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0.1 Measures - Measures - Measures

Considering an input discrete signal uorig and its noised version unoisy, both

of M samples. We define the signal to noise ratio as follows:

SNR(uorig, unoisy) =

√
1
M

∑M
m=0(uorig[m]− unoisy[m])2√

1
M

∑M
m=0 uorig[m]2

(1)

We define the root mean square error as follows:

RMSE (uorig, unoisy) =

√√√√ 1

M

M∑
m=0

(uorig[m]− unoisy[m])2 (2)
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Chapter 1

The heat equation

Introduction

The classical Gaussian Smoothing Operator and its implementation for im-
age processing is the object of this online IPOL publication. It is used exten-
sively, either as a simple smoothing preliminary step to increase noise robustness
of an algorithm (for instance edge detectors) or either as the fundamental scale-
space operator.

Being the only operator that satisfies a series of natural requirements (lin-
earity, translation invariance, rotation invariance, scale invariance...) it plays a
key role in scale-space theory. By simulating a series of blurs, it allows to build
a scale invariant representation of the image. This scale-space representation is
at the very heart of famous registration algorithm such as SIFT, PCA SIFT,
ASIFT.

Also the Gaussian is the fundamental solution of the heat equation. This
link with the diffusion equation is exploited in many ways. It provide us for
instance with a way to approximate the laplacian operator (as in SIFT with the
DoG operator.)

The popular implementation technique is to substitute the continuous con-
volution by a discrete convolution with a truncated discretized Gaussian kernel.
Instead of this approximations, one can also apply the continuous smoothing
operator to a continuous representation of the signal. We will consider this
approach with the Discrete Fourier Transform interpolate of the digital image.
We will see that it provides a fast yet exact implementation of the Gaussian
smoothing operator, only requiring 2 FFTs.

In the following we will first expose the DFT interpolate and then detail
how the Gaussian Smoothing Operator should be implemented, exactly, by a
simple wheighting of the image DFT coefficients. In the demo accompanying
this article, one can study how an important requirement of scale-space theory,
namely the semi-group property, holds with this exact implementation and with
its discrete approximation.
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1.1 Notations, Definitions and Conventions

In the following, we will consider the floor function on R defined as:

∀a ∈ R, bac = max {n ≤ a, n ∈ Z} (1.1)

The Fourier Transform

Definition 1. For every f ∈ L1(R2), we define the Fourier Transform of f as

the function f̂ , defined for all (ξ, η) ∈ R2 by

f̂(ξ, η) =

∫
(x,y)∈R2

f(x, y)e−i(xξ+yη)dxdy

The Fourier Transform of the Gaussian function

The Fourier Transform of Gaussian function is a classic result of Fourier Anal-
ysis. [?].

The Normalized Isotropic Bi-dimensional Gaussian function of standard de-
viation σ is for all (x, y) ∈ R2

Gσ(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
Its Fourier Transform is for all (ξ, µ) ∈ R2 by

Ĝσ(ξ, µ) = exp

(
−σ2 ξ

2 + µ2

2

)
(1.2)

The Discrete Fourier Transform

Here, we will fix integers M and N and consider elements of CMN noted

(uk,l)0≤k≤M−1
0≤l≤N−1

.

Definition 2. We define the Discrete Fourier Transform (DFT) of vector (uk,l)k,l
of CMN as the vector (ûm,n)m,n verifying:

ũm,n =
1

MN

M−1∑
k=0

N−1∑
l=0

uk,l exp

(
−2iπmk

M

)
exp

(
−2iπnl

N

)
(1.3)

for all m = −bM2 c, ...,−b
M
2 c+M − 1 and n = −bN2 c, ...,−b

N
2 c+N − 1.

