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Local Scale Control for Edge Detection
and Blur Estimation

James H. Elder, Member, IEEE, and Steven W. Zucker, Fellow, IEEE

Abstract—The standard approach to edge detection is based on a model of edges as large step changes in intensity. This approach
fails to reliably detect and localize edges in natural images where blur scale and contrast can vary over a broad range. The main
problem is that the appropriate spatial scale for local estimation depends upon the local structure of the edge, and thus varies
unpredictably over the image. Here we show that knowledge of sensor properties and operator norms can be exploited to define a
unique, locally computable minimum reliable scale for local estimation at each point in the image. This method for local scale control
is applied to the problem of detecting and localizing edges in images with shallow depth of field and shadows. We show that edges
spanning a broad range of blur scales and contrasts can be recovered accurately by a single system with no input parameters other
than the second moment of the sensor noise. A natural dividend of this approach is a measure of the thickness of contours which
can be used to estimate focal and penumbral blur. Local scale control is shown to be important for the estimation of blur in complex
images, where the potential for interference between nearby edges of very different blur scale requires that estimates be made at
the minimum reliable scale.

Index Terms—Edge detection, localization, scale space, blur estimation, defocus, shadows.
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1 INTRODUCTION

DGE detectors are typically designed to recover step
discontinuities in an image (e.g., [1], [2], [3], [4]), how-

ever the boundaries of physical structures in the world
generally do not project to the image as step discontinuities.
On the left of Fig. 1 is depicted a straight, sharp reflectance
edge, slightly off the object plane for the lens system
shown, so that the physical edge projects to the image as a
blurred luminance transition. In the center of Fig. 1 is
shown the shadow of a straight-edged object cast by a
spherical light source onto a flat ground surface. Because
the light-source is not a point-source, the shadow exhibits a
penumbra which causes the shadow edge to appear
blurred. On the right is shown a slightly rounded object
edge which, when illuminated and viewed from above, also
generates a blurred edge in the image.

Since cameras and eyes have finite depth-of-field, light
sources are seldom point sources and objects are often
smooth, edges in the world will generically project to the
image as blurred luminance transitions. This paper gener-
alizes the detection of step discontinuities to encompass
this broader, more physically realistic class of edges.

It is important first to distinguish what can and cannot
be computed locally at an edge. We have shown [5] that
there is in fact a duality between the focal blur and cast
shadow scenarios depicted in Fig. 1. Under this duality, the

light source, occluder and ground plane components which
constitute the cast shadow model may be exchanged for the
aperture, reflectance edge and sensor plane which comprise
the geometric optics model of focal blur. Specifically, both
situations predict a sigmoidal luminance transition of ex-
actly the same form:

I(x) = f(x/r)

where

f u u u u0 5 4 9= - -
1

1 2

p arccos

A shaded object edge can also be shown to mimic this in-
tensity pattern [5].

The parameter r in this equation determines the degree
of blur in the edge. For the case of focal blur, r is deter-
mined by the size of the aperture and the relative distances
between the lens, image plane and sensor plane. For a cast
shadow, the relevant variables are the visual angle of the
light source and the distance between the occluder and the
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Fig. 1. Edges in the world generically project to the image as spatially
blurred. From left to right: Focal blur due to finite depth-of-field; penum-
bral blur at the edge of a shadow; shading blur at a smoothed object
edge.
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ground surface. For a shaded edge, r is determined by the
curvature of the surface. In natural scenes, these variables
may assume a wide range of values, producing edges over
a broad range of blur scales.

Our conclusions are twofold. First, edges in the world
generically project to the image as sigmoidal luminance
transitions over a broad range of blur scales. Second, we
cannot restrict the goal of the local computation to the de-
tection of a specific type of edge (e.g., occlusion edges),
since we expect different types of edges to be locally indis-
tinguishable. Thus, the goal of the local computation must
be to detect, localize and characterize all edges over this
broad range of conditions, regardless of the physical struc-
tures from which they project.

To illustrate the challenge in achieving this goal, con-
sider the scene shown in Fig. 2. Because the light source is
not a point source, the contour of the cast shadow is not
uniformly sharp. The apparent blur is of course the pe-
numbra of the shadow: that region of the shadowed surface
where the source is only partially eclipsed.

Fig. 2b shows the edge map generated by the
Canny/Deriche edge detector [1], [2], tuned to detect the
details of the mannequin (the scale parameter and thresh-
olds were adjusted by trial and error to give the best possi-
ble result). At this relatively small scale, the contour of the
shadow cannot be reliably resolved and the smooth inten-
sity gradients behind the mannequin and in the foreground
and background are detected as many short, disjoint
curves. Fig. 2c shows the edge map generated by the
Canny/Deriche edge detector tuned to detect the contour
of the shadow. At this larger scale, the details of the man-
nequin cannot be recovered, and the contour of the
shadow is fragmented at the section of high curvature un-
der one arm.

This example suggests that to process natural images,
operators of multiple scales must be employed. This con-
clusion is further supported by findings that the receptive
fields of neurons in the early visual cortex of cat [6] and
primate [7] are scattered over several octaves in size. While
this conclusion has been reached by many computer vision

researchers (e.g., [8], [1], [9], [10], [11], [12]), the problem has
been and continues to be: Once a scale space has been com-
puted, how is it used? Is there any principled way to com-
bine information over scale, or to reason within this scale
space, to produce usable assertions about the image?

In this paper, we develop a novel method for local scale
adaptatation based upon two goals:

1)�Explicit testing of the statistical reliability of local in-
ferences.

2)�Minimization of distortion in local estimates due to
neighboring image structures.

This method for reliable estimation forms the basis for gen-
eralizing edge detection to the detection of natural image
edges over a broad range of blur scales and contrasts. Our
ultimate objective is the detection of all intensity edges in a
natural image, regardless of their physical cause (e.g., oc-
clusions, shadows, textures).

2 SCALE SPACE METHODS IN EDGE DETECTION

The issue of scale plays a prominent role in several of the
best-known theories of edge detection. Marr and Hildreth
[8] employed a Laplacian of Gaussian operator to construct
zero-crossing segments at a number of scales and proposed
that the presence of a physical edge be asserted if a segment
exists at a particular position and orientation over a con-
tiguous range of scale. Canny [1] defined edges at direc-
tional maxima of the first derivative of the luminance func-
tion and proposed a complex system of rules to combine
edges detected at multiple scales. The main problem with
these methods is the difficulty in distinguishing whether
nearby responses at different scales correspond to a single
edge or to multiple edges.

Continuous scale-space methods applied to edge detec-
tion have also tended to be complex [13]. In an anisotropic
diffusion network [14], the rate of diffusion at each point is
determined by a space- and time-varying conduction coef-
ficient which is a decreasing function of the estimated gra-
dient magnitude of the luminance function at the point.

