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LSD

• LSD is a Line Segment Detector

• It is based in Burns, Hanson, and Riseman method

• It uses a false detection control based on
Desolneux, Moisan, & Morel’s theory.

• LSD is fast, produces precise results, and controls false
detections.
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Resources

Google: lsd + grompone

Google: lsd + morel

www.ipol.im→ LSD: A LINE SEGMENT DETECTOR
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Examples
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Overview
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Gradient and Level-Line Field

image level-line field
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LSD in 4 steps

1. Compute the level-line field

2. Partition the image into groups of connected pixels that share
the same level-line angle up to a certain tolerance

3. Find rectangular approximations

4. Validation

Image Level-line field partition rectangles
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Line-Support Regions
A group of connected pixels that share the same level-line angle up
to a certain tolerance τ .
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Rectangular Approximation of Regions

• Pixel’s mass is proportional to the gradient modulus
• Region’s center of mass−→ rectangle’s center
• First inertia axis of the region−→ rectangle’s angle
• Length and width to envelope most of region’s mass
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Validation
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Helmholtz Principle

There is no perception on noise.
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A Contrario Detection [Desolneux, Moisan, Morel]

Structure is detected as outliers of a noise model H0:

Non-Structured Level-Line Orientations:

• angles are independent random variables

• uniformly distributed in [0, 2π]

More precisely: an observed geometric structure becomes
meaningful when the expectation of its number of occurrences is
very small in the non-structured data model.
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Aligned Point

A point whose level-line angle is equal to the rectangle angle up to
a certain tolerance τ .
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k(r, i) is the number of aligned points of rectangle r in image i.
n(r) is the total number of pixels in the rectangle r.
In the example, k(r, i) = 8 and n(r) = 27.
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Meaningful Rectangle

Given a rectangle r with k(r, i) observed aligned points, we define

NFA(r, i) = Ntest · PH0

[
k(r, I) ≥ k(r, i)

]
where:
I is a random image on H0,
Ntest is the number of tests.

NFA(r, i) is the expected number of event as good as (r, i) in H0.
When NFA(r, i) is large: a common event in H0 and not meaningful.
When NFA(r, i) is small: a rare event in H0 and probably meaningful.

A rectangle with NFA(r, i) ≤ ε is called ε-meaningful rectangle.
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Number of Tests

N width values

N x N options

N x N options

N

N

Ntest = N5
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Probability term

In H0, the probability that a pixel is an aligned point is

p =
τ

π
.

Because of the independence in H0, k(r, I) follows a binomial
distribution. Then,

PH0

[
k(r, I) ≥ k(r, i)

]
= B
(

n(r), k(r, i), p
)

where B(n, k, p) is the tail of the binomial distribution:

B(n, k, p) =
n∑

j=k

(
n

j

)
pj(1 − p)n−j
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NFA

The final expression for the Number of False Alarms for a rectangle
is:

NFA(r, i) = N5 ·
n(r)∑

j=k(r,i)

(
n(r)

j

)
pj(1 − p)n(r)−j
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Theorem

EH0

[∑
r∈R

1NFA(r,I)≤ε

]
≤ ε

where E is the expectation operator, 1 is the indicator function,R is
the set of rectangles considered, and I is a random image in H0.

The theorem states that the average number of ε-meaningful
rectangles on the a contrario model H0 images is less than ε.

In other words, it shows that LSD satisfies the Helmholtz principle.
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Proof
We define k̂(r) as

k̂(r) = min
{

n ∈ N, PH0

[
k(r, I) ≥ n

]
≤ ε

N5

}
.

Then, NFA(r, i) ≤ ε is equivalent to k(r, i) ≥ k̂(r). Now,

EH0

[∑
r∈R

1NFA(r,I)≤ε

]
=
∑
r∈R

PH0

[
NFA(r, I) ≤ ε

]
=
∑
r∈R

PH0

[
k(r, I) ≥ k̂(r)

]
.

