heat equation.

The early Perona-Malik “anisotropic diffusion” [57] is directly inspired from
the Gabor remark. It reads

ut = div(g(|Du|2)Du), (1.5)

where g : [0,+∞) → [0,+∞) is a smooth decreasing function satisfying g(0) =
1, lims→+∞ g(s) = 0. This model is actually related to the preceding ones. Let
us consider the second derivatives of u in the directions of Du and Du⊥,

uηη = D2u(
Du

|Du| ,
Du

|Du| ), uξξ = D2u(
Du⊥

|Du| ,
Du⊥

|Du| ).

Then, the equation (1.5) can be rewritten as

ut = g(|Du|2)uξξ + h(|Du|2)uηη, (1.6)
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a)

b)

c)

Figure 1.13: Weight distribution of NL-means applied to a movie. In a), b) and
c) the first row shows a five frames image sequence. In the second row, the weight
distribution used to estimate the central pixel (in white) of the middle frame is shown.
The weights are equally distributed over the successive frames, including the current
one. They actually involve all the candidates for the motion estimation instead of
picking just one per frame. The aperture problem can be taken advantage of for a
better denoising performance by involving more pixels in the average.

where h(s) = g(s) + 2sg′(s). Perona and Malik proposed the function g(s) =
1

1+s/k . In this case, the coefficient of the first term is always positive and this

term therefore appears as a one dimensional diffusion term in the orthogonal
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Figure 1.14: Comparison of static filters, motion compensated filters and NL-means
applied to an image sequence. Top: three frames of the sequence are displayed. Middle
and left to right: neighborhood filter, motion compensated neighborhood filter and the
NL-means. (AWA). Bottom: the noise removed by each method (difference between
the noisy and filtered frame). Motion compensation improves the static algorithms
by better preserving the details and creating less blur. We can read the titles of
the books in the noise removed by AWA. Therefore, that much information has been
removed from the original. Finally, the NL-means algorithm (bottom row) has almost
no noticeable structure in its removed noise. As a consequence, the filtered sequence
has kept more details and is less blurred.

direction to the gradient. The sign of the second coefficient, however, depends
on the value of the gradient. When |Du|2 < k this second term appears as a
one dimensional diffusion in the gradient direction. It leads to a reverse heat
equation term when |Du|2 > k.

The Perona-Malik model has got many variants and extensions. Tannen-
baum and Zucker [45] proposed, endowed in a more general shape analysis
framework, the simplest equation of the list,

ut = |Du|div
(

Du

|Du|

)

= uξξ.

This equation had been proposed some time before in another context by Sethian
[67] as a tool for front propagation algorithms. This equation is a “pure”
diffusion in the direction orthogonal to the gradient and is equivalent to the
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anisotropic filter AF [40],

AFhu(x) =

∫

Gh(t)u(x+ tξ)dt,

where ξ = Du(x)⊥/|Du(x)| and Gh(t) denotes the one-dimensional Gauss func-
tion with variance h2.

This diffusion is also related to two models proposed in image restoration.
The Rudin-Osher-Fatemi [64] total variation model leads to the minimization of
the total variation of the image TV (u) =

∫

|Du|, subject to some constraints.
The steepest descent of this energy reads, at least formally,

∂u

∂t
= div

(

Du

|Du|

)

(1.7)

which is related to the mean curvature motion and to the Perona-Malik equation
when g(|Du|2) = 1

|Du| . This particular case, which is not considered in [57],

yields again (1.7). An existence and uniqueness theory is available for this
equation [1].

1.3.2 Asymptotic behavior of neighborhood filters (dimen-
sion 1)

Let u denote a one-dimensional signal defined on an interval I ⊂ R and consider
the neighborhood filter

NFh,ρu(x) =
1

C(x)

∫ x+ρ

x−ρ

u(y)e−
|u(y)−u(x)|2

h2 dy, (1.8)

where C(x) =
∫ x+ρ

x−ρ
e−

|u(y)−u(x)|2

h2 dy.
The following theorem describes the asymptotical behavior of the neighbor-

hood filter in 1D. The proof of this theorem and next ones in this section can
be found in [13]. 1

Theorem 1.3.1 Suppose u ∈ C2(I), and let ρ, h, α > 0 such that ρ, h → 0 and

h = O(ρα). Consider the continuous function g(t) = te−t2

E(t) , for t 6= 0, g(0) = 1
2 ,

where E(t) = 2
∫ t

0
e−s2 ds. Let f be the continuous function

f(t) =
g(t)

t2
+ g(t)− 1

2t2
, f(0) =

1

6
.