                                     (a)                                                                        (b)                                                                          (c)

Fig. 2. The problem of local estimation scale. Different structures in a natural image require different spatial scales for local estimation. (a) The
original image contains edges over a broad range of contrasts and blur scales. (b) The edges detected with a Canny/Deriche operator tuned to
detect structure in the mannequin. (c) The edges detected with a Canny/Deriche operator tuned to detect the smooth contour of the shadow. Pa-
rameters are (α = 1.25, ω = 0.02) and (α = 0.5, ω = 0.02), respectively. See [2] for details of the Deriche detector.
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Thus, points of high gradient are smoothed less than points
of low gradient. While this is clearly a powerful framework
for image enhancement, our goal here is not to sharpen
edges, but to detect them over a wide range of blur and
contrasts. For this purpose, the most troubling property of
anisotropic diffusion is its implicit use of a unique thresh-
old on the luminance gradient, below which the gradient
decreases with time (smoothing), above which the gradient
increases with time (edge enhancement). Unfortunately,
there is no principled way of choosing this threshold even
for a single image, since important edges generate a broad
range of gradients, determined by contrast and degree of
blur. Sensor noise, on the other hand, can generate very
steep gradients.

Edge focusing methods [11], [15] apply the notion of
coarse-to-fine tracking developed for matching problems to
the problem of edge detection. The approach is to select the
few events (e.g., zero-crossings) that are “really significant”
(i.e., survive at a large scale), and then track these events
through scale-space as scale is decreased to accurately lo-
calize the events in space.

Aside from the computational complexity of this ap-
proach, there are two main problems with its application to
edge detection. First, for edges, scale has no reliable corre-
spondence to significance. Generally, edges will survive at a
higher scale if they are high contrast, in focus, and isolated.
However, contrast is a very poor indicator of significance,
since objects with similar reflectance functions, when
placed in occlusion, can generate very low contrast edges.
This is a frequent occurrence, partly because of self-
occlusions and the fact that objects with similar reflectance
functions are often grouped together in the world (e.g., the
pages in front of you now). While one can make the argu-
ment that the important objects should be in focus, in prac-
tical situations this is often impossible. Finally, the isolation
of an edge also does not indicate significance: the proximity
of one object to another does not lessen the significance of
either object in general. Thus it is inappropriate to use the
high end of scale space to select for edge significance.

The second problem lies in the assumption that optimal
localization accuracy can be attained at the finest scale.
While it is true that at coarse scales the trace of an event
tends to wander in space due to interaction with neighbor-
ing events, the exact variation in accuracy with scale de-
pends strongly on the separation of neighboring events
relative to the level of sensor noise [1]. If events are widely
spaced, localization accuracy in fact increases with scale. If
sensor noise is high, localization accuracy can become very
poor at finer scales.

Jeong and Kim [16] have proposed an adaptive method
for estimating a unique scale for edge detection at each
point in the image. They pose the problem as the minimi-
zation of a functional over the entire image, and use a re-
laxation method to solve the resulting nonconvex optimi-
zation problem. The authors report that their results suf-
fered from the complicated shape of the objective func-
tion, and the resulting sensitivity of the selected scale to
the initial guess.

More recently, Lindeberg has proposed a method for se-
lecting local scale for edge detection based upon maximiz-

ing a heuristic measure of edge strength [17], [18]. The main
difficulty with this approach is that the scale thus selected is
often too small to provide reliable estimates of the deriva-
tives upon which edge detection is based, leading to dense
edge maps containing many artifactual edges. In an attempt
to distinguish real edges from artifact, Lindeberg proposes a
more global post-detection stage in which a measure of edge
significance is defined and integrated along connected chains
of pixels. Only edge chains above some (unspecified) thresh-
old value are then considered important. In contrast, our goal
in this paper is to develop a completely local method for
scale selection which does not require this type of post-
processing heuristic to distinguish real edges from artifact.

Our departure from standard approaches to the scale
problem in edge detection can thus be summarized by the
following observations:

1)�There exists no natural scale or gradient threshold
which can be defined a priori to distinguish edges
from nonedges.

2)�Survival at large scales does not distinguish significant
from insignificant edges.

3)�Localization is not, in general, best at the finest scales.
4)�To avoid artifactual edges, selected scales must be

large enough to provide reliable derivative estimates.

3 MINIMUM RELIABLE SCALE

The difficulty in reliably recovering structure from im-
ages such as Fig. 2 is that the appropriate scale for esti-
mation varies over the image. However, while the scale
of the image structure is space-variant, the system used
to produce the image from the scene is fixed. This is the
typical situation in computer vision: one doesn’t know
“what’s out there,” but one does know the properties of
the sensor, and one can thus compute the statistics of the
sensor noise in advance [19]. Given a specific model of
the event to be detected (in this case, a luminance edge),
and the appropriate operators to be used for this pur-
pose, one can then relate the parameters of the model to
a unique minimum scale at which the event can be relia-
bly detected. We call this unique scale the minimum reli-
able scale for the event.

By reliable here we mean that at this and larger scales,
the likelihood of error due to sensor noise is below a stan-
dard tolerance (e.g., 5 percent for an entire image). This
definition does not account for the danger of incorrect
assertions due to the influence of scene events nearby in
the image, which in any band-limited system must be an
increasing function of scale. While attempts have been
made by others to explicitly model this phenomenon [1], it
is our view that this problem is unlikely to admit such a
general solution. For example, while an ensemble of im-
ages may yield an estimate of the expected separation
between edges, if a sample of the ensemble contains a fine
corduroy pattern, this estimate will be of little use. Rather
than relying upon such uncertain priors, we argue that the
smallest scale which provides a reliable estimate should
be used. By selecting the minimum reliable scale at each
point in the image, we prevent errors due to sensor noise
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while simultaneously minimizing errors due to interfer-
ence from nearby structure.

By identifying a unique scale for local estimation, we
avoid the complexities and ad hoc decisions required to
combine responses at multiple scales [8], [1] or to track
edges through scale-space [11], [15]. Since the computation
is entirely local, we avoid the complexity of the global
computation proposed by Jeong and Kim [16]. By adhering
to a strict criterion for reliability with respect to sensor
noise, we obviate the need for complex postprocessing heu-
ristics to distinguish real from artifactual edges [18].

