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Figure 1: Various snapshots of a “Mural”
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An image matching method should be:

1. invariant to illuminance changes;

2. independent of the viewpoint, and therefore covariant by a
subgroup of the projective group;

3. insensitive to the noise inherent to any image acquisition device;

4. robust to partial occlusions, and therefore local enough;

5. robust to scaling.
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PLAN : A mathematical analysis of Lowe’s Scale-
Invariant Feature Transform (SIFT) method

• Striking examples

• Scale space and Gaussian convolution

• Comprehensive description of the SIFT local invariant encoding
method

• Proof that : SIFT is indeed similarity invariant, exactly if the
images have the same blur, otherwise approximately

D. G. Lowe, Object recognition from local scale-invariant features
International Conference on Computer Vision, 2, 1150–1157, 1999

D. G. Lowe, Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vision, 60(2):91-110, 2004

Guoshen Yu, J.M. Morel: Is SIFT scale invariant? Imaging Inverse
Problems, 2010
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STRIKING EXAMPLES
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Figure 2: Coke cans: Multiple matches (Rabin, Gousseau, Delon,
method which eliminates false alarms)



25

The “infinite resolution” image u0 is convolved with a positive
integrable kernel g, which models camera blur. This means that
the observed image is

u(x) = g ∗ u0(x) =
∫

RN
g(x− y)u0(y) dy =

∫
RN

g(y)u(x− y) dy.

By the central limit theorem, the most classic model for g is a
Gaussian.

• Gσ(x1, x2) = 1
2π(σ)2 e

− x
2
1+x22
2(σ)2 , Gσ satisfies the heat equation

∂Gσ
∂σ

= σ∆Gσ,

Gδ ∗Gβ = G√
δ2+β2 .

• Notation: Gσu(x) =: (Gσ ∗ u)(x).
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Figure 3: Convolution with Gaussian kernels (heat equation).
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Distance means blur and subsampling!
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How to compute exactly the convolution of a digital image
with a Gaussian.
The rectangular image u is given by M ×N samples noted

(uk,l)0≤k≤M−1; 0≤l≤N−1

We define the Discrete Fourier Transform (DFT) of the sample
matrix (uk,l)k,l in CMN by

ũm,n =
1

MN

M−1∑
k=0

N−1∑
l=0

uk,le
− 2iπmk

M e−
2iπnl
N

for allm = −bM2 c, ...,−b
M
2 c+M−1 and n = −bN2 c, ...,−b

N
2 c+N−1.
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A digital image is usually given by its M×N samples on a rectangle.
These samples are (implicitly) extended by N -periodicity into a
periodic image on R2, and it is assumed that the resulting underlying
image is band-limited with spectrum in [−π, π]2.

Given a digital image u(k) with k = (k, l) ∈ {0, . . . , N − 1}2

its band-limited N -periodic interpolate u(x, y) is nothing but the
trigonometric polynomial

u(x, y) := (Idu)(x, y) =
∑

(m,n)∈b−M/2,M/2−1c×b−N/2,N/2−1c

ũm,ne
2iπ(mM x+ n

N y),

where ũm,n with b = (m,n) are the discrete Fourier transform
(DFT) coefficients of the M ×N samples u(k, l).
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Let f in L1(R2). Its Fourier Transform is

f̂(ξ, η) =
∫

(x,y)∈R2
f(x, y)e−i(xξ+yη)dxdy

Normalized 2D Gaussian function of standard deviation σ :

Gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2

Its Fourier transform for all (ξ, µ) ∈ R2 is

Ĝσ(ξ, µ) = e−σ
2 ξ2+µ2

2

The main point is that

(Gσ∗e2iπ(mM x+ n
N y))(x0, y0) =

∫
R2
Gσ(x, y)e2iπ(mM (x0−x)+ n

N (y0−y))dxdy =

= e2iπ(mM x0+
n
N y0)Ĝσ

(
2πm
M

,
2πn
N

)
.
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Convolving the Gaussian kernel with the image DFT interpolate
is equivalent to weighting the digital image’s DFT coefficients.
Formally if v(x, y, σ) = (Gσ ∗ u)(x, y),

u(x, y) =
(−bM2 c+M−1)∑
m=−bM2 c

(−bN2 c+N−1)∑
n=−bN2 c

ũm,ne
2iπ(mxM +ny

N )

v(x, y, σ) =
(−bM2 c+M−1)∑
m=−bM2 c

(−bN2 c+N−1)∑
n=−bN2 c

[
Ĝσ(

2πm
M

,
2πn
N

)ũm,n

]
e2iπ(mxM +ny

N )