Proposition 1. If coefficients uk,l are real, then the DFT output vector (ũm,n)m,n
is conjugate symmetric

û−m,−n = û∗m,n (1.4)

for all appropriate indexes m and n.
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Definition 3. We define the Inverse Discrete Fourier Transform (noted IDFT)
of vector

(ũm,n)−bM2 c≤m≤−b
M
2 c+M−1

−bN2 c≤n≤−b
N
2 c+N−1

as the vector of CMN (uk,l)k,l verifying:

uk,l =

(−bM2 c+M−1)∑
m=−bM2 c

(−bN2 c+N−1)∑
n=−bN2 c

ũm,n exp

(
2iπmk

M

)
exp

(
2iπnl

N

)
(1.5)

for all k ∈ {0, ..,M − 1} and l ∈ {0, .., N − 1}.

Proposition 2. For all vector (uk,l)k,l with k = 0, ...,M−1 and l = 0, ..., N−1.

IDFT(DFT((uk,l)k,l)) = (uk,l)k,l (1.6)

For all vector (ũm,n)m,n with m = −bM2 c, ...,−b
M
2 c + M − 1 and n =

−bN2 c, ...,−b
N
2 c+N − 1.

DFT(IDFT((ũm,n)m,n)) = (ũm,n)m,n (1.7)

1.2 Definition of the Continuous Image

First of all, we need to set the dimensions of the image via dimensionless real
positives a and b and the sampling rate in both directions via integers M and
N .

The vector
(uk,l)0≤k≤M−1

0≤l≤N−1

of CMN will then designate the MN samples of a digital image relative to this
sampling grid on R2 (

ka

M
,
lb

N

)
0≤k≤M−1
0≤l≤N−1

.

Trigonometric polynomial: We’re looking for a trigonometric polynomial
P of degrees bM2 c and bN2 c, of periodicities a and b, with MN frequencies, and
verifying the exact interpolation property

P

(
ka

M
,
lb

N

)
= uk,l

for all l = 0, ...,M − 1 and for all k = 0, ..., N − 1.
Formally this can be expressed as

P (x, y) =

(−bM2 c+M−1)∑
m=−bM2 c

(−bN2 c+N−1)∑
n=−bN2 c

cm,n exp

(
2iπmx

a

)
exp

(
2iπny

b

)
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where (cm,n)m,n designates the Fourier coefficients of polynomial P , i.e

cm,n(P ) =
1

ab

∫ a

x=0

∫ b

y=0

P (x, y) exp

(
−2iπmx

a

)
exp

(
−2iπny

b

)
dxdy

In the following we will consider vector (ũm,n)m,n, the DFT of sample vector
(uk,l)k,l. We’ll show here that the DFT constitutes an exact representation of
the interpolating polynomial.

Proposition 3. We have the equivalence

P

(
ka

M
,
lb

N

)
= uk,l

for all k = 0, ...,M − 1 and for all l = 0, ..., N − 1.

⇔

cm,n = ũm,n

for all m = −bM2 c, ...,−b
M
2 c+M − 1 and n = −bN2 c, ...,−b

N
2 c+N − 1.

Proof. [⇒] This a direct consequence of property (1.7).

In other words, interpreting each uk,l for k = 0, ...,M−1 and l = 0, ..., N−1
as sample values on the grid G :=

(
ka
M , lbN

)
0≤k≤M−1
0≤l≤N−1

, the trigonometric polyno-

mial

P (x, y) =

(−bM2 c+M−1)∑
m=−bM2 c

(−bN2 c+N−1)∑
n=−bN2 c

ũm,n exp

(
2iπmx

a

)
exp

(
2iπny

b

)

with

(ũm,n)m,n = DFT ((uk,l)k,l)

is the only trigonometric polynomial of degrees bM2 c and bN2 c and MN frequen-
cies which interpolates the samples (uk,l)k,l on the grid G.

With an appropriate parameterization of the R2 plan, we can set for conve-
nience a = M and b = N . Expressing then distances in pixels and setting the
MN frequencies of our interpolating polynomial to be in(

2πm

M
,

2πn

N

)
−bM2 c≤m≤−b

M
2 c+M−1

−bN2 c≤n≤−b
N
2 c+N−1

that is to say

Sp(P ) ⊂ [−π, π]
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Note : We should underline here that this interpretation of DFT coefficients
as Fourier Coefficients of a trigonometric polynomial (which is by nature a band
limited function) rely heavily on the DFT convention exposed in ??. Indeeed if
we consider coefficients ûm,n with m = 0, ..,M − 1 and n = 0, ..., N − 1 there is
no more monotone mapping between this indexing and frequencies. Althought
it gives the very same set of coefficients, it forbids the interpretation of DFT
coeffcients as Fourier coefficients.