4 MODELING EDGES, BLUR, AND SENSING

An edge is modeled as a step function Au(x) + B of un-
known amplitude A and pedestal offset B, which, for the
purposes of this discussion, will be aligned with the y-axis
of the image coordinate frame. The focal or penumbral blur
of this edge is modeled by the Gaussian blurring kernel1

g x y eb
b

x y b, , s
ps

s2 7 4 9
=

- +1

2 2

22 2 2

of unknown scale constant σb, to generate the error function

A x Bb2 2 12 7 3 84 9erf s + +

Sensor noise n(x, y) is modeled as a stationary, additive,
zero-mean white noise process; that is, the noise at a given
point in the image is a normally distributed random vari-
able with standard deviation sn, independent of the signal
and the noise at other points in the image. The complete
edge model is thus:

A x B n x yb2 2 12 7 3 84 9 1 6erf s + + + ,                 (1)

Estimating the sensor noise statistics for an imaging
system is relatively straightforward. For the system used in
Fig. 2, a region of a defocused image of a plain flat surface
was first selected. This subimage was then high-pass
filtered with a unit-power kernel, the two-tap filter
1 2 1 2, -3 8 . The shading over this subimage varies

slowly, and the defocus acts as an additional low-pass filter,
so we could be confident that the scene structure contrib-
uted negligible energy to the filter output. The following
elementary result from the theory of random processes was
then exploited:

PROPOSITION 1. The standard deviation of the result of a linear

transformation / : ℜn → ℜ applied to a set of i.i.d. random

variables of standard deviation sn is the product of the L2

norm of the linear transformation and the standard devia-
tion of the random variables: s sn/ /= 2 .2

1. The Gaussian model differs from the geometric model for focal and
penumbral blur discussed in Section 1. It has been argued that the Gaussian
model better accounts for the various aberrations in practical imaging sys-
tems, and it has been used widely in depth-from-defocus work [20], [21], [22].

2. We use the Gaussian function both as a model for the probability dis-
tribution of sensor noise and as a smoothing function for local estimation.
For clarity, we use the symbol s for the standard deviation of the Gaussian
when it is used as a model of noise, and the symbol σ for the scale of the
Gaussian when it is used as a smoothing filter.

The proof is straightforward [23].
Thus, the statistics of the unit-power filter output pro-

vide an estimate of the statistics of the sensor noise: the
standard deviation of the noise for the eight-bit image
shown in Fig. 2 is approximately 1.6 quantization levels.

5 RELIABILITY CRITERION

Our edge-detection method depends upon making reliable
inferences about the local shape of the intensity function at
each point in an image. Reliability is defined in terms of an
overall significance level αI for the entire image and a
pointwise significance level αp. We fix the overall image
significance level αI at 5 percent for the entire image, i.e.,
we demand that the probability of committing one or more
Type I (false positive) errors over all image points be less
than 5 percent. Under the assumption of i.i.d. noise, the
number of pixels n in the image then determines the point-
wise significance level:

αp = 1 − (1 − αI)
1/n                               (2)

For simplicity, we fix αp at a constant value determined
from the maximum image size used in our experiments: n =
512 × 512 pixels → αp = 2.0 × 10−7. This ensures that the
overall significance level αI is less than 5 percent for all im-
ages used in this paper.

6 LOCAL SCALE CONTROL AND GRADIENT
DETECTION

A necessary condition for the assertion of an edge at a par-
ticular location in the image is a nonzero gradient in the
luminance function. The gradient can be estimated using
steerable Gaussian first derivative basis filters [24], [25]:

g x y
x

ex x y

1 1
1
4

2

2

2 2
1
2

, , s
ps

s2 7 4 9
=

- - +

g x y
y

ey x y

1 1
1
4

2

2

2 2
1
2

, ,s
ps

s2 7 4 9
=

- - +

where σ1 denotes the scale of the first derivative Gaussian

estimator. The response r x y1 1
q s, ,2 7  of a first derivative

Gaussian filter g x y1 1
q s, ,2 7 to an image I(x, y) in an arbitrary

direction θ can be computed exactly as a weighted sum of
the basis filter responses, so that if

r x y g x y I x yx x
1 1 1 1, , , , ,s s2 7 2 7 1 6= *

and

r x y g x y I x yy y
1 1 1 1, , , , ,s s2 7 2 7 1 6= *

then

r x y r x y r x yx y
1 1 1 1 1 1
q s q s q s, , cos , , sin , ,2 7 0 5 2 7 0 5 2 7= +

At nonstationary points of the luminance function,
r x y1 1

q s, ,2 7  has a unique maximum over θ, the gradient

magnitude r x yM
1 1
q s, ,2 7 , attained in the gradient direction

q sM x y, , 12 7 :



ELDER AND ZUCKER:  LOCAL SCALE CONTROL FOR EDGE DETECTION AND BLUR ESTIMATION 703

r x y r x y r x yM x y
1 1 1 1

2

1 1

2q s s s, , , , , ,2 7 2 74 9 2 74 9= +

q s s sM
y xx y r x y r x y, , arctan , , , ,1 1 1 1 12 7 2 7 2 74 9=

To be confident that a nonzero gradient exists at a point
(x, y) in the image I(x, y) we must consider the likelihood
that the response of the gradient operator could be due to
noise alone. This computation is complicated by the fact
that the gradient operator is nonlinear, and so its response
will not be normally distributed. However, it is possible to
determine its distribution by exploiting a second elemen-
tary result from probability theory [26]:

PROPOSITION 2. Let U be a random variable with pdf pU, U ∈
A ⊆  ℜ. Let V = f(U), where f is diffeomorphic on A.
Then

p v p f v
d

dv f v v f AV U0 5 0 54 9 0 5 0 5= Œ- -1 1 , .

This proposition can be used to derive the distribution of
the gradient response to noise. We let

p u p r u p r uU
x y0 5 = = = =1 1

and

p v p r v p r vV
x y0 5 4 9 4 9= =�

! 
"
$# = =�

! 
"
$#1

2

1

2
.

If the image contains only Gaussian i.i.d. noise of standard
deviation sn, U will have a half-Gaussian distribution

p u
s

e uU
u s0 5 5= Œ •-2

2
0

1

22
1
2

p
, ,

where

s g x y sn1 1 1 2
= , , s2 7            (Proposition 1)

Since f(u) = u2 is diffeomorphic on [0, ∞), by Proposition 2,

p v
vs

e vV
v s0 5 5= Œ •-1

2
0

1

2 1
2

p
, ,

Now let

p v p r r v p v p v v dvV V
x y

V

v

V1 2 1

2

1

2

0+ = + =�
! 

"
$# = ¢ - ¢ ¢0 5 4 9 4 9 0 5 0 5

Solving the integral, we obtain

p v
s

e vV V
v s

1 2
1
21

2
0

1
2

2
+

-= Œ •0 5 5, ,                      (3)

To ensure a pointwise significance of αp, we require a
critical value c1, below which responses are not considered
reliable, satisfying

p v dvV V pc 1 2
1
2 +

•
=0 5 a .

Substituting from (3) and solving, we obtain

c s p1 1 2= - ln a4 9 ,

where

s g x y sn1 1 1 2
= , , s2 7 .