Then, for x ∈ R,

1. If α < 1, NFh,ρu(x)− u(x) ≃ u′′(x)
6 ρ2.

2. If α = 1, NFh,ρu(x)− u(x) ≃ f( ρh |u′(x)|)u′′(x) ρ2.

3. If 1 < α < 3
2 , NFh,ρu(x)− u(x) ≃ g(ρ1−α|u′(x)|)u′′(x) ρ2.
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According to Theorem 1.3.1, the neighborhood filter makes the signal evolve
proportionally to its second derivative. The equation ut = cu′′ acts as a smooth-
ing or enhancing model depending on the sign of c. Following the previous theo-
rem, we can distinguish three cases depending on the values of h and ρ. First, if
h is much larger than ρ the second derivative is weighted by a positive constant
and the signal is therefore filtered by a heat equation. Second, if h and ρ have
the same order, the sign and magnitude of the weight is given by f( ρh |u′(x)|).
As the function f takes positive and negative values (see Fig. 1.18), the fil-
ter behaves as a filtering/enhancing algorithm depending on the magnitude of
|u′(x)|. If B denotes the zero of f , then a filtering model is applied wherever
|u′| < B h

ρ and an enhancing model wherever |u′| > B h
ρ . The intensity of the

enhancement tends to zero when the derivative tends to infinity. Thus, points
x where |u′(x)| is large are not altered. The transition of the filtering to the
enhancement model creates a singularity in the filtered signal. In the last case,
ρ is much larger than h and the sign and magnitude of the weight is given by
g( ρh |u′(x)|). Function g is positive and decreases to zero. If the derivative of u
is bounded then ρ

h |u′(x)| tends to infinity and the intensity of the filtering to
zero. In this case, the signal is hardly modified.

In summary, a neighborhood filter in dimension 1 shows interesting behavior
only if ρ and h have the same order of magnitude; in which case the neighborhood
filter behaves like a Perona-Malik equation. It enhances edges with a gradient
above a certain threshold and smoothes the rest.

Figure 1.15 illustrates the behavior of the one dimensional neighborhood
filter. The algorithm is iterated until the steady state is attained on a sine
signal for different values of the ratio ρ/h. The results of the experiment cor-
roborate the asymptotical expansion of Theorem 1.3.1. In the first experiment,
ρ/h = 10−8 and the neighborhood filter is equivalent to a heat equation. The
filtered signal tends to a constant. In the second experiment, ρ/h = 108 and the
value g( ρh |u′|) is nearly zero. As predicted by the theorem, the filtered signal
is nearly identical to the original one. The last two experiments illustrate the
filtering/enhancing behavior of the algorithm when h and ρ have similar values.
As predicted, an enhancing model is applied where the derivative is large. Many
singularities are being created because of the transition of the filtering to the
enhancing model. Unfortunately, the number of singularities and their position
depend upon the value of ρ/h. This behavior is explained by Theorem 1.3.1(2).
Figure 1.22 illustrates the same effect in the 2D case.

The filtering/enhancing character of the neighborhood filter is very different
from a pure enhancing algorithm like the Osher-Rudin shock filter. Figures
1.16 and 1.17 illustrate these differences. In Fig. 1.16, the minimum and the
maximum of the signal have been preserved by the shock filter, while these
two values have been significantly reduced by the neighborhood filter. This
filtering/enhancing effect is optimal when the signal is noisy. Figure 1.17 shows
how the shock filter creates artificial steps due to the fluctuations of noise,
while the neighborhood filter reduces the noise avoiding any spurious shock.
Parameter h has been chosen larger than the amplitude of noise in order to
remove it. Choosing an intermediate value of h, artificial steps could also be
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Figure 1.15: One dimensional neighborhood filter experiment. The neighbor-
hood filter is iterated until the steady state is attained for different values
of the ratio ρ/h. Top: Original sine signal. Middle left: filtered signal with
ρ/h = 10−8. Middle right: filtered signal with ρ/h = 108. Bottom left: filtered
signal with ρ/h = 2. Bottom right: filtered signal with ρ/h = 5. The examples
corroborate the results of Theorem 1.3.1. If ρ/h tends to zero the algorithm
behaves like a heat equation and the filtered signal tends to a constant. If,
instead, ρ/h tends to infinity the signal is hardly modified. If ρ and h have the
same order, the algorithm presents a filtering/enhancing dynamic. Singularities
are created due to the transition of smoothing to enhancement. The number of
enhanced regions strongly depends upon the ratio ρ

h as illustrated in the bottom
figures.

generated on points where the noise amplitude is above this parameter value.

1.3.3 The two dimensional case

The following theorem extends previous result to the two dimensional case.

Theorem 1.3.2 Suppose u ∈ C2(Ω), and let ρ, h, α > 0 such that ρ, h → 0 and

h = O(ρα). Let us consider the continuous function g̃ defined by g̃(t) = 1
3
te−t2

E(t) ,

for t 6= 0, g̃(0) = 1
6 , where E(t) = 2

∫ t

0
e−s2 ds. Let f̃ be the continuous function
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Figure 1.16: Comparison between the neighborhood filter and the shock filter.
Top: Original signal. Bottom left: application of the neighborhood filter. Bot-
tom right: application of the shock filter. The minimum and the maximum of
the signal have been preserved by the shock filter and reduced by the neigh-
borhood filter. This fact illustrates the filtering/enhancing character of the
neighborhood filter compared with a pure enhancing filter.

Figure 1.17: Comparison between the neighborhood filter and the shock filter.
Top: Original signal. Bottom left: application of the neighborhood filter. Bot-
tom right: application of the shock filter. The shock filter is sensitive to noise
and creates spurious steps. The filtering/enhancing character of the neighbor-
hood filter avoids this effect.

defined by

f̃(t) = 3g̃(t) +
3g̃(t)

t2
− 1

2t2
, f̃(0) =

1

6
.
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Then, for x ∈ Ω,

1. If α < 1,

NFh,ρu(x)− u(x) ≃ △u(x)

6
ρ2.