But, by definition of k̂(r) we know that

PH0

[
k(r, I) ≥ k̂(r)

]
≤ ε

N5

and using that #R = N5 we get

EH0

[∑
r∈R

1NFA(r,I)≤ε

]
≤
∑
r∈R

ε

N5
= ε.
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ε = 1

The result is not very sensitive to the value of ε.

image ε = 1 ε = 0.1 ε = 0.01

ε = 1 means, on average, one false detection per image.
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Algorithm Summary

1. Partition the image into Line-Support Regions

2. For each Line-Support Region:

3. Find the Rectangular Approximation

4. Compute NFA value

5. Rectangles with NFA ≤ 1 are added to the output.
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more examples
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Examples
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Examples
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Details of the algorithm
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LSD

1. Scale the input image to scale S (σ = Σ/S).
2. Compute level-lines field.
3. List pixels by decreasing gradient magnitude.
4. Set STATUS(every pixel) to NOT USED.
5. Remove pixels where gradient magnitude≤ ρ.
6. From the next pixel P in the list with STATUS(P)=NOT USED:

7. Grow region from P of NOT USED connected pixels that share
level-line angle, tolerance τ . Mark pixels in the region as USED.

8. Compute the rectangular approximation.
9. Cut region until aligned point density > D.

10. Compute NFA value.
11. Try to improve rectangle.
12. If NFA ≤ ε, detection!

Parameters S, Σ, ρ, τ , D, and ε.
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Input image scaling
Staircase problem:

input image 80% scaling

80% scale, then S = 0.8. Gaussian sub-sampling with σ = Σ/S
Good balance between blur and aliasing: Σ = 0.6
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Compute level-line field
The gradient is computed at (x, y) + (1/2, 1/2) by

gx(x, y) =
i(x + 1, y) + i(x + 1, y + 1)− i(x, y)− i(x, y + 1)

2
,

gy(x, y) =
i(x, y + 1) + i(x + 1, y + 1)− i(x, y)− i(x + 1, y)

2
.

The level-line angle is computed as

arctan

(
gx(x, y)

−gy(x, y)

)
and the gradient norm as

G(x, y) =
√

g2
x(x, y) + g2

y(x, y).

Where i(x, y) is the image value at coordinates (x, y).
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Pseudo-ordering of pixels

image gradient magnitude

Starting from pixels of high gradient magnitude, seed points are
near the center of edges.

Sorting cannot be done in linear time. Instead, a pseudo-ordering is
performed by classifying pixels in 1024 bin of gradient values.
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Gradient threshold

u

∆

∆

angle error

n

ĩ = i + n ∇̃i = ∇i +∇n,

where n is the quantization noise.

|angle error| ≤ arcsin

(
q

|∇i|

)
,

where q is a bound to |∇n|. Imposing |angle error| ≤ τ we get

ρ =
q

sin τ
.

q = 2, maximum gradient quantization error in [0, 255] images.
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Region Growing
Region’s angle:

θregion = arctan

(∑
j sin(level-line-anglej)∑
j cos(level-line-anglej)

)
j ∈ region.

Recursively, the unused neighbors Q are added if∣∣∣level-line-angle(Q)− θregion

∣∣∣
mod2π

< τ.

τ = 22.5 degree.
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Angle problem
If two line segments for an angle of 180 − τ we get:

We define the density of aligned points as

d =
k

length(r) · width(r)

where k is the number of aligned points in the region.

The region is repeatedly cut until d > D or there are no points left.

D = 0.7 is an empirical value.
42 / 58



Improve rectangle

Before rejecting a region as not meaningful, some variations to the
rectangle are tried:

1. try finer precisions p

2. try to reduce width

3. try to reduce one side of the rectangle

4. try to reduce the other side of the rectangle

5. try even finer precisions
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Parameters

S = 0.8, staircase effect
Σ = 0.6, blur/aliasing balance
ρ = q/ sin τ , q = 2, quantization noise
τ = 22.5 degree, empirical but near optimum
D = 0.7, empirical
ε = 1, a contrario framework

Only D has an arbitrary value and determines how curves are
approximated.
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More details: www.ipol.im
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Projects
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Project 1: a contrario clustering

“Meaningful Clustered Forest: an Automatic and Robust Clustering
Algorithm” by Mariano Tepper, Pablo Musé, & Andrés Almansa
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Project 2 & 3: parameterless edge detection
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Project 2 & 3: parameterless edge detection
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Project 2 & 3: parameterless edge detection
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Project 2 & 3: parameterless edge detection

1. “Local Scale Control for Edge Detection and Blur Estimation” by
James H. Elder & Steven W. Zucker

2. “Multiscale Edge Detection and Fiber Enhancement Using
Differences of Oriented Means” by Meirav Galun, Ronen Basri &
Achi Brandt
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Project 4: Devernay’s sub-pixel edge detector

“A Non-Maxima Suppression Method for Edge Detection with
Sub-Pixel Accuracy” by Frédéric Devernay
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IPOL Publication

• Detailed description of the algorithm

• Good quality code: standard and well commented

• A running demonstration
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video
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merci
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