Substituting αp = 2.0 × 10−7 (Section 5), we have c1 = 5.6s1.

The L2 norm of the first derivative operator is given by

g x y1 1 2 1
21 2 2q s ps, ,2 7 4 9= ,

hence, we have the following.

DEFINITION 1. The critical value function c1(σ1) of the nonlinear
Gaussian gradient operator, tracing the threshold of statis-
tical reliability (α = .05) for the operator as a function of
scale, is given by

c
sn

1 1
1
2

11
s

s
2 7 =

.
.                                   (4)

For a given level of sensor noise and operator scale, the
critical value function specifies the minimum response
value that can be considered statistically reliable.

In order to relate the critical value function to edge de-
tection, we must consider the response of the gradient op-
erator to an edge. Given a blurred step edge along the y
axis of amplitude A and blur parameter σb, the gradient
magnitude is given by

r x y Au x g x yx x
b1 1 1
2

1
2, , , ,s s s2 7 0 5 4 9= * +

=
+

- +A
e

b

x b

2 2
1
2

22 2
1
2

p s s

s s

4 9
4 9

              (5)

which attains its maximum on the y axis:

r y
Ax

b

1 1 2
1
2

0
2

, , s
p s s

2 7
4 9

=
+

                       (6)

Thus, while both the maximum gradient response to
a blurred edge (6) and the critical value function (4)
decrease with increasing estimation scale, the critical
value function decreases faster, reflecting the improved
signal detection properties of larger oriented operators.
By combining (6) with (4) and solving for σ1, we derive
Proposition 3.

PROPOSITION 3. For an imaging system with white sensor noise
of standard deviation sn, and an edge of amplitude A and
blur parameter σb, there exists a minimum reliable
scale $s 1 at which the luminance gradient can be reliably
detected:

$ . . .2s s1
2 2 25 4 28 9 15= + +�

�
�
�

s
A A sn

b n2 7 pixels .

This situation for an example edge is shown in Fig. 3a.
The minimum reliable scale for estimating the gradient of
the edge is defined by the scale at which the edge response
just exceeds the significance threshold: at $ .s 1 2 1=  pixels in
this case.
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Note that estimating the minimum reliable scale accu-
rately does not allow one to estimate the blur of the edge σb,
since the amplitude A of the edge is also unknown. In our
experiments, therefore, we attempt only to stay close to the
minimum reliable scale by computing gradient estimates at
octave intervals of scale, at each point using the smallest
scale at which the gradient estimate exceeds the critical
value function, i.e.,

$ , inf : , ,s s s sq
1 1 1 1 1 1x y r x y cM1 6 2 7 2 7J L= >

The result of the gradient computation using local scale
control for the image of the mannequin and shadow is
shown in Fig. 4a. Six scales were used: σ1 ∈ {0.5, 1, 2, 4, 8,
16} pixels. Here the shade of gray indicates the smallest
scale at which gradient estimates are reliable, black indi-
cating σ1 = 0.5 pixel, lighter shades indicating higher scales,
and white indicating that no reliable estimate could be
made. While the smallest scale is reliable for the contours of
the mannequin, higher scales are required to fully recover
the shadow.

Many edge detectors (e.g., [1]) define edges as local
maxima in the gradient map. Fig. 5 shows why this ap-
proach cannot work. A one-dimensional cross-section from
the penumbra of the shadow has been selected to examine
the behavior of the derivative responses and minimum reli-
able scales for local estimation. Fig. 5b shows the luminance
profile in cross-section, Fig. 5d shows the gradient magni-
tude along the cross-section, and Fig. 5c shows the mini-
mum reliable scales at which the gradient was estimated.
Note how the scale of estimation automatically adapts as
the strength of the signal varies. Although this allows the
gradient to be reliably detected as nonzero over this cross-
section, the response is not unimodal: there are in fact five
maxima in the gradient along the cross section of the edge.
It is clear that selecting the maxima of the gradient function
would lead to multiple separate responses to this single
edge. While there is no local solution to this multiple re-
sponse problem based upon the gradient map alone, in the
next section we show how reliable estimation of the second
derivative of the intensity function can be used to solve this
problem.

             
                                                                        (a)                                                                                                (b)

               
                                                                         (c)                                                                                               (d)

Fig. 3. Predicted performance characteristics of local scale control. (a) Local scale control for a simulated edge. Parameters are: A = 10 gray lev-

els, B = 127 gray levels, σb = 10 pixels, sn = 1.6 gray levels (SNR = 6.3). The intersection of the critical value function c1(σ1) with the maximum

gradient response to the edge r y
x

1 10, ,s1 6 determines the minimum reliable scale for gradient estimation. (b) Minimum reliable scales $s1 and $s 2

to detect a sharp edge (σb = 0), as a function of edge amplitude A. (c) Minimum reliable scales $s1 and $s 2  to detect a low-contrast edge (A = 1

gray level), as a function of edge blur σb. (d) Minimum SNR required to localize a high-precision edge to the nearest pixel (e = 0.5), as a function of

blur scale σb.
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7 LOCAL SCALE CONTROL AND SECOND
DERIVATIVE ESTIMATION

The second derivative of the intensity function can be es-
timated with a steerable second derivative of Gaussian
operator:

g x y x ex x y

2 2
2
4 2

2 21

2
1

2 2
2
2

, , s
ps

s
s2 7 2 74 9 4 9

= -
- +

g x y y ey x y

2 2
2
4 2

2 21

2
1

2 2
2
2

, ,s
ps

s
s2 7 2 74 9 4 9

= -
- +

             g x y
xy

exy x y

2 2
2
6

2

2

2 2
2
2

, , s
ps

s2 7 4 9
=

- +

and
              g x y g x yx
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q s q s, , cos , ,2 7 0 5 2 7=
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We restrict our attention to the second derivative of the
intensity function g x yM

2 2
q s, ,2 7  along the gradient direction

q M . Since g x yM
2 2
q s, ,2 7  is linear, the derivation of the criti-

cal value function c2(σ2) for second derivative estimation is
relatively straightforward. Specifically, we require that

p r c erf c sM
p p2 2 2 22q a a> = Æ =4 9 3 8
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s g x y sn2 2 2 2
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The L2 norm of the second derivative operator is given by
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Substituting, and setting αp = 2.0 × 10−7 (Section 5), we have
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s
                                      (7)

where sn is the standard deviation of the noise and σ2 is the
scale of the second derivative Gaussian filter.

Since we are interested only in the luminance variation
orthogonal to the edge, at each point in the image the sec-
ond derivative is steered in the direction of the gradient
estimated at the minimum reliable scale. The expected out-
put of the second derivative operator to our local edge
model (1) is given by:
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        (8)

As for the gradient, one can show that near an edge there
exists a unique minimum scale at which the sign of the sec-
ond derivative can be reliably determined (Section 8).