2. If α = 1,

NFh,ρu(x)− u(x) ≃
[

g̃(
ρ

h
|Du(x)|) uξξ(x) + f̃(

ρ

h
|Du(x)|) uηη(x)

]

ρ2

3. If 1 < α < 3
2 ,

NFh,ρu(x)− u(x) ≃ g̃
(

ρ1−α|Du(x)|
)

[ uξξ(x) + 3uηη(x)] ρ
2.

being ξ = Du(x)⊥/|Du(x)| and η = Du(x)/|Du(x)|.

According to Theorem 1.3.2 the two-dimensional neighborhood filter acts as
an evolution PDE with two terms. The first term is proportional to the second
derivative of u in the direction ξ = Du(x)⊥/|Du(x)|, which is tangent to the
level line passing through x. The second term is proportional to the second
derivative of u in the direction η = Du(x)/|Du(x)| which is orthogonal to the
level line passing through x. Like in the one dimensional case, the evolution
equations ut = c1uξξ and ut = c2uηη act as filtering or enhancing models de-
pending on the signs of c1 and c2. Following the previous theorem, we can
distinguish three cases, depending on the values of h and ρ.

First, if h is much larger than ρ, both second derivatives are weighted by
the same positive constant. Thus, the sum of the both terms is equivalent to
the Laplacian of u, ∆u, and we get back to Gaussian filtering.
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Figure 1.18: Weight functions of Theorems 1.3.1 and 1.3.2 when h and ρ have the
same order. Left: Function f of Theorem 1.3.1. Right: Functions g̃ (continuous
line) and f̃ (dashed line) of Theorem 1.3.2.

Second, if h and ρ have the same order of magnitude, the neighborhood filter
behaves as a filtering/enhancing algorithm. The coefficient of the diffusion in
the tangential direction, uξξ, is given by g̃( ρh |Du|). The function g̃ is positive
and decreasing. Thus, there is always diffusion in that direction. The weight of
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the normal diffusion, uηη, is given by f̃( ρh |Du|). As the function f̃ takes positive
and negative values (see Fig. 1.18), the filter behaves as a filtering/enhancing
algorithm in the normal direction and depending on |Du|. If B̃ denotes the zero
of f̃ , then a filtering model is applied wherever |Du| < B̃ h

ρ and an enhancing

strategy wherever |Du| > B̃ h
ρ . The intensity of the filtering in the tangent dif-

fusion and the enhancing in the normal diffusion tend to zero when the gradient
tends to infinity. Thus, points with a very large gradient are not altered.

Finally, if ρ is much larger than h, the value ρ
h tends to infinity and then the

filtering magnitude g̃( ρh |Du|) tends to zero. Thus, the original image is hardly
altered. Let us mention that similar calculations were performed in a particular
case for the neighborhood median filter by Masnou [52].

We observe that when ρ and h have the same order, the neighborhood filter
asymptotically behaves like a Perona-Malik model. Let us be more specific about
this comparison. Taking g(s) = g̃(s

1
2 ) in the Perona-Malik equation (1.6), we

obtain
ut = g̃(|Du|)uξξ + h̃(|Du|)uηη, (1.9)

where h̃(s) = g̃(s)+sg̃′(s). Thus, the Perona-Malik model and the neighborhood
filter can be decomposed in the same way and with exactly the same weight in
the tangent direction. Then the function h̃ has the same behavior as f̃ (Theorem
1.3.2), as can be observed in Fig. 1.19. Thus, in this case, a neighborhood filter
has the same qualitative behavior as a Perona-Malik model, even if we cannot
rewrite it exactly as such.
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Figure 1.19: Weight comparison of the neighborhood filter and the Perona Malik
equation. Magnitude of the tangent diffusion (continuous line, identical for both
models) and normal diffusion (dashed line – –) of Theorem 1.3.2. Magnitude of
the tangent diffusion (continuous line) and normal diffusion (dashed line - - -)
of the Perona-Malik model (1.9). Both models show nearly the same behavior.

Figure 1.22 displays a comparison of the neighborhood filter and the Perona-
Malik model. We display a natural image and the filtered images by both mod-
els. These solutions have a similar visual quality and tend to display flat zones
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and artificial contours inside the smooth regions. Figure 1.23 corroborates this
visual impression. We display the level lines of both filtered solutions. As ex-
pected from the above consistency theorems, for both models the level lines of
the original image tend to concentrate, thus creating large flat zones separated
by edges. The solutions are very close, up to the obvious very different imple-
mentations. The neighborhood filter is implemented exactly as in its definition
and the Perona-Malik model by the explicit difference scheme proposed in the
original paper.