Each weighting factor Ĝσ( 2πm
M , 2πn

N ) is the continuous Fourier
transform of the Gaussian function evaluated on the frequency
( 2πm
M , 2πn

N ),

Ĝσ(
2πm
M

,
2πn
N

) = e
−σ2

2

(
( 2πm
M )2

+( 2πn
N )2

)

.
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Summary of algorithm computing the convolution:

• Input image:

U = [uk,l]0≤k≤M−1; 0≤l≤N−1 ;

• DFT (U) = [ũm,n] , −bM2 c ≤ m ≤ −b
M
2 c+M − 1; −bN2 c ≤ n ≤

−bN2 c+N − 1;

• Pointwise multiplication in the Fourier domain:

DFT (V ) = Ĝ.DFT (U) =
[
ûm,n.e

−σ2
2

(
( 2πm
M )2

+( 2πn
N )2

)]
;

• Inverse Discrete Fourier Transform to get the M × N real
samples of the output smoothed image:

V = DFT−1(DFT (V )).

Try it: http://dev.ipol.im/~reyotero/ipol_demo/rorm_the_

heat_equation3/ http://dev.ipol.im/~reyotero/ipol_demo/

rorm_the_heat_equation2/ (user: demo, password: demo)

http://dev.ipol.im/~reyotero/ipol_demo/rorm_the_heat_equation3/
http://dev.ipol.im/~reyotero/ipol_demo/rorm_the_heat_equation3/
http://dev.ipol.im/~reyotero/ipol_demo/rorm_the_heat_equation2/
http://dev.ipol.im/~reyotero/ipol_demo/rorm_the_heat_equation2/
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Figure 4: Barbara
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Figure 5: Barbara, DFT
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Figure 6: Barbara, filtered DFT, σ = 2
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Figure 7: Barbara, filtered by Gaussian
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From continuous to digital and conversely

• u(x): a continuous and bounded image defined for every
x = (x, y) ∈ R2.

• u: a digital image, only defined for (n1, n2) ∈ Z2.

• S1: the 1-sampling operator. Let u be a continuous image on
R2. The associated sampled digital image S1u is defined on Z2

by
S1u(n1, n2) = u(n1, n2);



39

Better for theoretical results: from a digital image back to
a continuous image by Shannon interpolation

• u(n1, n2) digital image,
∑

(n1,n2)∈Z2 |u(n1, n2)|2 <∞.

• Shannon interpolate of u: the L2(R2) function u = Iu having
u(n1, n2) as samples and with spectrum supported in (−π, π)2.

• Shannon-Whittaker :

Iu(x, y) =:
∑

(n1,n2)∈Z2

u(n1, n2)
sinπ(x− n1)
π(x− n1)

sinπ(y − n2)
π(y − n2)

.

• S1Iu = u. Conversely, if u is L2 and band-limited in (−π, π)2,
then IS1u = u.

• If c ≥ 0.8, Gc ∗ u0 is experimentally ”well-sampled” and
therefore IS1Gcu0 = Gcu0.
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SIFT assumptions and condensed description of the method

1. the initial digital image is S1GcAu0, A is any similarity
(homothety, translation, rotation, 4 parameters);

2. at all scales σ > 0, the SIFT method computes “good samplings”
of the “scale space” u(σ, ·) = GσGcAu0;

3. key points (σ,x) are scale and space extrema of ∆u(σ, ·) ;

4. directions of the sampling axes are fixed by a dominant direction
of ∇u(σ, ·) in a neighborhood of the key point proportional to√
σ2 + c2;