A second derivative map is thus obtained which de-
scribes, at each point in the image where a significant gra-
dient could be estimated, how this gradient is changing in
the gradient direction (if at all). Six scales are employed to
estimate the second derivative, at octave intervals: σ2 ∈ {0.5,
1, 2, 4, 8, 16} pixels. The minimum reliable scale map for the
mannequin image is shown in Fig. 4b. The coding scheme is
as for the gradient scale map.

Fig. 6a illustrates how the second derivative distin-
guishes between edges and smooth shading gradients. The
second derivative zero-crossing localizes the edge, while
the flanking extrema of opposite sign indicate the sigmoi-
dal nature of the luminance function, distinguishing it
from a smoothly shaded ramp.

The importance of the second derivative in localizing
blurred edges is illustrated in Fig. 5. Fig. 5f shows the esti-
mated second derivative steered in the gradient direction,
and Fig. 5e shows the minimum reliable scales for these
estimates. Note again how scale automatically adapts as the
signal varies in strength: Larger scales are needed near the
center of the edge where the luminance function is nearly
linear. Despite the rockiness of the gradient response, the
adaptive second derivative response provides a unique
zero-crossing to localize the edge. The key here is that lo-

     
                                       (a)                                                                      (b)                                                                      (c)

Fig. 4. Results of local scale control for image of mannequin with shadow. For scale maps, larger scales are rendered in lighter gray, white indi-
cates that no reliable estimate could be made. (a) Map of minimum reliable scale for gradient estimation. (b) Map of minimum reliable scale for
second derivative estimation. (c) Detected edges. Note that both the fine detail of the mannequin and the blurred, low-contrast shadow are reliably
recovered.
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cal estimation at the minimum reliable scale guarantees
that the sign of the second derivative estimate is reliable,
and hence that the zero-crossing is unique. The number of
peaks in the gradient response, on the other hand, depends
on the blur of the edge, and is not revealed in the response
of the operator at any single point: ensuring the uniqueness
of a gradient maximum is not a local problem. Thus, the
reliable detection and localization of blurred edges requires
both gradient and second derivative information.

8 ANALYSIS OF DETECTION

As a first step in analyzing the performance of local scale
control for edge detection, we can use the edge model of (1)

to predict the range of SNR and blur scale over which edges
can be detected, and the range of filter scales required.

To detect the sigmoidal shape of an edge, we must at
least reliably determine the sign of the second derivative in
the gradient direction at its positive and negative extrema,
which occur at the zero-crossings x+ and x− of the third de-
rivative of the blurred step edge:
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                                                           (a)                                                                                                             (b)

                   
                                                                              (c)                                                                                             (d)

                     
                                                                              (e)                                                                                           (f)

Fig. 5. Unique localization of blurred luminance transitions. (a) Original image with locus of one-dimensional cut used in figures (b)-(f). (b) Lumi-
nance function. (c) Minimum reliable scale for the gradient estimate. (d) Estimated gradient magnitude. Note that the signal is not unimodal, pos-
sessing five maxima. (e) Minimum reliable scale for the second derivative estimate. (f) Estimated directional second derivative. A unique zero-
crossing localizes the edge. The location of the edge is shown by a vertical line segment in (b) and (d).
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From (7) and (8), the minimum reliable second deriva-
tive scale $s 2  must satisfy:
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To steer the second derivative at these points, we must
also reliably detect the gradient of the signal. Thus, from (4)
and (5), we obtain for the minimum reliable gradient scale
$s 1:
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While we cannot solve for $s 1 and $s 2  analytically in the
general case, we can solve for $s 2  using iterative techniques

for specific values of sn, A and σb, and then solve for $s 1 us-

ing the obtained $s 2 . Assuming sn = 1.6 gray levels, we have

computed $s 1 and $s 2  for a sharp edge (σb = 0) at various
amplitudes (A ∈ {1..32} gray levels: Fig. 3b) and for a low-

contrast edge (A = 1 gray level) at various blurs (σb ∈ {1..32}
pixels: Fig. 3c). Note that these curves represent the mini-
mum scales required for detection of an edge. In the next
section, we will show that localization precision may re-
quire higher second derivative scales (see also [27]).

9 ANALYSIS OF LOCALIZATION

In the example of Fig. 5, the contrast of the shadow was
high enough to allow reliable estimation of the second de-
rivative at each pixel along the gradient direction, so that
the edge could be localized as a zero-crossing in the second
derivative. We refer to such edges as high-precision edges. For
very low contrast edges, the second derivative signal may
be too weak to reliably determine the second derivative

                                                         
                                                         (a)                                                                                                           (b)

(c)

Fig. 6. (a) Ideal blurred step and second derivative response. The zero-crossing of the second derivative localizes the edge, while the distance
between its extrema provides a measure of blur scale. (b) The gradient line segment. Thick arrows represent gradient estimates, thin arrows rep-
resent second derivative estimates in the gradient direction. (c) Derivative estimation along the gradient line using linear interpolation.
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sign near the zero-crossing, even though the second de-
rivative extrema are detected. These edges may thus be de-
tectable under the analysis of the previous section, but not
localizable to one-pixel precision. We will refer to these
edges as low-precision edges.

To understand this localization problem, we must con-
sider the reliability criterion for the second derivative re-
sponse near the zero-crossing. Defining e as the distance (in
pixels) between the actual edge location and the nearest
point at which the second derivative sign can be reliably
determined, from (7) and (8) we can write:

e e
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For e << +s sb
2

2
2 , we can develop a first-order Taylor

series for the left-hand side of (10) around e = 0 to derive an
approximate solution for e:

e ª
+ +4 5 12

2 3 2
. s sb

SNR

2 7
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Note that precision improves monotonically as the
maximum second derivative filter scale is increased. As
σ2 → ∞, precision asymptotically approaches e = 4.5/SNR
pixels.

In theory, localization precision e is not affected by the
blur of the edge, only by the contrast of the edge relative to
the sensor noise. To obtain precision to the nearest pixel, we
need e < 0.5, and thus require that SNR > 9.0. For practical
systems, there must be an upper bound on filter scale ~s 2 ,
and thus, to obtain precision to the nearest pixel, we require
that

SNR > +9 0 12
2 3 2

. ~s sb2 7
For a given maximum filter scale ~s 2 , this equation de-

fines a bound on the contrast and blur of edges which can
be localized to one-pixel precision. Fig. 3d shows this
bound for our implementation, in which we use second

derivative scales up to σ2 = 16 pixels. SNR (A/sn) must stay

above this curve if an edge of a particular blur scale σb is to
be localized to the nearest pixel.