1.3.4 A regression correction of the neighborhood filter

In the previous sections we have shown the enhancing character of the neighbor-
hood filter. We have seen that the neighborhood filter, like the Perona-Malik
model, can create large flat zones and spurious contours inside smooth regions.
This effect depends upon a gradient threshold which is hard to fix in such a way
as to always separate the visually smooth regions from edge regions. In order to
avoid this undesirable effect, let us analyze in more detail what happens with
the neighborhood filter in the one-dimensional case.

x

uHxL

uHxL+h

uHxL-h

YNFHxL

x- x+

Figure 1.20: Illustration of the shock effect of the YNF on the convex of a signal.
The number of points y satisfying u(x) − h < u(y) ≤ u(x) is larger than the
number satisfying u(x) ≤ u(y) < u(x) + h. Thus, the average value Y NF (x) is
smaller than u(x), enhancing that part of the signal. The regression line of u
inside (x−, x+) better approximates the signal at x.

Figure 1.20 shows a simple illustration of this effect. For each x in the
convex part of the signal, the filtered value is the average of the points y such
that u(x) − h < u(y) < u(x) + h for a certain threshold h. As it is illustrated
in the figure, the number of points satisfying u(x) − h < u(y) ≤ u(x) is larger
than the number of points satisfying u(x) ≤ u(y) < u(x)+h. Thus, the average
value Y NF (x) is smaller than u(x), enhancing this part of the signal. A similar
argument can be applied in the concave parts of the signal, dealing to the same
enhancing effect. Therefore, shocks will be created inside smooth zones where
concave and convex parts meet. Figure 1.20 also shows how the mean is not a
good estimate of u(x) in this case. In the same figure, we display the regression
line approximating u inside (u−1(u(x) − h), u−1(u(x) + h)). We see how the
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value of the regression line at x better approximates the signal. In the sequel,
we propose to correct the neighborhood filter with this better estimate.

In the general case, this linear regression strategy amounts to finding for
every point x the plane locally approximating u in the following sense,

min
a0,a1

∫

Bρ(x)

w(x,y)(u(y)− a1y1 − a0)
2 dy, w(x,y) = e−

|u(y)−u(x)|2

h2 (1.10)

and then replacing u(x) by the filtered value a1x1 + a0. The weights used to
define the minimization problem are the same as the ones used by the neigh-
borhood filter. Thus, the points with a grey level value close to u(x) will have
a larger influence in the minimization process than those with a further grey
level value. We denote the above linear regression correction by LNFh,ρ. Tak-
ing a1 = 0 and then approximating u by a constant function, the minimization
(1.10) goes back to the neighborhood filter.

This minimization was originally proposed by Cleveland [18] with a weight
family not depending on the function u but only on the spatial distance of x
and y. A similar scheme incorporating u in the weight computation has been
statistically studied in [61]. The authors propose an iterative procedure that
describes for every point the largest possible neighborhood in which the initial
data can be well approximated by a parametric function.

Another similar strategy is the interpolation by ENO schemes [41]. The
goal of ENO interpolation is to obtain a better adapted prediction near the
singularities of the data. For each point it selects different stencils of fixed size
M , and for each stencil reconstructs the associated interpolation polynomial of
degree M . Then the least oscillatory polynomial is selected by some prescribed
numerical criterion. The selected stencils tend to escape from large gradients
and discontinuities.

The regression strategy also tends to select the right points in order to ap-
proximate the function. Instead of choosing a certain interval, all the points are
used in the polynomial reconstruction, but weighted by the grey level differences.

As in the previous sections, let us analyze the asymptotic behavior of the
linear regression correction. We compute the asymptotic expansion of the filter
when 0 < α ≤ 1. We showed that when α > 1 the signal is hardly modified.

For the sake of completeness, we first compute the asymptotic expansion in
the one dimensional case.

Theorem 1.3.3 Suppose u ∈ C2(I), and let ρ, h, α > 0 such that ρ, h → 0 and
h = O(ρα). Let f̃ be the continuous function defined as f̃(0) = 1

6 ,

f̃(t) =
1

4t2

(

1− 2t e−t2

E(t)

)

,

for t 6= 0, where E(t) = 2
∫ t

0
e−s2 ds. Then, for x ∈ R,

1. If α < 1, LNFh,ρu(x)− u(x) ≃ u′′(x)
6 ρ2.
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2. If α = 1, NFh,ρu(x)− u(x) ≃ f̃( ρh |u′(x)|)u′′(x) ρ2.

Theorem 1.3.3 shows that the LNFh,ρ filter lets the signal evolve proportion-
ally to its second derivative, as the neighborhood filter does. When h is larger
than ρ the filter is equivalent to the original neighborhood filter and the signal
is filtered by a heat equation. When ρ and h have the same order the sign and
magnitude of the filtering process is given by f̃( ρh |u′(x)|) (see Fig. 1.21). This
function is positive and quickly decreases to zero. Thus, the signal is filtered
by a heat equation of decreasing magnitude and is not altered wherever the
derivative is very large.

The same asymptotic expansion can be computed in the two dimensional
case.

Theorem 1.3.4 Suppose u ∈ C2(Ω), and let ρ, h, α > 0 such that ρ, h → 0 and
h = O(ρα). Let f̃ be the continuous function defined as f̃(0) = 1

6 ,

f̃(t) =
1

4t2

(

1− 2t e−t2

E(t)

)

,

for t 6= 0, where E(t) = 2
∫ t

0 e
−s2 ds. Then, for x ∈ Ω,

1. If α < 1,

LNFh,ρu(x)− u(x) ≃ △u(x)

6
ρ2.