To summarize, the DFT interpolate of a digital image introduced here is a
continuous band limited representation of the image. We underlined the link
between this continuous function and the DFT coefficients vector of the digital
image samples. In the following, we will demonstrate that this continuous rep-
resentation offers an way to apply exactly and simply the Gaussian Smoothing
operator on images.

1.3 Gaussian Smoothing Operator

Gaussian Convolution of an image

We are interested here in the Gaussian smoothing operator on bidimensional
continuous signals, which is the convolution operator with a normalized gaussian
function : for u : (x, y) ∈ R2 7→ u(x, y) ∈ R

Gσu(x, y) := Gσ ∗ u(x, y) =

∫
x′∈R

∫
y′∈R

Gσ(x′, y′)u(x− x′, y − y′)dx′dy′ (1.8)

The Gaussian operator is parameterized by the standard deviation σ.

Gσ(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)

Scale space representation of an image

Gaussian smoothing is central in scale-space theory. Gaussian smoothing allows
to build a scale invariant representation of the signal by simulating all blurs
(i.e all zoom outs of the signal). This multiscale representation of the signal is
called scale space.

Definition 4. The scale space representation of a continuous image

u : (x, y) 7→ u(x, y)

is the family of images derived from u by Gaussian smoothing

(Gσu)σ>0

referred in the following, as the 3-d function v

v : R2 × R+ → C
(x, y, σ) 7→ Gσ ∗ u(x, y)
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This is the approach conducted for instance in the SIFT procedure. After
building this multiscale representation of the image, extrema of an analysis
operator (typically 3-D extrema of Laplacian) are extracted as they constitutes
key points of an image.

Scale space axiomatic - Gaussian smoothing properties

The reason for using the Gaussian operator instead of the many other opera-
tors have been extensively studied over two decades. This constitutes the field of
Scale-Space Theory. Here, we will briefly list natural requirements (or axioms)
published in many celebrated papers. A more detailed survey of scale-space
axiomatics can be found in [REF weickert].

Let’s note in the following Opσ the scale-space operator applied on images.
Le’s demote u(x) a continuous image defined for every x = (x, y) ∈ R2. The
output image being noted Opσ(u(x)).

• Linearity with respect to multiplications: For any real λ,

Opσ(λu(x)) = λOpσ(u(x))

.

• Translation invariance: If Tyu(x) := u(x − y) denotes the translation
operator, we have

OpσTyu(x) = TyOpσ(u(x)

• Scale invariance: If Hλu(x) := u(λx) denotes an expansion of u by a
factor λ−1, we have

Opσ [Hλu(x)] = Hλ [Opσ′u(x)]

with σ′ = λσ

• Rotation invariance: If Rθu(x) := u(Rθx) is the image rotation of an
angle −θ, we have.

Opσ [Rθu(x)] = Rθ [Opσu(x)]

• Semi group property: Considering 2 smoothing scales σ1 and σ2 we
have the relation:

Opσ2
[Opσ1

u(x)] = Op√
σ2
1+σ

2
2

u(x)

The combination of these natural requirement makes the Gaussian smooth-
ing the only valid local smoothing operator on images.

Opσu(x) = Gσ ∗ u(x)
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with scale parameter σ beeing the standard deviation of the Gaussian kernel.

Furthermore, the Gaussian operator is the fundamental solution of the heat
equation. More precisely:

Proposition 4. The Gaussian convolution Gσ ∗ u0(x) of image u0(x) is the
unique solution to the diffusion equation with initial value u0

∂v

∂σ
(x, y, σ) = 2σ∆(x, y, σ), (σ > 0)

v(x, y, 0) = u0(x, y)
(1.9)

This link between Gaussian smoothing and the Laplacian operator is used
extensively in image processing. Indeed the laplacian differential operator can
be approximated by a Difference of Gaussian as in SIFT scale space or in Burt
and Adelson’s edge detector.