When edges are detected but are not localizable to one-
pixel precision, how should they be represented in an edge
map? In our implementation, we represent the location of
low-precision edges by pixels which approximately bisect
the gradient line segment connecting the positive and
negative extrema of the second derivative response. The
exact algorithm used to detect and represent low- and high-
precision edges is detailed in Section 11.

10 IMPLEMENTATION ON A DISCRETE GRID

While derivative estimates are initially made only at dis-
crete pixel locations, edge detection requires derivative es-
timates along the gradient line of a potential edge point, at
off-pixel locations. Fig. 6c illustrates how this is accom-
plished when making estimates in the gradient direction.

The first estimate ra is made at the first intersection of the
gradient line with the pixel grid, in this case between pixels
(x0, y0 + 1) and (x0 + 1, y0 + 1), using linear interpolation: ra =
(1 − α)r(x0, y0 + 1) + αr(x0 + 1, y0 + 1). The next intersec-
tion occurs between pixels (x0 + 1, y0 + 1) and (x0 + 1, y0 + 2),
so that the next derivative estimate rb is given by rb =
(1 − β)r(x0 + 1, y0 + 1) + βr(x0 + 1, y0 + 2). Estimates along the
gradient line in the direction opposite to the gradient are
made in an analogous fashion.

In the following, we identify interpolated derivate esti-
mates as ~ ,r x yM

1
q 1 6  and ~ ,r x yM

2
q 1 6 , to be distinguished from

derivative estimates r x yM
1 1
q s, ,2 7  and r x yM

2 2
q s, ,2 7  made at

pixel locations. We do not associate a scale with the inter-
polated estimates, as they may be derived from on-pixel
estimates made at two different scales.

11 SUMMARY OF EDGE CRITERIA

The proposed algorithm for edge detection consists of three
stages:

1)�Use local scale control to reliably estimate the intensity
gradient at each image point.

2)�Use local scale control to reliably estimate the second
derivative of the intensity function in the gradient di-
rection at each image point.

3)�Localize edges at zero-crossings of the second deriva-
tive in the gradient direction.

While the basic structure of the algorithm is straightfor-
ward, there are details in the discrete implementation and
in the handling of both high- and low-precision cases which
require some attention. We provide these details in the next
two subsections.

11.1  High-Precision Edge Criteria
To be labeled as a high-precision edge, a pixel (xp, yp) must
be located at a zero-crossing in the second derivative of the
intensity function. Defining (xn, yn) as the location of the
first intersection of the pixel grid with the gradient line
through (xp, yp) in the gradient direction, four specific crite-
ria must be satisfied:

1)�The gradient must be reliably detected at the point:

r x y cM
p p1 1 1 1

q s s, ,4 9 2 7>  for some σ1.

2)�The second derivative in the gradient direction must
be reliably detected as positive at the point:

r x y cM
p p2 2 2 2

q s s, ,4 9 2 7>  for some σ2.

3)�The interpolated gradient must be detected as nonzero
at the next estimation point in the gradient direction:
~ ,r x yM

n n1 0q 2 7 > .
4)�The interpolated second derivative in the gradient

direction must be detected as negative at the next es-
timation point in the gradient direction:
~ ,r x yM

n n2 0q 2 7 < .

The choice of representing an edge location at the dark
side of the edge (where the second derivative is positive) is
arbitrary. To localize edges more precisely, a subpixel repre-
sentation must be employed [27].
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11.2  Low-Precision Edge Criteria
To be labeled as a low-precision edge, a pixel (x0, y0) must
be equidistant from second derivative extrema along the
gradient line. This requires the definition of a gradient line
segment running though (x0, y0) (Fig. 6b).

DEFINITION 2. The gradient line segment of a point (x0, y0)
extends in the gradient direction until either a positive sec-
ond derivative estimate is detected, or until a negative es-
timate is followed by a point where no reliable estimate of
the second derivative sign can be made. Similarly, the gra-
dient line segment extends in the direction opposite to the
gradient until either a negative second derivative estimate
is detected, or until a positive estimate is followed by a
point where no reliable estimate of the second derivative

sign can be made. We define (x+, y+) as the location of the
global maximum of the second derivative in the gradient

direction on the gradient line segment, and (x−, y−) as the
location of the global minimum of the second derivative in
the gradient direction on the gradient line segment.

Given this definition, a pixel (x0, y0) may be classified as
a low-precision edge if it satisfies the following criteria:

1)�The gradient is reliably detected as nonzero at all grid
intersections of the gradient line segment through the
point.

2)�There is at least one grid intersection of the gradient line
segment at which no reliable estimate of the second de-
rivative in the gradient direction could be made.

3)�There exists a point on the gradient line segment in
the gradient direction where the second derivative in
the gradient direction is reliably detected as negative.

4)�There exists a point on the gradient line segment in the
direction opposite to the gradient where the second
derivative in the gradient direction is reliably detected
as positive.

5)�The pixel (x0, y0) lies within 1
2

 pixels of the point

which bisects the extrema locations (x+, y+) and (x−, y−).

The tolerance of 1
2

 accounts for the worst-case error in

representing the bisection of the extrema locations to the
nearest pixel.

12 EXPERIMENTAL RESULTS

12.1  Synthetic Images
12.1.1 Blur Scale Experiment
We first tested our edge-detection method on the synthetic
image of Fig. 7a, a vertical edge blurred by a space-varying,
one-dimensional horizontal Gaussian blur kernel, with blur
scale increasing linearly along the edge. Gaussian i.i.d. noise
(sn = 1.6 gray levels) was added to simulate sensor noise. Fig.
7b shows the edge points detected in this image. Note that
the edge is reliably detected and localized over a wide range
of blur, and that no artifactual edges are detected.

12.1.2 Contrast (SNR) Experiment
To evaluate edge-detection performance of the local scale
control algorithm as a function of noise level, we ran the
algorithm on synthetic images of a square in Gaussian
white noise (Fig. 8). SNR is 2, 1, and 0.5, from top to bot-
tom. In all cases, SNR is below the range required for one-
pixel localization (Fig. 3d): The edges detected in these
synthetic images are therefore low-precision edges.

The middle column of Fig. 8 shows the scale map for es-
timating the second derivative in the gradient direction of
the intensity function at each point (larger scales in lighter
gray, white indicates that no reliable estimate could be
made). As predicted, in the immediate vicinity of the
square’s edges the second derivative signal is too weak to
be estimated reliably, so that an explicit zero-crossing in the
second derivative is not available. The right column shows
the effect of this dropout in the second derivative signal on
edge localization. Again, no artifactual edges are detected.
While in all cases the square is entirely detected, as SNR
decreases, the error in edge localization increases. One can
also see an increased rounding in the corners of the square
as SNR decreases. This is due to the increased blurring of
the image at the larger scales required for estimation at
higher noise levels.