2. If α = 1,

LNFh,ρu(x)− u(x) ≃
[

f̃(
ρ

h
|Du(x)|) uηη(x)(x) +

1

6
uξξ(x)

]

ρ2

According to the previous theorem, the filter can be written as the sum of two
diffusion terms in the direction of ξ and η. When h is much larger than ρ the
linear regression correction is equivalent to the heat equation like the original
neighborhood filter. When ρ and h have the same order, the behavior of the
linear regression algorithm is very different from the original neighborhood filter.
The function weighting the tangent diffusion is a positive constant. The function
weighting the normal diffusion is positive and decreasing (see Fig. 1.21), and
therefore there is no enhancing effect. The algorithm combines the tangent and
normal diffusion wherever the gradient is small. Wherever the gradient is larger
the normal diffusion is canceled and the image is filtered only in its tangent
direction. This subjacent PDE was already proposed as a diffusion equation in
[4]. This diffusion makes the level lines evolve proportionally to their curvature.
In the Perona-Malik model the diffusion is stopped near the edges. In this case,
the edges are filtered by a mean curvature motion.

It may be asked whether the modified neighborhood filter still preserves
signal discontinuities. The answer is yes. It is easily checked that for small
enough h, all piecewise affine functions with smooth jump curves are steady.
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Thus, the behavior is the same as for the classical neighborhood filter. Our
asymptotic analysis is of course not valid for such functions, but only for smooth
functions.

As a numerical scheme the linear regression neighborhood filter allows the
implementation of a mean curvature motion without the computation of gra-
dients and orientations. When the gradient is small the linear regression filter
naturally behaves like the heat equation. This effect is introduced on typical
schemes implementing the mean curvature motion. In flat zones the gradient is
not well defined and some kind of isotropic diffusion must be applied. Therefore,
the linear regression neighborhood filter naturally extends the mean curvature
motion and yields a stable numerical scheme for its computation, independent
of gradient orientations.
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Figure 1.21: Weighting functions of Theorem 1.3.3 and 1.3.4. Left: Function f̃
of Theorem 1.3.3. Right: Constant function 1/6 (continuous line) and function
f̃ (dashed line) of Theorem 1.3.4.

Figure 1.22 displays an experiment comparing the LNFh,ρ with the neigh-
borhood filter and the Perona-Malik equation. The linear correction does not
create any contour or flat zone inside the smooth regions. Figure 1.23 displays
the level lines of the previous experiment. The level lines of the LNFh,ρ are
filtered by a mean curvature motion and they do not get grouped creating flat
zones.

1.3.5 The vector valued case

Let u be a vector valued function defined on a bounded domain Ω ⊂ R
2, u :

Ω → R
n. The vector neighborhood filter can be written as

NFh,ρu(x) =
1

C(x)

∫

Bρ(x)

u(y)e−
||u(y)−u(x)||2

h2 dy, (1.11)

where ||u(y) − u(x)||2 is now the Euclidean vector norm and each component
function ui is filtered with the same weight distribution. The linear regres-
sion correction is defined as in the scalar case, and each component is locally
approximated by a plane with the same weight distribution.

In order to compute the asymptotic expansion of the linear regression filter
we must fix a coordinate system for R2. In the scalar case we used the reference
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Figure 1.22: Comparison experiment. Top left: original image. Top right:
Perona-Malik filtered image. Bottom left: filtered image by the neighborhood
filter. Bottom right: filtered image by the linear regression neighborhood filter.
The neighborhood filter experiments are performed by iterating the discrete
version of definitions (1.1) and (1.10). Both the neighborhood filter and its
linear regression correction have been applied with the same value of h and ρ.
The displayed images have been attained within the same number of iterations.
The Perona-Malik equation is implemented by the explicit difference scheme
proposed in the original paper. The Perona-Malik model and the neighborhood
filter create artificial contours and flat zones. This effect is almost completely
avoided by the linear regression neighborhood filter.

system given by the gradient of the image at x and its orthogonal direction. In
addition, this reference allows us to relate the obtained diffusion to the evolution
of the level lines of the image and the mean curvature motion. Now, we cannot
use the same reference and we need to define a new one. By analogy with the
scalar case we choose the directions of minimum and maximum variation of the
vector function.

Definition 1.3.1 We define the normal direction η and the tangent direction ξ
as the vectors that respectively maximize and minimize the following variation

n
∑

i=1

‖∂ui

∂v
(x)‖2

under the constraint ‖v‖ = 1.
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Figure 1.23: Level lines of the images in Fig. 1.22. By the Perona-Malik filter
and the neighborhood filter the level lines tend to group, creating flat zones.
The regression correction filters the level lines by a curvature motion without
creating any flat zone.