5. the image u(σ, ·) blurred at scale σ is sampled around each key
point at a pace proportional to

√
σ2 + c2 (initial blur + added

blur);

6. this yields rotation, translation and zoom invariant samples;

7. the final SIFT descriptor keeps only orientations of the gradient
to gain invariance w.r. light conditions.
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Figure 8: (Digital) Gaussian pyramid for key points extraction (from
Lowe). The subsampling is allowed because of the sufficient blur
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Figure 9: Neighborhood for the location of key points (from Lowe).
Local extrema are detected by comparing each sample point in D
with its eight neighbors at scale σ and its nine neighbors in the
scales above and below
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Figure 10: Each key-point is associated a square image patch whose size is

proportional to the scale and whose side direction is given by the assigned

direction. Example of a 2 × 2 descriptor array of orientation histograms

(right) computed from an 8 × 8 set of samples (left). The orientation

histograms are quantized into 8 directions and the length of each arrow

corresponds to the magnitude of the histogram entry.
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Figure 11: SIFT key points (scale and orientation)
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1 Scale and SIFT: consistency of the

method

Let T , R, H and G be respectively an arbitrary image translation,
an arbitrary image rotation, an arbitrary image homothety, and
an arbitrary Gaussian convolution. We say that there is strong
commutation if we can exchange the order of application of two of
these operators. We say that there is weak commutation between
two of these operators if we have (e.g.) RT = T ′R, meaning that
given R and T there is T ′ such that the former relation occurs. The
next lemma is straightforward.

Lemma 1 All of the aforementioned operators weakly commute. In
addition, R and G commute strongly.
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In the SIFT model the digital image is a frontal view of an infinite
resolution ideal image u0. In that case, A = HT R is the composition
of a rotation R, a translation T and a homothety H. Thus the
digital image is u = S1GδHT Ru0, for some H, T , R.

Lemma 2 For any homothety H, any rotation R and any transla-
tion T , the SIFT descriptors of S1GδHT Ru0 are identical to those
of S1GδHu0.

PROOF: Using the weak commutation of translations and rotations
with all other operators : The SIFT descriptors of a rotated or
translated image are identical to those of the original. Indeed, the
set of scale space Laplacian extrema is covariant to translations and
rotations. Then the normalization process for each SIFT descriptor
situates the origin at each extremum in turn, thus canceling the
translation, and the local sampling grid defining the SIFT patch
has axes given by peaks in its gradient direction histogram. Such
peaks are translation invariant and rotation covariant. Thus, the
normalization of the direction also cancels the rotation.
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Figure 12: Rotation invariance of SIFT. Top left and right: u and
Rπ

2
u superposed with their 31 keypoints. Top middle: descriptors of

Rπ
2
u are projected on u and their orientations are inverted for better

observability. Bottom: 31 matches between u and Rπ
2
u (Rπ

2
u are

rotated by 90◦ for better preservability).
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Figure 13: Rotation invariance of SIFT. Top left: u superposed with
its 52 keypoints. Top right: R π

10
u (obtained with Shannon interpo-

lation) superposed with its 73 keypoints. Top middle: descriptors
of Rπ

2
u are projected on u and their orientations are inverted for

better observability. Bottom: 37 matches between u and Rπ
2
u.
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Lemma 3 Let u and v be two digital images that are frontal snap-
shots of the same continuous flat image u0, u = S1GβHλu0 and v :=
S1GδHµu0, taken at different distances, with different Gaussian blurs
and possibly different sampling rates. Let w(σ,x) := (Gσu0)(x) de-
note the scale space of u0. Then the scale spaces of u and v
are

u(σ,x) = w(λ
√
σ2 + β2, λx) and v(σ,x) = w(µ

√
σ2 + δ2, µx).