                                                             
                                       (a)                                                                     (b)                                                                   (c)

Fig. 7. Testing the local scale control algorithm on a synthetic image. (a) The blur grade is linear, ranging from σb = 1 pixel to σb = 26.6 pixels. The
contrast of the edge and the amplitude of the added Gaussian noise are fixed. Parameters (see Section 4): A = B = 85 gray levels, σb ∈ [1, 26.6]
pixels, sn = 1.6 gray levels. (b) Detected edge. (c) Estimated vs. actual blur scale along edge.
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12.2  Natural Images
Fig. 4c shows a map of the edge points in the image of the
mannequin and shadow. Note that the contours of the
image are recovered, without spurious responses to the
smooth shading gradients behind the mannequin and in
the foreground and background of the shadow. Observe
also that both the fine detail of the mannequin and the
complete contour of the shadow are resolved (compare
with the results of the Canny/Deriche detector in Fig. 2).
This is achieved by a single automatic system with no in-
put parameters other than the second moment of the sen-
sor noise.

Heath et al. have recently compared the performance of
five edge-detection algorithms on a set of natural images. We
will identify the five algorithms tested by the names of the
authors: Bergholm [11], Canny [28], Iverson and Zucker [29],
Nalwa and Binford [30], and Rothwell et al. [31]. In this
study, algorithm performance was evaluated on the basis of
subjective human visual judgment [32]. Since the perform-
ance of these algorithms depended upon the setting of up to
three parameters, Heath et al. coarsely sampled each algo-
rithm’s parameter space to determine the parameter settings
for each algorithm that maximized the mean performance over
all images. Thresholding with hysteresis and nonmaximum sup-
pression [28] were used for all but the Rothwell et al. detector.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. SNR behavior of local scale control for edge localization. The left column shows synthetic images of a square in Gaussian noise. From top
to bottom, SNR = 2, 1, 0.5. The middle column shows the variation in scale in estimating the sign of the second derivative of the intensity function
in the gradient direction. Larger scales are rendered in lighter gray, white indicates that no reliable estimate could be made. At these noise levels,
the sign of the second derivative near the edge cannot be estimated reliably at any scale. The right column shows the edges detected. Uncertainty
in the second derivative at high noise levels leads to localization error.
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                                                                                   (a)                                                        (b)

          
                                                                                  (c)                                                          (d)

          
                                                                                  (e)                                                         (f)

          
                                                                                  (g)                                                        (h)

Fig. 9. Comparison of local scale control with previous edge-detection algorithms. (a) Original image. (b) Edges detected with local scale control.
(c) Bergholm detector [11]. (d) Canny detector [28]. (e) Iverson detector [29] (with modifications by Heath et al. [32]). (f) Original Iverson detector
[29] (g) Nalwa detector [30]. (h) Rothwell detector [31]. (a), (c), (d), (e), (g), and (h) courtesy of K. Bowyer, University of South Florida [32].
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In their evaluation, Heath et al. made changes to some of
the algorithms so that they would produce output in the
same format for comparison purposes. In the case of the
Iverson and Zucker algorithm, these changes were very
significant, so we have also included the results of the
original version of the Iverson and Zucker algorithm for
comparison.

One of the test images used by Heath et al. is shown in
Fig. 9a. The edge map computed by the local scale control
algorithm is shown in Fig. 9b. The edge maps computed by
the Bergholm, Canny, Iverson and Zucker (modified), Iver-
son and Zucker (original), Nalwa and Binford, and Roth-
well et al. algorithms are shown in Figs. 9c, 9d, 9e, 9f, 9g,
and 9h, respectively.

It is apparent how the local scale control algorithm de-
tects much more of the lower-contrast, slightly blurred leaf
structure than the other methods. While the original Iver-
son and Zucker detector and the Nalwa detector are sec-
ond-best by this criterion, many of the leaf edges detected
exhibit the multiple-response problem discussed in Sec-
tion 1. For the Iverson and Zucker detector these contours
appear as thickened or smudged; for the Nalwa detector
they appear as laterally shifted echoes.

It may be argued that methods which detect only a frac-
tion of the edges in an image may be useful if they detect
only the most important edges and ignore the less impor-
tant edges. However, the analysis of Section 2 suggests that
making this distinction at an early stage is very difficult,
since important edges may often be more blurry and of
lower contrast than relatively unimportant edges. We ar-
gue, therefore, that the goal of edge detection should be to
detect all of the edges in the image, over the broad range of
contrasts and blur scales with which they occur. Of course,
subsequent processing of the edge map is required before it
can be directly used for higher-level tasks such as object
recognition. This higher-level processing must include
methods for discriminating texture edges from nontexture
edges [33] and for grouping edges into bounding contours
(e.g., [34], [35], [36], [37]).

13 LOCAL SCALE CONTROL FOR BLUR ESTIMATION

Fig. 10 shows a tangle of branches, photographed with a
shallow depth of field (f/3.5). The connected cluster of
twigs in focus at the center of the frame forms a clear sub-
ject, while the remaining branches appear as defocused
background. Fig. 10b shows the edges detected for this im-
age using local scale control for reliable estimation: both the
in-focus and defocused branches are recovered. Note that
although occlusions provide some clue as to the depth or-
dering of the contours, the immediate perceptual segmen-
tation of foreground and background structure provided by
the focal blur is lost.

Existing techniques for focal blur estimation typically as-
sume surfaces varying slowly in depth [20], [38], [39]. This
assumption fails for this image, in which any local neigh-
borhood may contain many distinct depth discontinuities.
This creates a dilemma: While employing small estimation
filters will lead to larger errors in blur estimation due to
sensor noise, employing large filters will increase error due

to interference between distinct structures which are nearby
in the image, but far apart in depth (and, hence, in focal
blur) [38]. The problem is thus to choose a compromise fil-
ter scale which is as small as possible, but large enough to
avoid error due to sensor noise. Local scale control is natu-
rally suited to this task.

For the estimation of focal blur, the Gaussian kernel of
our edge model represents the point spread function of the
lens system of the camera employed. From (9), the locations
of the extrema in the estimated second derivative are ex-

pected to occur at ± +s s2
2 2

b  pixels to either side of the
edge location, where s 2  is the minimum reliable scale of
the second derivative operator and s b  is the blur scale of
the edge. Defining d as the distance between second de-
rivative extrema of opposite sign in the gradient direction
(Fig. 6a), we obtain

s sb d= -22
2
23 8

Thus, the blur due to defocus can be estimated from the
measured thickness of the contours, after compensation for
the blur induced by the estimation itself.