It is easily seen that this constrained optimization leads to the computation
of the eigenvectors of the matrix

A =

(

‖∂u
∂x‖2 〈∂u∂x , ∂u

∂y 〉
〈∂u∂x , ∂u

∂y 〉 ‖∂u
∂y ‖2

)

,

where ∂u
∂x =

(

∂u1

∂x , . . . , ∂un

∂x

)

and ∂u
∂y =

(

∂u1

∂y , . . . , ∂un

∂y

)

. The two positive eigen-

values of A, λ+ and λ−, are the maximum and the minimum of the vector norm
associated to A and the maximum and the minimum variations as defined in
Definition 1.3.1. The corresponding eigenvectors are orthogonal leading to the
above defined normal and tangent directions. This orthonormal system was
first proposed for vector valued image analysis in [25]. Many PDE equations
have been proposed for color image filtering using this system. We note the
Coherence Enhancing Diffusion [73], the Beltrami Flow [46] and an extension
of the mean curvature motion [66].

Theorem 1.3.5 Suppose u ∈ C2(Ω,Rn), and let ρ, h, α > 0 such that ρ, h → 0
and h = O(ρα). Let f̃ be the continuous function defined as f̃(0) = 1

6 ,

f̃(t) =
1

4t2

(

1− 2t e−t2

E(t)

)

,
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Figure 1.24: Comparison of the neighborhood filter and the linear regression
correction. Top left: original image. Top middle: filtered image by the neigh-
borhood filter. Top right: filtered image by the regression neighborhood filter.
Bottom: level lines of a part of the images on the above line. Both neighbor-
hood filters have been performed with the same filtering parameters and the
same number of iterations. The linear regression neighborhood algorithm has
filtered the image while preserving the main boundaries as the original neigh-
borhood filter. No enhancing has been applied by the linear correction avoiding
the shock effect. The level lines of the neighborhood filter tend to group and
create large flat zones. In addition, these level lines oscillate while those of the
linear regression algorithm have been correctly filtered.

for t 6= 0, where E(t) = 2
∫ t

0 e
−s2 ds. Then, for x ∈ Ω,

1. If α < 1,

LNFh,ρu(x)− u(x) ≃ △u(x)

6
ρ2.

2. If α = 1,

LNFh,ρu(x)−u(x) ≃
[

f̃(
ρ

h
‖∂u
∂ξ

(x)‖) D2u(ξ, ξ)(x) + f̃(
ρ

h
‖∂u
∂η

(x)‖)D2u(η, η)(x)

]

ρ2

where ∆u(x) = (∆ui(x))1≤i≤n and D2u(v, v)(x) =
(

D2ui(v, v)(x)
)

1≤i≤n
for

v ∈ {η, ξ}.

Interpretation

When h is much larger than ρ, the linear regression neighborhood filter is equiv-
alent to the heat equation applied independently to each component. When h



1.4. VARIATIONAL AND LINEAR DIFFUSION 31

and ρ have the same order the subjacent PDE acts as an evolution equation with
two terms. The first term is proportional to the second derivative of u in the
tangent direction ξ. The second term is proportional to the second derivative
of u in the normal direction η. The magnitude of each diffusion term depends
on the variation in the respective direction, λ− = ‖∂u

∂ξ (x)‖ and λ+ = ‖∂u
∂η (x)‖.

The weighting function f̃ is positive and decreases to zero (see Fig. 1.21). We
can distinguish the following cases depending on the values of λ+ and λ−.

• If λ+ ≃ λ− ≃ 0 then there are very few variations of the vector image u
around x. In this case, the linear regression neighborhood filter behaves
like a heat equation with maximum diffusion coefficient f̃(0).

• If λ+ >> λ− then there are strong variations of u around x and the point
may be located on an edge. In this case the magnitude f̃( ρhλ+) tends to
zero and there is no diffusion in the direction of maximal variation. If
λ− >> 0 then x may be placed on an edge with different orientations
depending on each component and the magnitude of the filtering in both
directions tends to zero, so that the image is hardly altered. If λ− ≃ 0
then the edges have similar orientations in all the components and the
image is filtered by a directional Laplacian in the direction of minimal
variation.

• If λ+ ≃ λ− >> 0 then we may be located on a saddle point and in this
case the image is hardly modified. When dealing with multi-valued images
one can think of the complementarity of the different channels leading to
the perception of a corner.

In the scalar case the theorem gives back the result studied in the previous
sections. The normal and tangent directions are respectively the gradient direc-
tion and the level line direction. In this case, ∂u

∂ξ (x) = 0 and ∂u
∂η (x) = |Du(x)|

and we get back to

LNFh,ρu(x)− u(x) ≃
[

1

6
D2u(ξ, ξ)(x) + f̃(

ρ

h
|Du(x)|)D2u(η, η)(x)

]

ρ2.

1.4 Variational and linear diffusion

The relationship of neighborhood filters to classic local PDE’s has been discussed
in previous section. Yet, the main interest has shifted to defining non-local
PDE’s. The extension of the neighborhood filter and the NL-means method to
define nonlocal image-adapted differential operators and non-local variational
methods starts with [47], which proposes to perform denoising and deblurring
by non-local functionals.

The general goal of this development is actually to give a variational to all
neighborhood filters, and to give a non local form to the total variation as well.
More precisely, the neighborhood filters derive from the functional

J(u) =

∫

Ω×Ω

g(
|u(x)− u(y)|2

h2
)w(|x − y|)dxdy,
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where g and w have a Gaussian decay. In the same line, a functional yields a
(variational) interpretation to NL-means:

JNL(u) =

∫

Ω×Ω

(

1− e−
Gσ∗|u(x−.)−u(y−.)|2(0)

h2

)

w(|x − y|)dxdy.