1.4 ALGORITHM PRINCIPLE : Exact Smooth-
ing of the DFT Interpolation

Considering a digital image of size M and N

(uk,l)0≤k≤M−1
0≤l≤N−1

and its DFT interpolate

u(x, y) =

(−bM2 c+M−1)∑
m=−bM2 c

(−bN2 c+N−1)∑
n=−bN2 c

ũm,n exp

(
2iπmx

M

)
exp

(
2iπny

N

)

(with (ũm,n)m,n = DFT ((uk,l)k,l).
The Exact Gaussian Smoothing algorithm rely on a very simple property:

Proposition 5. Considering a pure wave of frequence ξ

gξ : RN → R
x 7→ exp(ixξ)

and a convolution kernel f : RN → R we have

∀x ∈ RN , f ∗ gξ(x) = f̂(ξ)gξ(x)

Proof.

f ∗ gξ(x) =

∫
x′∈RN

f(x′)gξ(x− x′)dx′

=

∫
x′∈RN

f(x′) exp(−iξẋ′)dx′gξ(x)

= f̂(ξ)gξ(x)
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As a direct consequence, the Gaussian convolution of a trigonometric poly-
nomial is still a trigonometric polynomial, with same frequencies and weighted
Fourier coefficients.

In particular, convolving the gaussian kernel with the image DFT interpolate
is equivalent to weighting the digital image’s DFT coefficients. Formally

u(x, y) =

(−bM2 c+M−1)∑
m=−bM2 c

(−bN2 c+N−1)∑
n=−bN2 c

ũm,n exp
(

2iπ
(mx
M

+
ny

N

))

v(x, y, σ) =

(−bM2 c+M−1)∑
m=−bM2 c

(−bN2 c+N−1)∑
n=−bN2 c

[
Ĝσ(

2πm

M
,

2πn

N
)ũm,n

]
exp

(
2iπ

(mx
M

+
ny

N

))

where each weighting factor Ĝσ( 2πm
M , 2πnN ) is the Continuous Fourier Tran-

form of the Gaussian Function evaluated on the frequency ( 2πm
M , 2πnN ),

Ĝσ(
2πm

M
,

2πn

N
) = exp

(
−σ

2

2

((
2πm

M

)2

+

(
2πn

N

)2
))

.

Note 1: It is easy to check that those new DFT coefficients correspond to a
real valued signal. Indeed, this weighting of the DFT coefficients doesn’t affect
any of its conjugate symmetry properties. Therefore the inverse Discrete Fourier
transform of those coeffcients leads indeed to a real valued signal.

Note 2: Extension of the signal: DFT interpolate is defined on the entire
plan R2. It extends the image to the entire plan via periodization of the signal.
Another way to extend the signal to the entire plan is to symmetrize the signal
before periodization. This technique will be discussed in 1.5
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ALGORITHM IMPLEMENTATION : Exact Gaussian Smooth-
ing of DFT interpolate

• Smoothing Parameter σ, standard deviation of the Gaussian smoothing
kernel.

• Input monochromatic image of height M and widht N :

U = [uk,l]0≤k≤M−1
0≤l≤N−1

• Discrete Fourier Transform of the input image (M ×N complex coeffi-
cients):

Û = DFT (U) = [ûm,n]−bM2 c≤m≤−b
M
2 c+M−1

−bN2 c≤n≤−b
N
2 c+N−1

• Samples of the Continuous Fourier Transform of the Gaussian kernel
Gσ:

Ĝ =

[
exp

(
−σ

2

2

((
2πm

M

)2

+

(
2πn

N

)2
))]

−bM2 c≤m≤−b
M
2 c+M−1

−bN2 c≤n≤−b
N
2 c+N−1

• Point-Wise multiplication in the Fourier domain:

V̂ = Ĝ.Û =

[
ûm,n. exp

(
−σ

2

2

((
2πm

M

)2

+

(
2πn

N

)2
))]

−bM2 c≤m≤−b
M
2 c+M−1

−bN2 c≤n≤−b
N
2 c+N−1

• Inverse Discrete Fourier Transform to get the M × N real samples of
the output smoothed image:

V = IDFT (V̂ ) = [vk,l]0≤k≤M−1
0≤l≤N−1

Implementation note 1: FFTW library computes the M × N coefficients
ûm,n with m = 0, ...,M − 1 and n = 0, ..., N − 1. Therefore a conversion is re-
quired to get the set of DFT coefficients computed with m = −bM2 c, ...,−b

M
2 c+

M − 1, n = −bN2 c, ...,−b
N
2 c+N − 1 and intepretable as Fourier coefficients.

Implementation note 2: FFTW library takes advantage of the nature of the
input signal. The bi-dimensional signal being real, the conjugate symmetry of its
DFT coefficients allows to store and compute only M × (bN2 c+1) complex coef-
ficients. (see FFTW online documentation http://www.fftw.org/fftw3_doc/

Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data).

http://www.fftw.org/fftw3_doc/Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data
http://www.fftw.org/fftw3_doc/Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data


14 CHAPTER 1. THE HEAT EQUATION

Figure 1.1: Exact Gaussian Smoothing Algorithm. The DFT interpolate con-
sidered here is a trigonometric polynomial, it follows then that the image is im-
plicitly extended to Z2 via periodization and that its representation in Fourier
is a finite sum of M × N Dirac masses. (note also that borders in the figure
with Fourier kernel correspond to frequencies −π and π, note I feel that it’s
important to mention this to explain why the kernel figure is not isotropic in
the case of a non squared image)
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1.5 Exact Smoothing on the DFT Interpolation
of a symmetrized discrete signal

Whenever we manipulate the DFT interpolate of a digital image, we im-
plicitly extend it to the whole Z2 plane via periodization, eventually produc-
ing strong discontinuities at borders. Consequently when applying the exact
Gaussian smoothing operator, discontinuities at borders spread, each border
“diffusing” itself on the opposite side of the image.

A popular trick to avoid this edge effect is to switch to a less unatural
boundary condition by first symmetrizing theM×N original image to a 2M×2N
and then taking its DFT interpolate.

AlGORITHM: Exact Gaussian Smoothing on DFT inter-
polate with mirror symmetrization of the signal

• Smoothing Parameter σ, standard deviation of the Gaussian
smoothing kernel.

• Input monochromatic image of height M and widht N :

U = [uk,l]0≤k≤M−1
0≤l≤N−1

• Mirror symmetrization resulting in an image of size 2M × 2N :

UM =
[
uMk,l
]
0≤k≤2M−1
0≤l≤2N−1

where uMk,l = uk′,l′ with

k′ =

{
k if 0 ≤ k ≤M − 1

2M − 1− k if M ≤ k ≤ 2M − 1

and

l′ =

{
l if 0 ≤ l ≤ N − 1

2N − 1− l if N ≤ l ≤ 2N − 1

• Discrete Fourier Transform of the symmetrized input image (2M×
2N complex coefficients):

ÛM = DFT (UM ) =
[
ûMm,n

]
−M≤m≤M−1
−N≤n≤N−1

• Samples of the Continuous Fourier Transform of the Gaussian
kernel Gσ:

Ĝ =

[
exp

(
−σ

2

2

((
2πm

M

)2

+

(
2πn

N

)2
))]

−M≤m≤M−1
−N≤n≤N−1
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• Point-Wise multiplication in the Fourier domain:

V̂M = Ĝ.ÛM =

[
ûMm,n. exp

(
−σ

2

2

((
2πm

M

)2

+

(
2πn

N

)2
))]

−M≤m≤M−1
−N≤n≤N−1

• Inverse Discrete Fourier Transform to get the M×N real samples
of the mirrored smoothed image:

VM = IDFT (V̂M ) =
[
vMk,l
]
0≤k≤2M−1
0≤l≤2N−1

• Extraction of the up-left quarter of the mirrored image:

V = [vk,l]0≤k≤M−1
0≤l≤N−1

with vk,l = vMk,l for k = 0, ...,M − 1 and l = 0, ..., N − 1.