If (s0,x0) is a key point of w satisfying s0 ≥ max(λβ, µδ), then it
corresponds to a key point of u at the scale σ1 such that λ

√
σ2

1 + β2 =
s0, whose SIFT descriptor is sampled with mesh

√
σ2

1 + c2, where
c is the ideal initial image blur assumed by SIFT. In the same
way (s0,x0) corresponds to a key point of v at scale σ2 such that
s0 = µ

√
σ2

2 + δ2, whose SIFT descriptor is sampled with mesh√
σ2

2 + c2.
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PROOF: Computing the scale-space for both images u and v

amounts to convolve them for every σ > 0 with Gσ.

u(σ, ·) = GσGβHλu0 = G√
σ2+β2Hλu0 = HλGλ

√
σ2+β2u0;

v(σ, ·) = HµGµ
√
σ2+δ2u0.

Set w(s,x) := (Gsu0)(x). The scale spaces compared by SIFT are

u(σ,x) = w(λ
√
σ2 + β2, λx) and v(σ,x) = w(µ

√
σ2 + δ2, µx).

For any extremal point (s0,x0) of the Laplacian of w, if s0 ≥
max(λβ, µδ), an extremal point occurs at scales σ1 for u(σ,x) and
σ2 for v(σ,x) satisfying

s0 = λ
√
σ2

1 + β2 = µ
√
σ2

2 + δ2.

The SIFT descriptor sampling rate around the key point (σ1,x1) is
proportional to

√
σ2

1 + c2 for u(σ1,x), and to
√
σ2

2 + c2 for u(σ2,x).
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Theorem 1 Let u and v be two frontal snapshots of the same
continuous flat image u0, u = S1GβHλT Ru0 and v := S1GδHµu0,

taken at different distances, with different Gaussian blurs and
possibly different sampling rates, and up to a camera translation and
rotation around its optical axis. Without loss of generality, assume
λ ≤ µ. Then if the initial blurs are identical for both images (if
β = δ = c), then each SIFT descriptor of u is identical to a SIFT
descriptor of v. If β 6= δ (or β = δ 6= c), the SIFT descriptors of
u and v become (quickly) similar when their scales grow, namely
as soon as σ1

max(c,β) � 1 and σ2
max(c,δ) � 1, where σ1 and σ2 are

respectively the scales of the key points in the two images.
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PROOF: We can neglect the effect of translations and rotations.
Consider a key point (s0,x0) of w with scale s0 ≥ max(λβ, µδ).
There is a corresponding key point (σ1,

x0
λ ) for u whose sampling

rate is fixed by the method to
√
σ2

1 + c2 and a corresponding
key point (σ2,

x0
µ ) whose sampling rate is fixed by the method to√

σ2
2 + c2 for v. The corresponding sampling rates for w(s0,x), are

λ
√
σ2

1 + c2 for the SIFT descriptors of u at scale σ1, and µ
√
σ2

2 + c2

for the descriptors of v at scale σ2. The SIFT descriptors of u and
v for x0 will be identical if and only if λ

√
σ2

1 + c2 = µ
√
σ2

2 + c2.
Since we have λ

√
σ2

1 + β2 = µ
√
σ2

2 + δ2, the SIFT descriptors of u
and v are identical if and only if

λ
√
σ2

1 + β2 = µ
√
σ2

2 + δ2 ⇒ λ
√
σ2

1 + c2 = µ
√
σ2

2 + c2.
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In other terms λ
√
σ2

1 + c2 = µ
√
σ2

2 + c2 if and only if

λ2β2 − µ2δ2 = (λ2 − µ2)c2.

Since λ and µ correspond to camera distances to the observed object
u0, their values are arbitrary. Thus in general the only way to get
(53) is to have β = δ = c, which means that the blurs of both images
have been guessed correctly.

The second statement is straightforward: if σ1 and σ2 are large
enough with respect to β, δ and c, the relation λ

√
σ2

1 + β2 =
µ
√
σ2

2 + δ2, implies λ
√
σ2

1 + c2 ≈ µ
√
σ2

2 + c2.
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Figure 14: Scale invariance of SIFT, an illustration of Theorem 1.
Left: a very small digital image u with its 25 key points. Middle:
this image is over sampled by a 32 factor to S 1

32
Idu. It has 60 key

points. Right: 18 matches found between u and S 1
32

Idu. A zoom of
the small image u on the up-left corner is shown in the bottom left.
It can be observed that all the matches are correct.
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