In a similar variational framework, Gilboa et al. [36] consider the general
kind of quadratic non local functional

J(u) :=

∫

Ω×Ω

(u(x)− u(y))2w(x,y)dxdy, (1.12)

where w(x,y) is any fixed weight distribution, which in most application writes
as the neighborhood or NL-means weight distribution. The resolution of the
graph heat equation or the variational minimization (1.12) is given by

un+1(x) =
1

C(x)

∫

Ω

un(y)w(x,y)dy, (1.13)

where C(x) =
∫

Ω
w(x,y)dy is a normalizing factor. The freedom having a to-

tally decoupled weight distribution makes this formulation a linear and powerful
tool for image processing. In fact, this formulation rewrites as the Dirichlet in-
tegral of the following non local gradient, ∇wu(x, y) = (u(x) − u(y))w(x, y).
The whole process relates to a graph Laplacian where each pixel is considered
as the node of a weighted graph and the weights of the edge between two pixels
x and y respectively are decreasing functions of the distances of patches around
x and y, w(x, y). Then a graph Laplacian can be calculated on this graph, seen
as the sampling of a manifold, and the linear diffusion can be interpreted as the
heat equation on the set of blocks endowed with these weights. The eigenvalues
and eigenvectors of such a Laplacian can be computed and used for designing
spectral algorithms as Wiener and thresholding methods, see [70] and [59].

The non local term (1.12) has shown to be very useful as a regularization
term for many image processing tasks. The non-local differential operators
permit to define a total variation or a Dirichlet integral. Several articles on
deblurring have followed this variational line [44], [53], [36] (for image segmen-
tation), [8] (in fluorescence microscopy), [82], again for nonlocal deconvolution
and [50] for deconvolution and tomographic reconstruction. In [33], a paper
dedicated to another notoriously ill-posed problem, the super-resolution, the
non-local variational principle is viewed as “an emerging powerful family of
regularization techniques”, and the paper “proposes to use the example-based
approach as a new regularising principle in ill-posed image processing problems
such as image super-resolution from several low resolution photographs.” For
all these methods, the weight distribution is computed in the first iteration and
are maintained during the whole iteration process.

In this section, we will concentrate in the last non local functional as a linear
diffusion process and therefore as a heat equation is the associated graph to the
image, that is, no fidelity term will be added to the functional.
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1.4.1 Linear diffusion: seed growing

In [37], [39], a novel method was proposed for performing multi-label, semi-
automated medical image segmentation. The Grady segmentation method is a
linearised sigma filter applied to propagate seed regions.

Given a small number of pixels with user-defined labels which are called
seeds, this method computes the probability that a random walker starting at
each unlabeled pixel will first reach one of the pre-labeled pixels. By assigning
each pixel to the label for which the greatest probability is calculated, a high-
quality image segmentation can be obtained.

With each unlabeled pixel, a K-tuple vector is assigned that represents the
probability that a random walker starting from this unlabeled pixel first reaches
each of the K seed points. A final segmentation may be derived from these
K-tuples by selecting for each pixel the most probable seed destination for ran-
dom walker. By biasing the random walker to avoid crossing sharp intensity
gradients, a quality segmentation is obtained that respects object boundaries
(including weak boundaries). The image (or volume) is treated as a graph with
a fixed number of vertices and edges. Each edge is assigned real-valued weight
corresponding to the likelihood that a random walker will cross that edge (e.g.,
a weight of zero means that the walker may not move along that edge). By a
classical result the probability that a random walker first reaches a seed point
exactly equals the solution to the heat equation [9] with boundary Dirichlet
conditions at the locations of the seed points, the seed point in question being
fixed to unity, while the others seeds are set to zero.

This idea was not quite new. Region competition segmentation is an old
concept [83]. One can also refer to an algorithm developed for machine learning
by Zhu et. al [84] which also finds clusters based upon harmonic functions,
using boundary conditions set by a few seed points. [68] also involves weights
in the image considered as a graph and takes seed points. The method is also
directly related to the Sapiro et al. recent image coloring method by diffusion
from seeds [79] (see also [65]).

Thus, the Grady segmentation method is a linearized sigma filter applied to
propagate seed regions. Figure 1.25 taken from [38] illustrates the process on
a two chamber view of a cardiac image. The grey curves are user defined seed
regions roughly denoting the ventricles in the image. In that case one of the seed
regions is put to 1 and the other to zero. A diffusion with sigma filter weights
computed on the original image u0 is applied until a steady state is attained.
This gives at each pixel y a value p1(y) between 0 and 1 which is interpreted
as the probability for y to belong to the region of the first seed. In this binary
case a single threshold at 0.5 gives the black curves separating the regions of
both seeds. Like the active contour method, this method is highly dependent
on the initial seeds. It is, however, much less sensitive to noise than the snakes
method [16] and permits to initialize fairly far from the desired contours. We
will see that by the histogram concentration phenomenon one can get similar
or better results without any initialization.