1.6 Alternative implementations - Discrete Con-
volution

The Continuous Gaussian convolution is usually approximated by a discrete
convolution: Instead of considering a continuous representation of the image,
we convolve the discrete signal

(uk,l)0≤k≤M−1
0≤l≤N−1

by a sampled and truncated Gaussian kernel

(Gσ(k, l))(k,l)∈Z2

That is to say that a pixel at a distance of more than Kσ is considered zero.

(Gσ ∗ u)k,l :=

bKσc∑
k′=−bKσc

bKσc∑
l′=−bKσc

Gσ(k − k′, l − l′)uk′,l′ (1.10)

Usually truncation of the Gaussian kernel is performed at a distance of 3σ
(4σ in SIFT implementation) values of the Gaussian kernel are there small
enough to constitute a good approximation.

Yet the sum of discrete values of the Gaussian kernel is slightly different to
1. This can lead to an important loss in energy while convolving the image.
Therefore the truncated Gaussian kernel is usually normalized by the sum of all
its non-zero samples.

Another discrete convolution implementation have been proposed in [Lin-
deberg]. It is the fundamental solution of a discrete analogue of the diffusion
equation. The non-creation of structure in the discrete scale-space representa-
tion is the central requirement that motivates this approach.
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1.7 DEMO - Checking the Semi-Group Prop-
erty

http://dev.ipol.im/~reyotero/ipol_demo/rorm_the_heat_equation2/.
In this demo, the reader can check if the exact implementation of the Gaus-

sian smoothing operator verify the semi-group property. Let’s remind that the
semi-group property is required for scale-space representation of the image. It
states that for two smoothing parameter σ1 and σ2 we have

Gσ1Gσ2 = G√
σ2
1+σ

2
1

(1.11)

The demo applies iteratively the Gaussian smoothing operator with scale
parameter σ1 and σ2 to an image and compare it to the equivalent ‘’direct’
convolution with scale parameter

√
σ2
1 + σ2

2 . The exact implementation of the
Gaussian smoothing is compared to the discrete convolution with extra param-
eter k defining the number of samples considered in the discrete kernel.

It appears that the two ways lead to the exact same result (up to numerical
noise) in accordance with the Semi-Group Property.

The same experiment conducted this time with discrete approximation of
the Gaussian convolution shows that this important axiomatic property doesn’t
hold with the classic approximated implementation.

http://dev.ipol.im/~reyotero/ipol_demo/rorm_the_heat_equation2/


18 CHAPTER 1. THE HEAT EQUATION

Figure 1.2: Initial image lena with successive smoothing, σ ∈ {1.0, 2.0, 5.0}
along the corresponding attenuation of high frequencies in the Fourier domain.
With important smoothing we notice easily the border discontinuities produced
by simple periodization
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Figure 1.3: Exact Gaussian Smoothing Algorithm with symmetrization. Again
the DCT interpolate considered here is a trigonometric polynomial, it follows
then that the image is implicitly extended to Z2 via symmetrization and pe-
riodization and that its representation in Fourier is a sum of 2M × 2N Dirac
masses.
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Figure 1.4: Initial image lena with successive smoothing, σ ∈ {1.0, 2.0, 5.0}
along the corresponding attenuation of high frequencies on the Discrete Cosine
Transform. Observe the absence of periodization artefact on each border
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Figure 1.5: Difference between direct and iterated smoothings. The mean and
standard deviation of each difference image are set respectively to 128 and 20 for
better visualization. Parameters are σ = 1.7 , N = 10 , width = 4 (as in SIFT),
the values on the difference image are below the double precision: with an image
dynamic of 0− 255 RMSE(exact)= 9, 0.10−14 while RMSE(discrete)= 1.33.
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