Fig. 7c shows a plot of the estimated and actual blurs of
the synthetic test image of Fig. 7a. Error increases roughly
linearly with blur scale, and can thus best be expressed as a
percentage. While the estimation method appears to be ap-
proximately unbiased, with mean error of only 2.8 percent,
the individual estimates are quite noisy, with an RMS error
of 17.6 percent. While we are unaware of performance
measures for competitive methods of estimating blur in a
single image (as opposed to error in estimating range from
two images of differing depth of field, for example), the
just-noticeable difference in edge blur for the human visual
system is known to be on the order of 13-20 percent [40],
implying an ability to estimate the blur of a single edge at
9-14 percent.

We believe that the main source of error in our method is
error in the localization of the second-derivative extrema of
the edge. Note that the scale of the second derivative filter
is selected to ensure that the sign of the second derivative is
reliably detected: This does not guarantee that the extrema
will be correctly localized, and in fact for blurred edges
typically several extrema will exist. The problem is analo-
gous to the problem in using the gradient maxima to local-
ize the position of an edge (see Section 7). The correct solu-
tion is also analogous: to localize an edge we must reliably
detect the zero-crossing of the second derivative in the gra-
dient direction, to localize the second derivative extrema
(and hence estimate blur), we must reliably detect the zero-
crossing of the third derivative in the gradient direction. We
are presently developing an improved method for blur es-
timation based upon this local scale control technique.

Despite the noise in our present method for blur estima-
tion, it may still be employed usefully to segment image
structure into distinct depth planes. For example, we can
apply it to the image of Fig. 10 to replicate the perceptual
segmentation between subject and background that we ex-
perience when viewing the original image. Fig. 10c and 10d
show the extracted foreground (focused) and background
(defocused) structures, respectively.
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14 SPACE CURVES FROM DEFOCUS AND CAST
SHADOWS

While others have had some success in classifying contours
as thin or diffuse [41], [42], [43], we show here that our
method for estimating contour blur can provide dense esti-
mates continuously along image contours to recover com-
plete space curves from an image. As an example, consider
the image of a model car (Fig. 11a) photographed with shal-
low depth of field (f/2.5). The lens was focused on the rear
wheel of the car, so that the hood and front bumper are defo-
cused. Fig. 11b shows the edges selected by the minimum
reliable scale method. Note that, in spite of the severe defo-
cus, the foreground and background structures are reliably
detected and localized. Fig. 11c shows a three-dimensional
plot of one of the main contours of the car. Here the vertical
axis represents the focal blur σb, estimated as described in the
previous section, and smoothed along the contour with a
Gaussian blur kernel (σ = 22 pixels). The contour provides a
continuous estimate of focal blur, related by a monotonic

function to the distance from the plane of best focus, which
in this case is at the rear wheel of the model car.

This method for blur estimation can also be used to es-
timate penumbral blur. Let us again consider the image of
the mannequin casting a shadow (Fig. 2a). The blur of the
shadow contour increases toward the head of the shadow.
The results of penumbral blur estimation along the shadow
contour (after Gaussian smoothing blur estimates along the
contour, σ = 22 pixels) are shown in Fig. 11d.

As discussed in Section 1, the duality between defocus
and cast shadows indicates that focal and penumbral
blur cannot be distinguished by a local computation on a
single image frame. Existing passive methods for esti-
mating depth from defocus typically use two frames
with different depths of field to distinguish focal blur
from other types of blur [20], [38], [39]. This technique
could also be applied to our method for blur estimation,
allowing focal and penumbral blur to be decoupled and
estimated separately.

   
                                                           (a)                                                                                                         (b)

  
                                                            (c)                                                                                                       (d)

Fig. 10. Depth segmentation based on focal blur. (a) A photograph of tree branches with shallow depth of field (f/3.5) and near focus. (b) Edge
map. (c) Foreground structure (focused contours). (d) Background structure (blurred contours).
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15 OPEN QUESTIONS AND FUTURE WORK

There are a number of ways in which we are extending or
plan to extend the present work:

1)�Subpixel localization of edge points using local scale
control. Preliminary results have already been re-
ported [27].

2)�Extension of scale adaptation to include orientation-
tuning adaptation, allowing very low SNR and clut-
tered edges to be reliably detected.

3)�Improvements in precision of blur estimation based on
reliable estimation of the third derivative using local
scale control.

One major open question is how we can best evaluate
the degree to which our edge model and the proposed local
scale control method accurately represents all of the edges
in a natural image. To address this question, we have re-
cently developed a means for inverting our edge represen-
tation to compute an estimate of the original image [27].
Each edge point is represented by the parameters of (1).
From this representation, we show that an estimate of the
original image can be computed which is perceptually

nearly identical to the original image. The blur scale com-
ponent of the model is found to be critical to achieving per-
ceptually accurate reconstructions. These results suggest
that the proposed model and edge-detection method accu-
rately represent virtually all of the edges of the image.

Perhaps the most difficult open question facing this
work is the validity of the assumption that only a single
scale at each edge point suffices to characterize an image.
Consider, for example, a shadow falling on a textured sur-
face. At many points along the shadow, we may wish to
identify two edges at two distinct orientations and scales: a
small scale edge generated by an element of the texture,
and a large scale edge generated by the soft shadow. In
such cases, we may wish to search scale and orientation
space at each edge point seeking potentially multiple edges
at the point. For such an algorithm, the scales selected by
local scale control would form only the lower envelope in
scale space above which this search must be constrained.
An alternative to this approach is to detect such a shadow
edge by means of a “second-order” computation which
detects sudden changes in the intensity statistics of previ-
ously detected texture edges.

       
                                                          (a)                                                                                                         (b)

                          
                                                          (c)                                                                                                         (d)

Fig. 11. Space curves from focal blur. (a) A photograph of a car model with shallow depth of field (f/2.5). The lens is focused on the left rear wheel.
(b) Edges recovered using local scale control for reliable estimation. (c) Space curve of contour from car. (d) The Space curve of contour bounding
shadow of mannequin (Fig. 2a). The vertical axis represents estimated penumbral blur scale in pixels.
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16 CONCLUSIONS

Physical edges in the world generally project to a visual
image as blurred luminance transitions of unknown blur
scale and contrast. Detecting, localizing, and characterizing
edges over this broad range of conditions requires a multi-
scale approach. Previous attempts at edge detection using
local scale selection fail to distinguish real from artifactual
edges and/or require heuristic global computations. In this
paper, we have shown that, given prior knowledge of sen-
sor noise and operator norms, real edges can be reliably
distinguished from artifactual edges using a purely local
computation. The proposed algorithm for local scale control
detects and localizes edges over a broad range of blur scale
and contrast and requires no input parameters other than
the second moment of the sensor noise. This method for
edge detection leads naturally to a method for estimating
the local blur of image contours. This contour-based
method for blur estimation was shown to be useful for
complex images where the smoothness assumptions un-
derlying Fourier methods for blur estimation do not apply.
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