The very same process as illustrated allows to diffuse initial chromatic in-
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Figure 1.25: (Taken from [38].) The Grady segmentation method is a linearized sigma
filter applied to propagate seed regions. The grey curves are user defined seed region.
A diffusion with sigma filter weights computed on the original image u0 is applied until
a steady state is attained. A threshold gives the black curves separating the regions
of initial seeds.

formation on an initial grey image as we exposed in the introduction. Figure
1.26 illustrates this application and compares the obtained solution by using the
NL-means and the neighborhood filter.

1.4.2 Linear diffusion: histogram concentration

The segmentation process can be accomplished by iterating the neighborhood
filter and computing the weight distribution in the initial image as displayed in
Fig. 1.27. The top image shows one slice of a 3D CT image with interest area
surrounded by a parallelepiped. The next row shows several slices of this area
of interest. It can be appreciated, first that the background of arteries has a
lot of oscillating clutter and, second, that the grey level value in arteries varies
a lot, thus making an automatic threshold problematic. The best way actually
to convince oneself that even in this small area a direct threshold wouldn’t do
the job is to refer to the histograms of Fig. 1.29. The first histogram which
is Gaussian-like and poorly concentrated corresponds to the background. The
background mode decreases slowly. On the far right part of the histogram one
can see a small pick corresponding to very white arteries. The fixing of an
accurate threshold in the slowly decreasing background mode is problematic.
The top right histogram shows what happens after the application of a median
iterative filtering (the mean curvature motion). The histogram does not concen-
trate at all. The bottom left histogram is obtained after applying the linearized
neighborhood filter. The bottom right histogram the one obtained by the lin-
earized NL-means described in the same section. In both cases, one observes
that the background mode of the histogram is strongly concentrated on a few
grey level values. An automatic threshold is easily fixed by taking the first local
minimum after the main histogram peak. This histogram concentration is very
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Figure 1.26: Left and from top to bottom: initial chromatic data on the gray
image, linear diffused seeds by using neighborhood filter weights on the gray
image and the same for the NL-means weights. Right: details of left hand
images. The neighborhood filter weights are not robust since just a single points
from different objects can be easily confused and iteration lead to a incorrect
colorization.

similar to the obtained by the mean-shift approach [20] where the neighborhood
filter is nonlinearly iterated. In that case, the authors show that clusters tend
to its mean yielding piecewise constant image.

The histogram concentration phenomenon is actually visible in the compar-
ative evolution of some slices under the various considered filters, as shown in
Fig. 1.27. The first row shows these slices picked in the interest area. The
topology killing effect of the median filter (mean curvature motion): small ar-
teries tend to vanish and larger ones shrink and become circular as shown in
the third slice showing an artery section. The third row is dedicated to the
linear sigma filter, which corresponds to Grady’s method applied directly to the
image instead of using seeds. It is quite apparent that well contrasted objects
are well maintained and the contrast augmented, in agreement with the con-
sistency of this recursive filter with the Perona-Malik equation. However, the
less contrasted objects tend to vanish because, on them, the evolution becomes
similar to an isotropic heat equation. The fourth row is the result of apply-
ing the 3D non-local linear heat equation, where the Laplacian coefficients are
computed from the original image. The whole sequence has been treated as a
3D image with a weight support of (7 × 7 × 3) and a comparison window of
3 × 3 × 3. Clearly the background is flattened and blood vessels are enhanced
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on this background. A threshold just above the homogeneous made background
level should give back arteries, and this indeed occurs. Thus in that case the
3d visualization of objects with complex topology like the cerebral arteries can
be achieved by an automatic threshold. The exact segmentation of the artery
is a more difficult problem. Even if the histogram is concentrated, a different
choice of the visualization threshold can produce slightly different surfaces.

Figure 1.27: Comparative behavior of discussed methods in 3D. Application to a
3D angiograhy CT image of the head where blood vessels should be segmented. Top:
One slice image of the CT volume data with marked interested area. Middle: Display
of interest area for several slices of the 3D image. Second row: filtered slices by
using median filter. Third row: sigma filter. Fourth row: 3D nonlocal heat equation.
Bottom: filtered slices by using the linear method with 3D NL-means weights. The
whole sequence has been treated as a 3D image with a weight support of (5×5×3) and
a comparison window of 3× 3× 3. The background is flattened and blood vessels are
enhanced. Thus, a better segmentation is possible by a simple threshold as justified
by Fig. 1.29.
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Figure 1.28: From top to bottom and left to right: original iso-surface of the 3D
image, same iso-surface filtered by iterative median filter, by linear sigma filter, and
by linear NL-means. The iso-surface extracted from the original image presents many
irregularities due to noise. The median filter makes them disappear but makes im-
portant parts disappear and some vessels disconnect or fuse. Linear NL-means keeps
most vessels and maintains the topology.
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Figure 1.29: Grey level histogram of 3D areas of interest. Top left: original 3D image
before. Top right: after median filtering. Bottom left: after proposed method with
sigma filter weights. Bottom right; proposed method with NL-means weights The
background is now represented by a few grey level values when the volume is filtered
by the proposed method. A threshold can therefore be more easily and automatically
applied.
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